
Vol.:(0123456789)1 3

Cancer Immunology, Immunotherapy (2020) 69:1353–1362 
https://doi.org/10.1007/s00262-020-02552-5

ORIGINAL ARTICLE

A comparative view on the expression patterns of PD‑L1 and PD‑1 
in soft tissue sarcomas

Martin F. Orth1 · Veit Leonhard Buecklein2 · Eric Kampmann2 · Marion Subklewe2 · Elfriede Noessner3 · 
Florencia Cidre‑Aranaz1 · Laura Romero‑Pérez1 · Fabienne Sophie Wehweck1,4 · Lars Lindner2 · Rolf Issels2 · 
Thomas Kirchner4,5,6 · Annelore Altendorf‑Hofmann7 · Thomas G. P. Grünewald1,4,5,6 · Thomas Knösel4

Received: 5 November 2019 / Accepted: 17 March 2020 / Published online: 28 March 2020 
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Soft tissue sarcomas (STSs) are heterogeneous cancers associated with poor prognosis due to high rates of local recurrence 
and metastasis. The programmed death receptor ligand 1 (PD-L1) is expressed in several cancers. PD-L1 interacts with its 
receptor, PD-1, on the surface of tumor-infiltrating lymphocytes (TILs), thereby attenuating anti-cancer immune response. 
Immune checkpoint inhibitors targeting this interaction have been established as effective anti-cancer drugs. However, stud-
ies on the PD-L1 and PD-1 expression status in STS are commonly limited by small sample size, analysis of single STS 
subtypes, or lack of combinatorial marker assessment. To overcome these limitations, we evaluated the expression patterns 
of intratumoral PD-L1, the number of TILs, their PD-1 expression, and associations with clinicopathological parameters 
in a large and comprehensive cohort of 225 samples comprising six STS subtypes. We found that nearly all STS subtypes 
showed PD-L1 expression on the tumor cells, albeit with a broad range of positivity across subtypes (50% angiosarcomas to 
3% synovial sarcomas). Co-expression and correlation analyses uncovered that PD-L1 expression was associated with more 
PD-1-positive TILs (P < 0.001), higher tumor grading (P = 0.016), and worse patients’ 5-year overall survival (P = 0.028). 
The results were in line with several publications on single STS subtypes, especially when comparing findings for STS with 
low and high mutational burden. In sum, the substantial portion of PD-L1 positivity, the co-occurrence of PD-1-positive 
TILs, and the association of PD-L1 with unfavorable clinical outcome provide rationales for immune checkpoint inhibition 
in patients with PD-L1-positive STS.
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STS	� Soft tissue sarcoma
TIL	� Tumor-infiltrating lymphocyte
TMA	� Tissue microarray
UPS	� Undifferentiated pleomorphic sarcoma

Introduction

Soft tissue sarcomas (STS) are heterogeneous and highly 
malignant tumors originating from the mesenchymal line-
age [1] with more than 50 subtypes described to date [2]. 
Current therapy regimens for STS are limited mainly to sur-
gery and radiation [3]. Benefits of neoadjuvant and adjuvant 
radio-chemotherapy are still under debate [3, 4]. In addition, 
established therapies appear not fully sufficient for long-term 
tumor control as many patients develop local relapse (up to 
45%) and/or distant metastases (30%) [1, 5, 6], leading to 
fatal outcome.

Unfortunately, STS patients barely benefited from new 
and more sophisticated anti-cancer treatments like kinase 
inhibitors used in gastrointestinal stromal tumor (GIST) 
treatment [3, 7]. Innovative and more effective therapeu-
tic alternatives are lacking, possibly due to the rarity and 
diversity of STS.

In the past two decades, immune checkpoint inhibitors 
revolutionized anti-cancer therapies. Immune checkpoint 
inhibitors like nivolumab interfere with an immunosuppres-
sive mechanism by which cancer cells attenuate the anti-can-
cer activity of the patient’s immune system [8]. Specifically, 
several cancer cells hijack a regulatory mechanism of the 
immune system by expression of programmed death recep-
tor ligand 1 (PD-L1, also known as B7-H1 and CD274) [9]. 
PD-L1 is normally expressed on antigen presenting cells 
and binds to the programmed death receptor 1 (PD-1) on 
activated T cells, B cells, and macrophages, thereby block-
ing their activity and the recruitment of further immune cells 
[10]. By upregulation of PD-L1 on their surface, tumor cells 
can ligate the same way as antigen presenting cells the PD-
1-positive cells, commonly CD8 + T cells, thereby inhibiting 
adaptive immune response against the tumor. By blockade 
of any of the interacting proteins, PD-L1 or PD-1, the down-
regulation of the cancer patient’s immune response, origi-
nating from the tumor, is removed, leading to a host versus 
tumor reaction [11]. For instance, in melanoma, squamous 
non-small cell lung cancer and urothelial carcinoma, inhibi-
tion of this immune checkpoint enhances anti-tumor immune 
activity, resulting in significantly improved clinical outcome 
[12–14].

However, to date, there is only limited knowledge on 
PD-L1 as a common feature in STS, its correlation with 
tumor-infiltrating lymphocytes (TILs), and the PD-1 status 
of TILs. Except for the work of Dancsok et al., previous 
studies focused mainly on single STS subtypes and based 

their analyses on small sample sizes, often neglecting TILs 
and PD-1, not addressing the PD-L1 expression at protein 
level, and not including survival data [10, 15–22] (Supple-
mentary Table 1).

In the present study, we analyzed the PD-L1 and PD-1 
expression patterns in a large and well-characterized tumor 
collective comprising 225 STS samples of six distinct sub-
types with clinical annotation. Our results show that a sub-
stantial proportion of STS is positive for PD-L1 and that 
PD-L1 expression is associated with PD-1-positive TILs 
and poor patient outcome. In synopsis with previous studies, 
mainly on single STS subtypes, our results provide ration-
ales for immune checkpoint inhibition in patients with PD-
L1-positive STS.

Materials and methods

Patient cohort

The study was conducted in accordance with the Declaration 
of Helsinki. Formalin-fixed paraffin-embedded tumor mate-
rial from STS patients was retrieved from the archive of the 
Institute of Pathology, LMU Munich, in agreement with the 
Ethics Committee of the LMU Munich University hospital 
(307-16 UE, 25.05.2016). To include as many samples of 
various STS subtypes as possible, all cases for the entire 
time range from 1989, from when on tumor material was still 
archived, to 2012, enabling 5-year follow-up, were investi-
gated. Tumors were reclassified by TKn and EK according 
to the current WHO classification. Clinical data, including 
sex, age at diagnosis, tumor site, tumor size, metastasis, 
and grading were extracted from the archived pathological 
results and the database of the medical department of the 
LMU Munich. None of the patients received immune check-
point inhibitors as treatment. Survival data were updated 
until 09/2017 in collaboration with clinicians performing 
follow-up and the patients’ respective general physicians. 
The resulting cohort with tumor material and clinical data 
available comprised 225 STS cases (Table 1). As a second 
cohort without clinical data, 114 independent STS samples 
of six subtypes on tissue microarrays (TMAs) published in 
Baldauf et al. [23] and on an angiosarcoma TMA created by 
TKn were used (Supplementary Table 2).

Assembly of TMAs

For TMA assembly, all STS cases were considered for which 
material, defined diagnosis and clinical data were present. 
On hematoxylin and eosin (H&E) stained slides of the STS 
cases, such tumor areas were marked, which showed the 
most typical histology for the respective tumor entity with 
vital tumor cells and without regressive alterations or other 
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artifacts. Based on the availability of such representative 
material on slides, formalin-fixed paraffin-embedded tumor 
blocks of each patient were chosen, and two cores with 
0.6 mm diameter were taken from the marked area and inte-
grated in a TMA precast as duplicates. Samples from tonsils 
were added to the TMAs as positive controls.

TMAs published by Baldauf et  al. were additionally 
tested for PD-L1 and PD-1 positivity, as for those TMAs 
more representative material was available, enabling three 
cores per sample on the TMAs. The assembly of those 
TMAs has been published previously [23].

Immunohistochemistry and scoring 
of immunoreactivities

TMA sections of 5 µm were stained for H&E, PD-L1, PD-1, 
and Ki-67. For immunohistochemical PD-L1 staining, slides 
were pretreated with heat and the Epitope Retrieval Solu-
tion pH8 Novocastra (Leica Biosystems) and incubated with 
the monoclonal primary anti-PD-L1 antibody raised in rab-
bit (#E1L3N; 1:50; Cell Signaling Technology) for 60 min 
at room temperature. For detection, the SignalStain Boost 
IHC Detection Reagent (Cell Signaling Technology) and the 
chromogen DAB + (Agilent) were used. For immunohisto-
chemical PD-1 staining, slides were pretreated with heat and 
Target Retrieval solution (S1699, Agilent) and incubated 
with the monoclonal primary anti-PD-1 antibody raised 
in mouse (315M; 1:80; Cell Marque) for 60 min at room 
temperature. Detection was performed with VECTASTAIN 
Elite ABC HRP Kit (Vector Laboratories) and the chromo-
gen DAB +. For both anti-PD-L1 and anti-PD-1 specificity 
in immunohistochemistry was validated with isotype and 
system controls (Supplementary Figure S1). Immunohisto-
chemical stains for PD-L1 of the TMAs by Baldauf et al. 
plus the angiosarcoma TMA, and for Ki-67 were performed 
automatically on a Ventana Benchmark XT autostainer 
system with the XT ultra-View DAB Kit (Ventana Medi-
cal Systems, Roche) with monoclonal rabbit anti-PD-L1 

antibody (#SP263; Ventana Medical Systems; currently used 
in diagnostics at the Institute of Pathology, LMU Munich) 
and monoclonal mouse anti-Ki-67 antibody (#MIB-1; 1:100; 
Agilent), respectively. Hematoxylin (Vector Laboratories) 
was used for counterstaining.

PD-L1 expression was scored by a sarcoma pathologist 
(TKn) and a physician experienced in immunohistology 
(EK) independently into PD-L1 negative and positive. If 
> 1% tumor cells exhibited membranous staining for PD-L1, 
the corresponding sample was considered as PD-L1 posi-
tive. TILs between tumor cells were count per high-power 
field (HPF) (400 × magnification, field of view 0.237mm2) in 
H&E stained TMA slides, as routinely done by the patholo-
gist. PD-1-positive TILs were also count per HPF, here using 
the PD-1 stained TMA slides. In case of discrepancies in 
the scoring results of both investigators, consent was built 
after individual reevaluation of each sample. The percent-
age of Ki-67-positive cancer cells was evaluated by three 
researchers (FCA, FW, LRP) independently, and the average 
percentage of Ki-67 positivity for each sample was taken as 
basis for further analysis. All researchers scoring the TMAs 
were blinded to the clinical data.

For five representative cases of the most prevalent enti-
ties (UPS, liposarcoma and leiomyosarcoma), consecu-
tively cut open slides were stained for PD-L1 and PD-1 as 
described above, and additionally for CD4, CD8, CD19, 
CD56 and FOXP3. Stains for CD4, CD8, CD19 and CD56 
were performed with a Ventana Benchmark XT autostainer 
system using the monoclonal anti-CD4 antibody raised in 
mouse (#4B12; 1:500; Leica Biosystems) and the OptiView 
detection kit (Ventana Medical Systems), the monoclo-
nal anti-CD8 antibody raised in mouse (#C8/144B; 1:50; 
Cell Marque), the monoclonal anti-CD19 antibody raised 
in rabbit (#EP169; Cell Marque), or the monoclonal anti-
CD56 antibody raised in mouse (#123C3; Ventana Medi-
cal Systems) and the UltraView detection kit. For FOXP3 
stains, slides were pretreated with heat and Target Retrieval 
solution (S1699, Agilent) and then incubated with the 

Table 1   Patients’ characteristics STS subtype n Fraction of 
cohort (%)

Sex (male/female) Age at diagnosis 
(median, range) 
(years)

Follow-up 
(median, range) 
(months)

Angiosarcoma 6 2.7 3/3 48 (18–67) 14 (4–54)
Leiomyosarcoma 47 20.9 17/30 55 (19–79) 33 (6–287)
Dediff. liposarcoma 49 21.8 30/19 57 (24–79) 65 (0–189)
MPNST 11 4.9 7/4 37 (24–74) 20 (6–102)
Synovial sarcoma 29 12.9 11/18 42 (22–67) 54 (2–176)
UPS 83 36.9 56/37 56 (19–79) 32 (1–182)
All samples 225 100.0 114/111 54 (18–79) 36 (0–287)
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monoclonal anti-FOXP3 antibody (ab20034; 1:80; Abcam) 
raised in mouse for 60 min. Detection was performed with 
the ZytoChem Plus AP Polymer anti-Mouse kit (Zytomed 
Systems) and the chromogen Permanent AP Red (Zytomed 
Systems). Micrographs were taken from the identical areas 
of PD-L1 and PD-1 stained consecutive slides for each sam-
ple. Overlay images to interpret co-localization were gener-
ated with ImageJ (NIH). The number of CD4, CD8, CD19, 
CD56 and FOXP3 cells was count by a physician-scientist 
(MFO) in 17 HPF (corresponding to 4 mm2 tumor area), and 
the average count per 1 mm2 tumor area was used for further 
interpretations.

Statistical analyses

For statistical analyses, samples with ≥ 4 TILs per HPF (cor-
responding to > 12 TILs per mm2, hence more than the mean 
PD-1-positive TILs count in PD-1 blockage non-respond-
ers reported in NSCLC [24]) were considered as positive 
for TILs, and if ≥ 4 TILs/HPF exhibited PD1 staining, as 
PD-1 positive. Statistical analyses were carried out and 
displayed using SPSS and GraphPad PRISM (v5). Asso-
ciations between clinicopathological parameters and histo-
logical results were calculated with the Fisher’s exact test 
and unpaired two-tailed Student’s t test. Associations with 
survival were displayed with the Kaplan–Meier method, and 
significance was assessed with the log-rank test. P values 
< 0.05 were considered statistically significant.

Results

PD‑L1 is expressed in several STS subtypes

To test whether PD-L1 expression at protein level is a 
common feature of STS, we stained TMAs with 225 STS 
samples represented as duplicates by immunohistochem-
istry (Table 1) using a well-established routine antibody 
for PD-L1 and considered all samples with > 1% membra-
nous staining as PD-L1 positive, the remaining as negative 
(Fig. 1a). On average, 16% of the entire cohort exhibited 
PD-L1 expression. The fraction of positive samples com-
prised 50% of angiosarcomas, 23% of undifferentiated pleo-
morphic sarcomas (UPS), 13% of leiomyosarcomas, 12% 
of dedifferentiated liposarcomas, 3% of synovial sarcomas, 

Fig. 1   PD-L1 is expressed in a 
fraction of STS, which is often 
positive for PD-1 and TILs. 
Representative micrographs 
of cores on a TMA represent-
ing angiosarcoma samples, 
immunohistochemically stained 
for a PD-L1 (brown, scale bar 
indicates 100 µm) and b PD-1 
(brown) and H&E (scale bar 
indicates 50 µm), arrow-heads 
point to lymphocytes

Table 2   PD-L1 expression in STS

STS subtype PD-L1 positive

Angiosarcoma 50% (3/6)
Leiomyosarcoma 12.8% (6/47)
Dediff. liposarcoma 12.2% (6/49)
MPNST 0 (0/11)
Synovial sarcoma 3.4% (1/29)
UPS 22.9% (19/83)
All samples 15.6% (35/225)
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and 0 malignant peripheral nerve sheath tumor (MPNST, 
Table 2). Likewise, the high fractions of PD-L1-positive 
angiosarcomas and UPS versus low fraction in synovial 
sarcomas were observed in a second independent TMA 
cohort of 114 samples (Supplementary Table 2). Hence, a 
substantial fraction of STS tumors expresses PD-L1 at pro-
tein level, albeit with variable proportions depending on the 
STS subtype.

PD‑L1 expression in STS correlates 
with PD‑1‑positive TILs

Besides PD-L1 expression, another prerequisite for effective 
immune checkpoint inhibition in cancer is an actual interac-
tion of PD-L1 with its receptor. Accordingly, we scored the 
total number of TILs and TILs positive for PD-1 for all sam-
ples tested for PD-L1 positivity considering samples with 
counts of ≥ 4 lymphocytes per HPF as positive (Fig. 1b).

From all 225 samples, sufficient material was available 
for 223 and 220 samples to evaluate the number of TILs and 
their PD-1 immunoreactivity, respectively. Across the entire 
cohort, 76.3% of samples were positive for TILs and 28.1% 
for PD-1. Interestingly, in the PD-L1-positive samples, the 
fractions for TIL and PD-1 positivity were 87.2% and 62.9% 
(Table 3). In fact, for all tested STS subtypes with more than 
three PD-L1-positive samples, the fraction of PD-1 positiv-
ity was higher in the PD-L1 expressing samples than in those 
negative for PD-L1. Similar results yielded the analyses of 
the second TMA cohort with 113 samples with sufficient 
material (23% positive for PD-1, Supplementary Table 2). 
Consistently, PD-L1 expression and PD-1 positivity were 
highly significantly correlated (P < 0.001, Table 3).

For better interpretation of the topologic localization 
of PD-1-positive TILs and PD-L1-positive tumor cells, 
FFPE material of five PD-1 and PD-L1 double-positive 
samples from the most prevalent STS subtypes (3 × UPS, 
1 × leiomyosarcoma, 1 × liposarcoma) was consecutively 
cut and stained for both markers (Supplementary Figure 

S2a). PD-1 expressing TILs were found widely distributed 
throughout the vital tumor tissue, partly forming cell groups. 
PD-L1-positive tumor cells were found either directly next 
to PD-1-positive TILs or nearby, but never in areas of the 
tumor lacking PD-1-positive TILs. The same samples were 
additionally stained for CD8 (cytotoxic T cells), CD4 (T 
helper cells), FOXP3 (regulatory T cells), CD56 (natural 
killer cells) and CD19 (B cells) to further characterize the 
observed TILs. Across all five representative cases, CD8 
+ cytotoxic T cells constituted the largest fraction of TILs. 
FOXP3 staining was exclusively observed in UPS. The per-
centage of B cells among the TILs ranged from 0.5 to 7.9 
(Supplementary Figure S2b).

Taken together, these results provide evidence that PD-
L1-positive STSs are enriched for nearby located PD-1-pos-
itive TILs, pointing to an actual interaction of PD-L1 and 
PD-1-positive TILs in STS, which is for some cancer entities 
a prerequisite for patients’ eligibility for immune checkpoint 
inhibitor therapy.

PD‑L1 expression is associated with clinical outcome 
in STS

To test whether the PD-L1 status is associated with clin-
icopathological parameters, we correlated the PD-L1 scor-
ing results obtained from assessors blinded to the clinical 
data with the most important prognostic parameters for STS 
patients.

While PD-L1 expression did not correlate with age and 
tumor size in any tested STS subtype, it was significantly 
enriched in males (P = 0.027) and significantly associated 
with the prognostically favorable tumor localization in the 
extremities (P = 0.023). In contrast, PD-L1 expression was 
significantly associated with the prognostically unfavorable 
parameters of high grading (P = 0.016) and metastasis at 
diagnosis (P = 0.027; Table 4). In accordance, intratumoral 
PD-L1 expression was associated with a significantly worse 
5-year overall survival (40% vs. 59% 5-year overall survival 

Table 3   PD-1-positive cells and TILs in STS

FE Fisher’s exact test

STS subtype PD-1 positive PD-1 in PD-L1 positive P value asso-
ciation PD-L1–
PD-1

TIL positive TIL in PD-L1 positive P value asso-
ciation PD-L1–
TILs

Angiosarcoma 40% (2/5) 33.3% (1/3) 1.000 (FE) 83.3% (5/6) 66.7% (2/3) 1.000 (FE)
Leiomyosarcoma 17.4% (8/46) 66.7% (4/6) 0.006 (FE) 65.2% (30/46) 66.7% (4/6) 1.000 (FE)
Dediff. liposarcoma 18.8% (9/48) 66.7% (4/6) 0.008 (FE) 81.3% (39/48) 100% (6/6) 0.578 (FE)
MPNST 27.3% (3/11) NA NA 81.8% (9/11) NA NA
Synovial sarcoma 10.3% (3/29) 0% (0/1) 1.000 (FE) 48.3% (14/29) 0% (0/1) 1.000 (FE)
UPS 46.9% (38/81) 61.1% (11/18) 0.192 (FE) 85.5% (71/83) 94.7% (18/19) 0.280 (FE)
All samples 28.1% (63/220) 62.9% (20/31)  < 0.001 (FE) 76.3% (168/223) 87.2% (30/35) 0.139 (FE)
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probability, P = 0.028) (Table 4; Fig. 2). Interestingly, when 
separating the PD-L1-positive STS in two subgroups by their 
immunoreactivity for PD-L1 (low/high; 17 and 18 samples, 
respectively), not any statistical difference between both sub-
groups in the associations with clinical unfavorable mark-
ers was observed. Yet, both PD-L1-positive STS subgroups 
exhibited higher rates of unfavorable clinical markers than 
PD-L1-negative STS. Indeed, for lowly and highly PD-L1 
expressing STS versus PD-L1-negative STS, rates of metas-
tasis at diagnosis were 18% and 22% versus 7%, and rates 
of G3 grading were 82% and 56% versus 46%, respectively. 
Moreover, 5-year overall survival probability was 29 and 
50 months versus 59 months for PD-L1 lowly and highly 
expressing STS versus PD-L1-negative STS. In synopsis, 
these data indicate that any PD-L1 expression is clinically 
relevant in STS patients.

Discussion

Immune checkpoint inhibitors interfering with the interac-
tion of tumoral PD-L1 and PD-1 on TILs show convinc-
ingly, partly even impressive positive results as anti-cancer 
drugs in recent studies, e.g., for melanoma, non-small-cell 
lung carcinoma, cervical carcinoma, and bladder carcinoma 
[12–14, 25]. So far, the applicability of these inhibitors for 
STS patients has not been studied extensively (see also Sup-
plementary Table 1) [19, 22, 26].

Since any targeted therapy is prone to fail in the absence 
of the target, we first assessed the PD-L1 expression in STS 
at protein level. To this end, we compiled a cohort of 225 
tumor samples from STS patients with matched and well-
curated clinical data, including median follow-up of 3 years 
(ranging from median 1.2–5.4 years depending on STS sub-
type). We did not observe any quality difference in the older 

Table 4   Association of PD-L1 expression and clinicopathological parameters in STS

FE Fisher’s exact test, TT Student’s t test, LRT log-rank test, extr. Extremities, 5y-OS 5-year overall survival

STS subtype Sex (M/F) Age </ ≥ median Extr./trunk M status 
(M0/M1)

Grading 
(1–2/3)

Size </≥ 80 mm Ki-67 Survival (5y-
OS)

Angiosarcoma 1.000 (FE) 1.000 (FE) NA 1.000 (FE) 1.000 (FE) 1.000 (FE) 0.180 (TT) 0.050 (LRT)
Leiomyosarcoma 0.653 (FE) 0.221 (FE) 0.614 (FE) 1.000 (FE) 0.161 (FE) 0.645 (FE) 0.365 (TT) 0.226 (LRT)
Dediff. liposarcoma 0.384 (FE) 0.098 (FE) 0.324 (FE) 0.068 (FE) 1.000 (FE) 0.565 (FE) 0.241 (TT) 0.001 (LRT)
MPNST NA NA NA NA NA NA NA NA
Synovial sarcoma 0.379 (FE) 1.000 (FE) 0.483 (FE) 1.000 (FE) 1.000 (FE) 1.000 (FE) NA 0.010 (LRT)
UPS 0.113 (FE) 0.190 (FE) 0.001 (FE) 0.028 (FE) 0.587 (FE) 0.783 (FE) 0.441 (TT) 0.783 (LRT)
All samples 0.027 (FE) 0.271 (FE) 0.023 (FE) 0.027 (FE) 0.016 (FE) 0.325 (FE) 0.076 (TT) 0.028 (LRT)

Fig. 2   PD-L1 is associated with overall survival in STS. Kaplan–Meier plots indicating the overall survival for the given STS subtypes and for 
all samples in the entire cohort. Dashed, red: PD-L1 positive; solid, gray: PD-L1 negative; significance was assessed by log-rank test
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versus newer FFPE material (from 1989 to 2012), compat-
ibly to a publication presenting even 40-year-old FFPE mate-
rial suitable for IHC [27]. The cohort comprised six distinct 
and representative STS subtypes, including the three most 
common subtypes in adults (UPS, liposarcoma, leiomyo-
sarcoma), which were represented by at least 47 samples, 
each. In contrast to several previous studies on single STS 
subtypes, this comprehensive sample set enables analyses 
across STS subtypes without inter-observer bias. Thus, our 
analyses were based on one of the largest and most compre-
hensive STS cohorts for IHC with associated survival data 
[20, 28, 29].

For MPNST not any sample was scored as positive for 
PD-L1, for angiosarcomas half of the six tested samples, 
which indicates a strong variability of PD-L1 expression 
depending on the STS subtype. However, it should be noted 
that for both subtypes showing extreme PD-L1 positivity 
rates only a limited number of samples (11 and 6, respec-
tively) were available. Correspondingly, those extreme 
observations did not affect our further analyses across STS 
subtypes strongly. Nevertheless, 17 of 25 angiosarcoma sam-
ples in our second TMA cohort were positive for PD-L1 and 
high rates of PD-L1-positive cutaneous angiosarcomas have 
been reported previously [16]. In line, there is first evidence 
for the benefit of PD-L1-PD-1-axis blockage in angiosar-
coma [30].

Interestingly, 23% of UPS cases (19/83) were positive 
for PD-L1, while only 13% of leiomyosarcomas (6/47) and 
12% of dedifferentiated liposarcomas (6/49) showed PD-L1 
expression. This is in line with prior studies in other cancers 
correlating mutational burden, which is much higher in UPS 
compared to leiomyosarcoma and liposarcoma [31], with 
enhanced neoantigen presentation [32, 33]. Hence, immune 
checkpoint inhibition may be in particular effective in UPS. 
Consistently, PD-L1 expression on protein level was rela-
tively high for the TCGA sarcoma dataset, which comprises 
many UPS cases, compared to other tumor entities like blad-
der cancer or melanoma (The Cancer Proteome Atlas, [34]); 
high rates of PD-L1 positivity in UPS have been reported 
before [20, 21], and the majority of responders to pembroli-
zumab in the SARC028 trial are UPS patients [26].

As PD-L1 acts as ligand of PD-1, we next investigated 
the positivity for PD-1 expressing TILs in the same patients’ 
specimens tested for PD-L1 positivity. Across all STS sub-
types with > 11 samples, the rate of PD-1-positive samples 
in PD-L1 expressing ones was higher than in the negative 
ones. This result is supported by previous studies in smaller 
STS cohorts or single STS subtypes demonstrating a PD-L1 
and PD-1 interaction [16, 18, 20, 28], which collectively 
provides a strong rationale that PD-L1-positive STS patients 

are eligible for immune checkpoint inhibitor therapy. Never-
theless, the actual co-localization of PD-L1-positive tumor 
cells and PD-1-positive TILs is a prerequisite for success-
ful ligand/receptor interaction. To this end, five representa-
tive cases of our cohort (3 × UPS, 1 × leiomyosarcoma, 
1 × liposarcoma) were investigated for both markers on con-
secutively cut and stained open slides. Indeed, not any PD-
L1-positive tumor cell was observed without direct contact 
to a PD-1-positive TIL or at least location in close vicinity. 
Furthermore, this finding supports the hypothesis that cancer 
cells can dynamically increase PD-L1 expression to protect 
themselves in settings of increased numbers of TILs [35, 
36], as an alternative mechanism of PD-L1 upregulation to 
PD-L1 driving mutations, which results in occurrence of 
PD-L1-positive tumor cells independent of TILs [37, 38]. 
When further characterizing these TILs, CD8-positive T 
cells were found to constitute the largest population of TILs, 
another marker correlating with immunotherapy response 
[26]. Additionally, we observed CD19-positive B cells in 
all samples, although to various extents. The presence of 
B cells might be another indicator of immune checkpoint 
therapy response, as B cells and especially the formation 
of tertiary lymphoid structures have been described very 
recently as strong predictors of immunotherapy response, 
even in sarcomas [39, 40].

The evaluations of PD-L1 expression and PD-1-positive 
TILs were performed on two independent cohorts. Strik-
ingly, we found in our second TMA cohort, with usually 
three cores from different tumor areas per sample, that in 
93.8% of samples the PD-L1 status was identical across all 
cores, and in 89.4% the PD-1 status. Thus, our results on 
TMAs are likely representative for the respective tumors.

Besides the role of PD-L1 as a biomarker to guide clini-
cal decisions on the implementation of immunotherapy, we 
evaluated its prognostic relevance. In our large STS cohort, 
we found that intratumoral PD-L1 expression was associated 
with significantly worse 5-year overall survival (P = 0.028). 
Actually, PD-L1 was significantly positively associated with 
histological G3 grading, which further supports previous 
findings on superior response to checkpoint inhibitors in 
tumors with high mutational burden [32]. There was no sta-
tistically significant difference in the association of PD-L1 
expressing STS with clinically unfavorable markers when 
subgrouping the samples by their degree of PD-L1 immuno-
reactivity. This may indicate that the quality of PD-L1/PD-1 
interaction is more prognostically relevant than the quantity. 
As high histological tumor grading is a strong negative prog-
nostic factor, and as PD-L1 and grading were correlated, we 
could not identify PD-L1 as independent prognostic factor in 
multivariate analysis. However, the association with survival 
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in our cohort of six STS subtypes, despite with different 
sample contributions, was in line with previous reports for 
single STS subtypes [16, 17, 21, 28], studies with smaller 
cohorts of various STS subtypes [15], and findings on a large 
cohort (n = 758) on the mRNA level [41].

This study focused on the potential eligibility of STS 
patients for immune checkpoint inhibition via the PD-L1/
PD-1 axis. Notably, there are other attempts to inhibit nega-
tive immune regulation, like targeting CTLA4 [42, 43]. 
Future studies have to elucidate the expression patterns of 
CTLA4 ligands and abundance of CTLA4-positive lympho-
cytes in STS. However, a pilot study for synovial sarcoma 
did not find any benefit from CTLA4 blockage via ipili-
mumab [44].

Our findings on PD-L1 expression in STS, coincidence 
with PD-1-positive TILs and association with survival 
in a large and comprehensive STS cohort support previ-
ous studies on single STS subtypes and further confirm 
the comprehensive analyses by Dancsok et al. Thus, our 
study demands an extensive evaluation of the relevance of 
immune checkpoint blockage across various STS subtypes 
with increased sample sizes, and to also address the tumor 
microenvironment known to be relevant in the context of 
immune checkpoint blockage [45]. We further recommend 
evaluation beyond the subtypes included in this study. For 
instance, myxofibrosarcoma has been shown to be poten-
tially drugable with nivolumab combined with ipilimumab 
[22], but was not included in our cohort as we found only 
four suitable samples in our archives, of which two were 
actually PD-L1 positive.

The observed prognostic relevance of the PD-L1/PD-1 
axis indicates that especially PD-L1-positive STS patients 
should be considered for treatment with immune checkpoint 
inhibitors, as especially in these patients long-term tumor 
control may not be achieved with conventional treatment 
options.

We show for a large and comprehensive STS cohort the 
abundance of PD-L1, PD-1 and TILs across subtypes and 
provide evidence for the clinical relevance of PD-L1.

We conclude that immune checkpoint inhibitor treat-
ment may constitute a promising approach for a substantial 
proportion of STS patients that show immunohistochemical 
evidence for intratumoral PD-L1 expression.
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