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Abstract
Background Lung adenocarcinoma (LUAD) has become the most frequent histologic type of lung cancer in the past several 
decades. Recent successes with immune checkpoint blockade therapy have demonstrated that the manipulation of the immune 
system is a very potent treatment for LUAD. This study aims to explore the role of immune-related genes in the development 
of LUAD and establish a signature that can predict overall survival for LUAD patients.
Methods To identify the differential expression genes (DEGs) between normal and tumor tissues, we developed an analysis 
strategy to combine an independent-sample design and a paired-sample design using RNA-seq transcriptomic profiling 
data of The Cancer Genome Atlas LUAD samples. Further, we selected prognostic markers from DEGs and evaluated their 
prognostic value in a prediction model.
Results We identified and validated PD1, PDL1 and CTLA4 genes as prognostic markers, which are well-known 
immune checkpoints, and revealed two new potential prognostic immune checkpoints for LUAD, HHLA2 (logFC = 2.55, 
FDR = 1.89 × 10–6) and VTCN1 (logFC = −2.86, FDR = 1.72 × 10–11). Furthermore, we identified an 18-gene LUAD prog-
nostic biomarker panel and observed that the classified high-risk group presented a significantly shorter overall survival 
time (HR = 3.57, p value = 4.07 × 10–10). The prediction model was validated in five independent high-throughput gene 
expression datasets.
Conclusions The identified DEG features may serve as potential biomarkers for prognosis prediction of LUAD patients and 
immunotherapy. Based on that assumption, we identified a gene expression-based immune signature for lung adenocarci-
noma prognosis.
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RPKM  Reads per kilobase per million
TCGA   The Cancer Genome Atlas

Introduction

Lung cancer is a common and severe disease which is the 
leading cause of cancer mortality worldwide for both men 
and women [1]. More than half of patients diagnosed with 
lung cancer have less than a 1-year survival rate, and the 
5-year survival rate is around 18% [2]. Among all subtypes 
of lung cancer, lung adenocarcinoma (LUAD) is at present 
the most common, and it comprises around 40% of all lung 
cancer cases. Compared to other subtypes, LUAD tends to 
grow more slowly but has a greater chance to be found after 
metastasis [3]. LUAD is the most common type of lung can-
cer in smokers and nonsmokers in both men and women.

Depending on the stage of LUAD, traditional treatment 
options usually include surgery, chemotherapy and radio-
therapy as well as targeted therapy. In the past few years, 
advances in molecular-targeted therapy have led to a major 
paradigm shift in the treatment for LUAD, showing a high 
positive response rate compared to traditional cytotoxic 
chemotherapies [4]. Specifically, immunotherapies target-
ing immune checkpoints for LUAD have shown significantly 
positive efficacy in clinical trials [5, 6]. Immune checkpoints 
are primarily initiated through T cell inhibitory receptors, 
and their ligands, including programmed death 1 (PD1) with 
PDL1 or PDL2 and cytotoxic T lymphocyte-associated pro-
tein 4 (CTLA4) with B7-1 or B7-2, inhibit multiple pathways 
involved in T cell-mediated immunity to maintain self-tol-
erance and minimize collateral tissue damage [7]. Recent 
studies have revealed that the bindings of PD1 and CTLA4 
to their ligands could negatively regulate the proliferation 
and cytokine production of T cells, providing a foundation 
for the development of PD1, PDL1 and CTLA4 antibodies-
based cancer immunotherapy [8, 9]. Furthermore, current 
clinical trials have demonstrated promising effects of anti-
PD1 (e.g., BMS-936558/nivolumab), anti-PDL1 (e.g., BMS-
936559/nivolumab) and anti-CTLA4 (e.g., BMS-734016/
ipilimumab) monoclonal antibodies in the treatment for 
advanced cancers, including LUAD [10–12].

Despite the curative potential of cancer immunotherapy, 
the majority of cancer patients do not benefit from the treat-
ment, and some responders relapse after a period of treat-
ment [13]. Considering the resistance mechanisms to cancer 
immunotherapy, recent studies have found that neoantigens 
originating from gene mutations may serve as attractive tar-
gets of immunotherapy [14, 15]. However, given that muta-
tion frequency varies among populations and heterogene-
ity exists among patients, a simple marker may not predict 
immunotherapy efficacy, and therefore developing a clinical 

immunotherapy strategy using multiple immune-related bio-
markers is essential.

For biomarker development, gene expression profiling 
provides an essential approach to detect the nature of inter-
actions between the immune system and tumor components 
in patients, capturing information useful for cancer diag-
nosis, prognosis or new therapy development (e.g., cancer 
immunotherapy). For example, Showe MK et al. showed that 
a diagnostic gene expression signature of 29 genes measured 
in peripheral blood mononuclear cells was able to distin-
guish early-stage nonsmall cell lung cancer patients from 
control patients that had nonmalignant lung disease with 
86% accuracy [16]. Furthermore, Kossenkov AV et al. found 
that the removal of malignant tumors significantly changed 
the expression of more than 3000 protein-coding genes, 
especially genes in pathways associated with suppression 
of the innate immune response, indicating the important role 
of immune genes in tumor development [17].

In this study, we carried out a transcriptome investigation 
aiming to examine potential gene expression biomarkers of 
immune-related genes for LUAD development and to fur-
ther evaluate their associations with the overall survival out-
come of the disease. With the samples of RNA-seq data from 
The Cancer Genome Atlas (TCGA), the prognostic value 
of immune-related genes was evaluated, and an 18-gene 
biomarker panel was identified with a prognosis prediction 
potential for LUAD. Five microarray datasets from the Gene 
Expression Omnibus (GEO) database were used for valida-
tion of the signature. Our study provides valuable insights 
into the immunotherapy and prognosis of LUAD by reveal-
ing the preliminary evidence of the possible underlying 
biological mechanisms of immune-related genes in tumor 
immune evasion.

Materials and methods

Datasets and immune‑related genes

Gene expression data and clinical information were down-
loaded from the TCGA Web site (https ://cance rgeno me.nih.
gov/). The RNA-seq data were generated from Illumina 
HiSeq 3.1.12.0. Study samples consisted of 457 subjects in 
total; 57 comprised paired tumor and normal tissues, and 
400 had tumor tissue only. Clinical variables included over-
all survival, race, gender, smoking status, age and tumor 
stage. For validation of the developed prognosis model, five 
independent datasets were downloaded from the GEO data-
base, including GSE31210 (N = 246), GSE8894 (N = 138), 
GSE50081 (N = 181), GSE3141 (N = 111) and GSE30219 
(N = 307). These five datasets were generated from the Affy-
metrix Human Genome U133 Plus 2.0 Array (GPL570). 
The clinical features, including tumor stage and smoking 

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
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status of the patients from these validation datasets, are sum-
marized in Supplementary Table 1. A comprehensive list 
of immune-related genes containing a total of 7052 genes 
was downloaded from the GeneCards database, which was 
searched using the keyword “immune” (https ://www.genec 
ards.org/).

Differential expressed immune genes

To identify the differential expressed genes (DEGs) in 
TCGA LUAD tumor tissues compared to normal tissues, 
we developed a strategy by combining two analysis designs. 
First, we used an independent-sample design to include all 
samples in the analysis and enable the confounder adjust-
ment. We analyzed the normal tissues from the paired 
tumor–normal subjects and the tumor tissues from the 
tumor-only subjects, guaranteeing that only independent 
samples were included. Potential confounders, including 
age, gender, race and smoking status, were adjusted. The 
RNA-seq raw count data were analyzed using the R package 
edgeR [18]. Second, we used a paired-sample design with 
the paired tumor–normal subjects only to eliminate influ-
ences from subject-specific random effects and all other 
confounders. Multivariable linear regression models were 
used for the detection of DEGs. The Benjamin and Hoch-
berg (BH) method was applied to control the false discovery 
rate, and adjusted p values < 0.05 were considered to be sta-
tistically significant. From the 7052 immune-related genes, 
significant DEGs were identified from the two designs sepa-
rately, and the overlapping genes were selected as candidate 

differential expressed immune genes (DEIGs). The detailed 
study design of our analysis is displayed in Fig. 1.

Pathway enrichment analysis of DEIGs

To further explore the immune-related biological processes 
involved in the detected DEIGs, we conducted a pathway 
enrichment analysis using GSEA software [19]. The Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
were used as reference for understanding the signal trans-
duction, cellular processes and biological pathways. A false 
discovery rate (FDR) < 0.05 was considered statistically 
significant.

Development of the immune signature

To develop a multimarker prognosis signature, we used 
the candidate DEIGs from the gene expression analysis for 
further biomarker selection. We selected those DEIGs with 
|logFC| (|log2(fold change)|) > 1.5 as candidate prognostic 
biomarkers. It is worth noting that the calculation of logFC 
was normal versus tumor for the whole manuscript. Reads 
per kilobase per million (RPKM) mapped reads values were 
calculated from the RNA-seq read counts and were normal-
ized by log2 transformation. Using all 457 tumor samples, 
we performed univariate Cox proportional hazards regres-
sion to evaluate the association between expressions of these 
DEIGs with the overall survival outcome of the patients. The 
BH method-corrected FDR < 0.05 indicated significant asso-
ciations. We then performed a LASSO variable selection 

Fig. 1  A flowchart of the study design. First, we developed a novel 
analysis strategy by combining two different study designs to detect 
differential expression of immune genes between tumor and normal 
tissues in TCGA LUAD patients. Next, the significant DEGs were 
used to perform a pathway enrichment analysis. Further, we con-

structed a prognosis model with the identified DEGs aiming to distin-
guish high-risk populations and guide early treatment. The predictive 
model was validated in five independent lung cancer gene expression 
datasets

https://www.genecards.org/
https://www.genecards.org/
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using the R package “glmnet,” in which a fivefold cross-vali-
dation strategy was used to determine the tuning parameters. 
Then, we analyzed selected biomarkers in a multivariate Cox 
proportional hazards model. The best gene model was used 
to establish the immune signature.

Survival analysis

With the identified immune signature model, the estimated 
regression coefficients were used to compute a risk score 
for survival outcome [20]. Patients were then classified 
into a high-risk group and a low-risk group utilizing the 
median of risk scores in the sample as the cutoff value. The 
Kaplan–Meier (K–M) survival curves were generated to 
graphically demonstrate the overall survival of the high-
risk and low-risk groups. The difference between survival 
curves was evaluated using the log-rank test. The R package 
“survival” was utilized to perform the survival analysis, and 
p values < 0.05 were considered to be statistically significant. 
The performance of the proposed survival prediction model 
was evaluated separately in five independent GEO datasets. 
Then, to assess whether the immune signature could be 
utilized in addition to existing clinicopathologic factors in 
evaluating risk, we conducted multivariate Cox analysis by 
adjusting age and stage in independent validation datasets 
mentioned above.

Results

Dysregulated immune genes in LUAD

First, we conducted differential expression analysis for 
the 7052 immune genes obtained from GeneCards data-
base using the discovery TCGA dataset. We performed 
an independent-sample analysis on 328 tumor tissues and 
52 unrelated normal tissues and a paired-sample analy-
sis on 57 paired tumor–normal tissues (see Materials 
and methods). The basic demographic information of the 
LUAD patients is summarized in Table 1. Most of these 
samples (> 90%) were from Caucasians. The independ-
ent-sample design analysis and the paired-sample design 
identified 5,236 and 5,076 significant DEGs (adjusted p 
value < 0.05), respectively. The overlapping 4479 DEGs 
with the same direction of regulation from the two analy-
ses were classified as DEIGS. (Supplementary Table 2). 
Among these DEIGs, the gene expressions of PD1 and 
CTLA4 were found to be increased in tumor tissues com-
pared to normal tissues, while the expression of PDL1 
decreased (logFCs = −1.00, −  0.97 and 0.74, respec-
tively), which was consistent with previous reports on 

dysregulation of PD1, PDL1 and CTLA4 gene expression 
in tumors [7, 21, 22], indicating the deactivated tumor 
infiltrating T cells. We also found another two poten-
tial immune differential expression genes, HHLA2 and 
VTCN1, dysregulated in tumor tissues (|logFC|> 2). From 
the independent-sample design analysis, HHLA2 showed 
significantly decreased gene expression in tumor tissues 
(logFC = 2.55, FDR = 1.89 × 10–6). It was not significant 
in the paired-sample design analysis, which might be due 
to the small sample size (logFC = 0.40, FDR = 0.29). Both 
analyses detected a significantly higher expression of the 
VTCN1 gene in tumor tissues (independent-sample design: 
logFC = -2.86, FDR = 1.72 × 10–11; paired-sample design: 
logFC = -2.14, FDR = 3.73 × 10–7). Boxplots of gene 
expression for these five candidate immune checkpoints 
are shown in Fig. 2.

Table 1  Demographic characteristics of lung adenocarcinoma 
patients in the discovery dataset. Independent-sample analysis 
involved 328 tumor tissues and 52 unrelated normal tissues; paired-
sample analysis was performed on 57 paired tumor and normal tis-
sues. Age, gender, race and smoking status were adjusted to detect 
DEGs in the independent-sample design

a Lifelong Nonsmoker
b Current reformed smoker, duration not specified
c Current reformed smoker for < or = 15 years
d Current reformed smoker for > 15 years
e Current smoker

Characteristics Independent-sample 
design (N = 380)

Paired-sample 
design (N = 57)

Median age (years) 66 66
Gender, n (%)
Male 167 (43.9) 33 (57.9)
Female 213 (56.1) 24 (42.1)
Race, n (%)
Caucasian 346 (91.1) 53 (93.0)
Asian 7 (1.8) /
African 26  (6.8) 4 (7.0)
Indian 1 (0.3) /
Clinical stage, n (%)
I 213 (56.1) 29 (50.9)
II 89 (23.4) 13 (22.8)
III 60 (15.8) 13 (22.8)
IV 18 (4.7) 2 (3.5)
Smoking status, n (%)
Nona 60 (15.8) 7 (12.3)
Ref-ndb 2 (0.5) /
Ref < 15c 134 (35.3) 21 (36.8)
Ref > 15d 92 (24.2) 16 (28.1)
Cure 92 (24.2) 7 (12.3)
Missing information / 6 (10.5)
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Immune‑related gene‑involved pathways

To study the dysregulated pathways involved with immune-
related genes in LUAD, KEGG pathway enrichment analysis 
identified 29 significantly dysregulated pathways enriched 
by the above-identified DEIGs (Table 2). We found that 
the cell cycle pathway was the most significantly activated 
pathway in tumor tissues (FDR = 6.54 × 10–4). Genes such 
as cyclin B1 (CCNB1), pituitary tumor transforming gene 
1 (PTTG1), cell division cycle 25c (CDC25C) and prolif-
erating cell nuclear antigen (PCNA) were highly expressed 
in this pathway. Other pathways such as DNA replication, 
proteasome, spliceosome and pyrimidine metabolism were 
also activated in LUAD tumor tissues, which was consist-
ent with previous studies [23, 24]. Importantly, we found 

immune-related pathways such as cell adhesion molecules 
(CAMs), intestinal immune network for immunoglobulin A 
(IgA) production and cytokine–cytokine receptor interaction 
were downregulated in tumor tissues. Our findings suggest 
the involvement of tumor immunosuppression in the devel-
opment of LUAD and implicate the potential of immuno-
therapy in LUAD treatment [25, 26].

Immune signature for LUAD prognosis

We then performed survival analysis to identify DEIGs as 
a prognostic signature for LUAD. From the 4479 DEIGs, 
945 genes were selected as candidate signatures with 
|logFC|> 1.5. Further, we identified 41 genes significantly 
associated with survival outcome using univariate Cox 

Fig. 2  Boxplots for gene expression of five immune checkpoints in tumor and normal tissues
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proportional hazards regression (Supplementary Table 3). 
Among these, 18 prognostic markers were selected by the 
LASSO variable selection model (Supplementary Fig. 1). 
Most of these 18 biomarkers showed discriminative power 
on the survival curves (Supplementary Fig. 2).

The final prediction model was fit with the 18 biomarkers 
using a multivariate Cox proportional hazards regression. 
Risk scores were computed as linear combinations of the 
gene expression values, and the regression coefficients were 
estimated from the model (Table 3). Subjects were classified 
as high-risk group and low-risk group based on the median 
score, respectively. As expected, the high-risk group had 
significantly shorter survival times than the low-risk group 
(HR = 3.57, p value = 4.07 × 10–10, Fig. 3c). Specifically, the 
risk score of the signature presented slightly better prog-
nosis performance for stage III/IV lung adenocarcinoma 

(HR = 4.57, p value = 1.40 × 10–5, Fig. 3b) compared to 
stage I/II (HR = 2.84, p value = 4.16 × 10–5, Fig. 3a). The 
heatmap showed consistency between gene expression of 
the 18 biomarkers and tumor stage among LUAD patients 
(Supplementary Fig. 3).

These 18 immune genes play important roles in can-
cer progression. Five (KLF4, SIX1, NKX2-5, MAPK4 and 
TRPA1) are related to cell proliferation, differentiation and 
metabolism. KLF4 controls the transition of the cell cycle 
following DNA damage by mediating the tumor suppres-
sor gene p53 [27]. SIX1 is involved in the regulation of 
cell proliferation and apoptosis and is widely expressed in 
many cancer types [28, 29]. NKX2-5 is a transcription factor 
that plays a role in organ formation and development [30]. 
MAPK4 promotes cell migration in the cell cycle [31]. The 
function of TRPA1 may play a role in signal transduction 

Table 2  Dysregulated biological pathways in tumor tissues

a Enrichment score for the gene set;
b normalized enrichment score, the enrichment score for the gene set after it has been normalized across analyzed gene sets;
c false discovery rate of NES

Direction KEGG pathway Size ESa NESb p value FDRc

Upregulated Cell cycle 73 0.50 2.10 < 0.001 6.54E−04
Pyrimidine metabolism 34 0.55 2.01 < 0.001 8.94E−04
Spliceosome 39 0.52 2.01 < 0.001 1.01E−03
Base excision repair 16 0.65 2.01 < 0.001 1.07E−03
Proteasome 35 0.55 2.04 < 0.001 1.12E−03
Aminoacyl TRNA biosynthesis 18 0.62 1.95 < 0.001 1.34E−03
Ubiquitin-mediated proteolysis 87 0.47 2.06 < 0.001 1.35E−03
DNA replication 17 0.61 1.92 < 0.001 1.93E−03
RNA degradation 22 0.54 1.84 2.41E−03 4.65E−03
Homologous recombination 15 0.59 1.76 6.51E−03 1.32E−02
Nucleotide excision repair 22 0.50 1.69 9.64E−03 2.51E−02
N glycan biosynthesis 19 0.51 1.69 7.17E−03 2.66E−02

Downregulated Hematopoietic cell lineage 47 − 0.51 − 2.77 < 0.001 < 0.0001
Graft versus host disease 24 − 0.61 − 2.72 < 0.001 < 0.0001
Complement and coagulation cascades 36 − 0.50 − 2.54 < 0.001 < 0.0001
Allograft rejection 23 − 0.40 − 2.29 < 0.001 6.10E−04
Asthma 20 − 0.35 − 2.37 < 0.001 7.12E−04
Neuroactive ligand receptor interaction 88 − 0.56 − 2.44 < 0.001 8.55E−04
Vascular smooth muscle contraction 61 − 0.55 − 2.47 < 0.001 1.07E−03
Autoimmune thyroid disease 23 − 0.46 − 2.11 < 0.001 4.96E−03
Cell adhesion molecules cams 78 − 0.33 − 2.03 < 0.001 7.04E−03
Calcium signaling pathway 76 − 0.31 − 2.01 < 0.001 7.55E−03
Dilated cardiomyopathy 43 − 0.35 − 1.90 9.26E−03 9.91E−03
Viral myocarditis 46 − 0.32 − 1.79 9.90E−03 2.28E−02
Leukocyte transendothelial migration 65 − 0.29 − 1.77 < 0.001 2.50E−02
PPAR signaling pathway 21 − 0.34 − 1.67 2.90E−02 3.85E−02
Intestinal immune network for IGA production 31 − 0.39 − 1.69 2.45E−02 3.86E−02
Cytokine cytokine receptor interaction 142 − 0.29 − 1.64 1.85E−02 4.21E−02
Leishmania infection 53 − 0.24 − 1.65 < 0.001 4.36E−02
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and growth control [32]. Other genes, such as HMMR, form 
a complex with BRCA1 and BRCA2 and are potentially 
associated with a higher risk of breast cancer [33]. Over-
expression of LOXL2 is found in a number of cancers and 
may play a role in tumor progression [34, 35]. RAET1L plays 
an important role in antipathogen and anticancer immune 
responses [36].

Validation of the prognosis signature

To validate the identified immune prognosis signature, we 
applied the proposed prognostic model to five independent 
lung cancer transcriptome expression datasets. Four datasets 
(GSE50081, GSE3141, GSE8894 and GSE30219) showed 

that patients at high risk had significantly poorer overall 
survival compared to those at low risk (Supplementary 
Fig. 4A–D, p values = 9.19 × 10–3, 0.037, 0.018, 9.10 × 10–3, 
respectively). The GSE31210 dataset analysis showed a p 
value = 0.051 (Supplementary Fig. 4E), which may be due 
to its small sample size compared to the other datasets. In 
addition, multivariate Cox analysis adjusted by age and 
stage found that the risk score from the identified molecular 
signature dominated the prediction with weak or moderate 
additional contributions from tumor stage and age in the 
TCGA cohort (HR = 3.08, p value = 5.40 × 10–7), GSE50081 
(HR = 2.34, p value = 0.0041), GSE8894 (HR = 2.13, p 
value = 0.042) and GSE30219 (HR = 2.31, p value = 0.0081) 
datasets, indicating the strong prognostic ability of our sig-
nature (Supplementary Fig. 5).

Discussion

In this investigation, we for the first time utilized a novel 
study design (combining an independent study design and a 
paired study design) to identify a robust prognostic signature 
on the basis of a tumor immune microenvironment and its 
prognostic potential, which was validated in five independ-
ent GEO datasets. The identified differential immune signa-
ture, including PD1, PDL1, CTLA4 HHLA2 and VTCN1 and 
the 18-gene panel, may provide valuable potential biomark-
ers with prognosis potential and possibly serve as targets of 
immunotherapy for LUAD patients. Enriched pathways of 
these immune-related differential expression genes between 
tumor and normal tissues were also discovered, which may 
shed light on the important role of a tumor-immune micro-
environment in the development and progression of LUAD.

In this study, we developed a novel analysis strategy by 
combining two different designs to identify DEGs between 
tumor and normal tissues. The independent-sample design 
was developed to eliminate heterogeneity between patients 
by adjusting for covariates such as age, gender, race and 
smoking status. The paired-sample design aimed to avoid 
baseline differences in complex biological systems among 
patients. Thus, combining these two study designs can 
utilize information from the whole dataset and adjust con-
founding factors. Such a design is novel, and this is the first 
report of its use.

Among the identified DEIGs, we validated the dysregu-
lation of PD1, PDL1 and CTLA4 immune checkpoints in 
tumors. We also discovered two potential immune check-
points, HHLA2 and VTCN1, which may serve as potential 
immune checkpoints and biomarkers for the selection of 
patients who may benefit from immunotherapy of LUAD. 
HHLA2 is a newly identified B7 family member that regu-
lates human T-cell functions through inhibiting the prolifera-
tion of both CD4 and CD8 T cells in the presence of T-cell 

Table 3  Univariate and multivariate Cox proportional hazard regres-
sion analyses of 18 biomarkers

Gene Univariate Multivariate (18 markers)

HR (95% CI) p value HR (95% CI) p value

ARNTL2 1.35(1.19–
1.53)

4.45E−06 1.01(0.83–
1.24)

0.89

PLA2G4F 0.83(0.77–
0.90)

7.82E−06 0.94(0.84–
1.04)

0.24

CYP17A1 0.91(0.86–
0.95)

5.49E−05 0.94(0.89–
1.00)

3.54E−02

LOXL2 1.31(1.15–
1.51)

8.39E−05 1.13(0.94–
1.35)

0.20

HMMR 1.32(1.14–
1.53)

2.13E−04 1.03(0.83–
1.28)

0.80

NKX2-5 1.09(1.04–
1.15)

3.23E−04 1.04(0.98–
1.10)

0.21

GJB2 1.20(1.08–
1.32)

3.86E−04 1.02(0.90–
1.17)

0.73

DSG3 1.10(1.04–
1.16)

4.09E−04 1.00(0.95–
1.07)

0.88

SIX1 0.84(0.77–
0.93)

4.24E−04 0.86(0.76–
0.98)

2.38E−02

MC4R 0.91(0.86–
0.96)

8.00E−04 0.95(0.89–
1.00)

6.65E−02

TRPA1 1.13(1.05–
1.21)

9.70E−04 1.00(0.91–
1.10)

0.94

RAET1L 1.07(1.03–
1.12)

1.12E−03 1.00(0.95–
1.06)

0.87

KLF4 1.28(1.10–
1.49)

1.47E−03 1.15(0.96–
1.39)

0.13

HSF2BP 1.30(1.11–
1.53)

1.48E−03 1.04(0.88–
1.25)

0.63

GRIP1 1.21(1.08–
1.37)

1.69E−03 1.19(1.05–
1.35)

8.53E−03

PTPRN 1.10(1.03–
1.16)

1.69E−03 1.02(0.94–
1.09)

0.66

MAPK4 1.10(1.04–
1.17)

2.01E−03 1.05(0.99–
1.12)

0.11

PLOD2 1.23(1.08–
1.40)

2.14E−03 1.06(0.87–
1.29)

0.57
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receptor signaling [37, 38]. Closely related to our finding, 
Cheng et al. found that HHLA2 gene expression was down-
regulated in human non-small cell lung carcinoma, and its 
expression was associated with EGFR mutation status [39]. 
VTCN1 is another important member of the B7 family, and 
its expression on the cell surface of tumor macrophages 
negatively regulates T-cell-mediated immune response by 
inhibiting T-cell activation, proliferation, cytokine produc-
tion and development of cytotoxicity [40, 41]. Zhang et al. 
demonstrated a strong role of VTCN1 in tumor growth and 
lung tumor metastatic progression [42]. Chen et al. observed 
that VTCN1 was highly expressed in lung cancer cells and 
promoted apoptotic death of activated tumor antigen-specific 
T cells [43].

Our pathway enrichment analysis results revealed that 
immune-related pathways such as CAMs, intestinal immune 
network for IgA production and cytokine–cytokine receptor 
interaction were downregulated in tumor tissues, consistent 
with the previous finding that tumor-originated proinflam-
matory activity weakens host-mediated antitumor immunity 

and thereby undergoes immune escape [44, 45]. Thus, fur-
ther exploration of the underlying mechanisms involved in 
these dysregulated pathways might provide new targets for 
LUAD immunotherapy.

In this study, we found that an 18-gene signature was sig-
nificantly associated with LUAD patients’ overall survival, 
which was validated in independent datasets. We also found 
that the performance of the prognosis model was associated 
with tumor stages, which indicates that this signature is able 
to provide a robust, global prognostic tool for subgroups of 
LUAD patients. For the prognosis of LUAD, the progno-
sis model was more powerful in distinguishing risk groups 
among patients with late stage (III/IV), which indicated that 
these markers might be involved in tumor metastasis. Since 
LUAD patients may have a favorable prognosis after sur-
gery treatment, our model might serve as a potential tool 
to identify high-risk populations to guide early treatment, 
which could thereby increase the overall survival rate. Still, 
our investigation has several limitations. First, the discovery 
study has a limited sample size, which may lead to limited 

Fig. 3  Kaplan–Meier curves of high-risk and low-risk groups of LUAD patients from TCGA database. a Tumor stage I/II patients. b Tumor 
stage III/IV patients. c Overall LUAD patients
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power of the prognostic model. Second, other clinical prog-
nosis factors (e.g., smoking history, tumor stage) and other 
pathological factors might be confounders to the signature. 
We did not take them into consideration as this informa-
tion is missing from some of the validation datasets. Third, 
further studies are needed to confirm the promise of our 
immune signature in guiding immunotherapy with LUAD 
patients.
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