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Abstract

Long-term and high-dose prescription opioid use places individuals at risk for opioid misuse, 

opioid use disorder (OUD), and overdose. Existing methods for monitoring opioid use and 

detecting misuse rely on self-reports, which are prone to reporting bias, and toxicology testing, 

which may be infeasible in outpatient settings. Although wearable technologies for monitoring 

day-to-day health metrics have gained significant traction in recent years due to their ease of 

use, flexibility, and advancements in sensor technology, their application within the opioid use 

space remains underexplored. In the current work, we demonstrate that oral opioid administrations 

can be detected using physiological signals collected from a wrist sensor. More importantly, we 

show that models informed by opioid pharmacokinetics increase reliability in predicting the timing 

of opioid administrations. Forty-two individuals who were prescribed opioids as a part of their 

medical treatment in-hospital and after discharge were enrolled. Participants wore a wrist sensor 

throughout the study, while opioid administrations were tracked using electronic medical records 

and self-reports. We collected 1,983 hours of sensor data containing 187 opioid administrations 

from the inpatient setting and 927 hours of sensor data containing 40 opioid administrations 

from the outpatient setting. We demonstrate that a self-supervised pre-trained model, capable 

of learning the canonical time series of plasma concentration of the drug derived from opioid 

pharmacokinetics, can reliably detect opioid administration in both settings. Our work suggests 

the potential of pharmacokinetic-informed, data-driven models to objectively detect opioid use in 

daily life.

Introduction

Opioid use and overdoses continue to fuel the opioid epidemic in the United States. In 2019, 

the National Survey on Drug Use and Health (NSDUH) showed that approximately 10.1 

million United States residents aged 12 years or older misused opioids, with the majority 

(9.3 million) citing prescription opioid misuse. This number has further increased during 

the COVID-19 pandemic ((Khatri and Perrone 2020)), highlighting the need for immediate 
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action. While opioids can provide temporary pain relief, frequent and repetitive opioid use 

can be considered an early indicator of opioid misuse and developing opioid use disorder.

Current methods for passively monitoring opioid use including subjective self-reports 

(based on the Diagnostic and Statistical Manual (DSM-5) criteria (Hasin et al. 2012)) 

and toxicology testing are susceptible to recall bias, intentional concealment, and short 

detection periods. Diagnostic methods that offer objective and real-time measures of opioid 

use are urgently needed. Such an automatic and passive opioid use tracking system can also 

help to detect treatment adherence and opioid relapse. Different digital health technologies 

including wearables and smartphone applications have been developed for OUD monitoring 

and treatment (Senyurek et al. 2020; Natarajan et al. 2013). In a recent work (Gullapalli 

et al. 2021), physiological signals continuously and passively collected from a wrist sensor 

was used to build a purely data-driven model with supervised learning to detect intravenous 

(IV) opioid administrations in a clinical setting. While the work showed the promise in using 

wearable devices for opioid use detection, the reliability of these approaches for oral opioid 

administrations in inpatient or outpatient settings remains unknown.

Moreover, models built using a purely data-driven approach, without learning any 

underlying pharmacological mechanisms of opioids, limit the generalizability of the model 

to different types of opioids. One candidate group of properties intrinsic to opioids that 

may be very useful to inform models are the drugs’ pharmacokinetic (PK) parameters. 

Pharmacokinetics is the branch of pharmacology concerned with how the body handles a 

drug once it is administered (Gibaldi, Perrier et al. 1982). This includes the time it takes for 

the drug to be absorbed, metabolized, distributed, and eliminated. The plasma concentration 

of a drug defined as the amount of drug present in each volume of a blood plasma, changes 

over time in a predictable fashion.

Plasma drug concentration as a function of time for many drugs (including the opioids 

considered in our study) is described by a single-compartment model (Equation 1). To 

the best of our knowledge, models combining Opioid pharmacokinetic knowledge with 

wearable sensor-derived physiologic data to detect opioid use have not been proposed 

previously. Our current work aims to leverage pharmacokinetics to improve our opioid 

detection model. Specifically, we aim to develop a pharmacokinetics-informed machine 

learning framework that jointly learns the pharmacokinetics of opioids while estimating 

opioid administration moments using multimodal physiological signals collected from a 

wearable wrist sensor in inpatient and outpatient settings.

Building data-driven models in healthcare is often challenging due to the scarcity of 

data and the costs associated with annotating it. These challenges become even more 

pronounced in substance use research, where privacy concerns and social stigma can lead 

people to conceal or withhold information about their substance use or provide inaccurate 

self-reports of their usage patterns. In our current work, we at first take advantage of 

the vast unlabeled wearable data and a simple self-supervised learning task to teach the 

model how to detect sudden changes in the multimodal wearable signals. We then teach 

the model opioid pharmacokinetics with the help of a canonical single-compartment model 

(of opioids) while the model is also tasked to detect opioid use and predict the precise 
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timing of use with the input multimodal sensor data. In this paper, we will demonstrate 

that the proposed Pharmacokinetics-informed model training approach outperforms a purely 

data-driven supervised learning approach and can generate much improved predictions of 

opioid use moments.

Related Work

Sensor-based applications to opioid use have focused on the detection of physiology 

surrounding opioid use, including therapeutic effects, overdose, and withdrawal. A recent 

study demonstrated it is possible to predict stress and drug craving ninety minutes in 

the future with passively collected GPS data (Epstein et al. 2020). Previous work has 

demonstrated the ability to detect the use of prescription opioids administered by mouth 

and intravenously in an inpatient setting using physiological signals from a wrist sensor 

(Mahmud et al. 2018; Gullapalli et al. 2021), and has explored the impact of individual-level 

features on model performance (Chapman et al. 2022). Other investigators have leveraged 

similar non-invasive sensors from wristwatches and mobile devices to detect the most 

dangerous complication of opioid use- overdose, by monitoring respiratory rate with mobile 

phones and trunk-mounted sensors (Nandakumar, Gollakota, and Sunshine 2019; Roth et 

al. 2021). Another study developed and validated an automated risk-modeling framework 

to predict opioid abstinence and medication adherence with machine-learning algorithms 

(Burgess-Hull et al. 2002). While these studies demonstrate the potential of ubiquitous 

sensors in the space of opioid use monitoring, they lack any pharmacokinetic information 

on how opioid concentration changes over time. Our knowledge of the biochemical behavior 

of opioids in the human body can help provide supplemental data about the timing and 

intensity of expected effects: harmonizing this data with real-time physiologic data can lead 

to improved precision of our predictions and smarter diagnostic tools.

Our pharmacokinetics-informed neural network is inspired by physics-informed neural 

networks (PINNs) which were first introduced in (Raissi, Perdikaris, and Karniadakis 2019) 

to solve partial differential equations (PDEs) of various physical phenomena in fluids (Zhu, 

Liu, and Yan 2021). Traditional deep learning methods to solve PDEs are governed by 

a data-driven approach that does not use any underlying physical characteristics of the 

problem to approximate the partial differential equations. PINNs overcome this limitation by 

integrating available information about the equation into the loss function as a residual term 

(Jin et al. 2021; Pang, Lu, and Karniadakis 2019), thereby guiding the learning. In our work, 

while training the neural network with supervised learning to learn the pharmacodynamics 

(i.e., how opioid affects different physiological signals), we use the relative plasma drug 

concentration equation derived from opioid pharmacokinetics in the loss function. We 

demonstrate that the Pharmacokinetics-informed model can accurately predict Opioid use 

moments and can outperform traditional purely data-driven supervised models, which do not 

have any PK knowledge.
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Data Collection

Study Protocol Overview:

All study-related procedures were approved by the Institutional Review Board (IRB) of the 

UMass Chan Medical School. From a total of 42 unique participants, we collected 2,910 

hours of wearable data in both inpatient and out-patient settings that contained a total of 227 

oral opioid administration events. Eligible participants were hospital patients over 18 years 

old, receiving opioid analgesics for pain, who spoke English and could wear a wrist device 

on their non-dominant wrist. We excluded pregnant individuals, prisoners, or those unable 

to consent. During their hospital stay, participants wore the device continuously removing it 

only for clinical care or activities like showering. Participants used an event marker button 

on the device to record opioid administrations, which were cross-checked with Electronic 

Medical Records for accuracy and additional details.

Upon hospital discharge, participants had the option of continuing to wear the device for 

up to seven days (i.e., the outpatient portion of the study). Participants removed the device 

daily during sleep for charging. In addition to annotating all opioid administrations using the 

device’s event marker button, participants were instructed to self-report these events using 

either a paper or mobile app-based log. Information regarding outpatient opioid prescriptions 

(type of opioid, dosing instructions, dose per unit, quantity prescribed) was verified in 

the electronic medical records. The dose administered during each opioid use event was 

converted to morphine milligram equivalents (MME), a standardized metric to compare the 

relative potency of different types of opioids (Stone et al. 2018).

In our current work, we modeled opioid administrations in the inpatient and outpatient 

settings separately for two main reasons: 1) the distribution of physiological signals 

tends to vary because participants have more freedom to perform different activities in 

the outpatient setting than in the inpatient setting; and 2) the precision and accuracy of 

opioid administration event labeling in the outpatient setting are subject to recall bias and 

incomplete data, as participants were solely responsible for logging administrations.

Device:

The device used for physiologic data collection was the Empatica E4 (Empatica, Milan, 

Italy). The E4 is a research-grade wrist-worn device that continuously and passively captures 

various physiological signals. It is equipped with several sensors that measure instantaneous 

heart rate, skin temperature, electrodermal activity, and triaxial acceleration. Raw data 

are initially stored on the device’s onboard memory and then transferred to Empatica’s 

secure cloud-based server (Empatica Connect) for further analysis. The raw signals from the 

wearable were downsampled to the sampling frequency of 1Hz.

Before analyzing, we cleaned the raw data in a two-step process: 1) Periods where the 

participant was not likely wearing the device were identified and removed. Incompatible 

skin temperature (≤20°C), lack of electrodermal activity (value of 0), and abnormally high 

heart rate (≈ 200 beats-per-minute) were used as indicators to identify these time periods. 

2) Motion and noise artifacts were removed by passing all the signals through a fifth-order 

Butterworth low-pass filter.
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Inpatient Data Acquisition:

A total of 1,983 hours of E4 data were collected during this portion of the study. Seven 

participants were excluded from the analysis following data cleaning due to insufficient 

volume of physiologic data. Of the 35 participants included, 187 oral opioid administrations 

were recorded, all of which were oxycodone.

Outpatient Data Acquisition:

A total of 927 hours of E4 data were collected from the 24 participants who took part in this 

portion of the study. Forty oral opioid administrations (n=38 oxycodone, n=1 morphine, n=1 

tramadol) self-reported by participants were recorded.

Experiment and Results

Figure 2 shows the pipeline used in the current work for pharmacokinetics-informed 

learning. We at first partition the continuous sensor waveform/timeseries data into fixed-size 

time-windows using a sliding window mechanism where window length is 225 minutes and 

window slide is 20 minutes. We develop a model that can take a timeseries window as input 

and generate two types of output: (i) binary opioid administration/use detection inference 

(i.e., if the opioid was administered in the input time-window); and (ii) predict the exact 

moment of Opioid administration/use in the time-window. We train the model in two steps.

1. Self-supervised learning to teach the model how to detect sudden changes in 

different modalities in the wearable sensor data with a “pretext” task.

2. Pharmacokinetics-informed auxiliary task to teach our ML models 

Pharmacokinetics (PK) while simultaneously learning from the data.

Step 1: Self-Supervised Learning Framework

Self-supervision for representation learning in drug administration detection has not been 

explored previously. In our work, we showed the extent of its potential in detecting 

oral opioid administrations in both inpatient and outpatient settings. We first pre-trained 

our model using a “pretext” task based on domain expertise to extract useful latent 

representations from unlabeled sensor data. The design of the “pretext” task has been 

motivated by statistical findings of previously conducted work(Gullapalli et al. 2021; 

Carreiro et al. 2016) which demonstrated significant, immediate changes in physiological 

signal time- and frequency-based features post-opioid administration. To replicate this, we 

randomly selected a moment (start time in minute) in the time-window. We then modified 

two physiological signals picked at random by either magnifying or reducing the signal 

with a randomly selected scalar (from a uniform distribution U (0–0.3)). Only a fraction of 

randomly chosen time-windows are modified in this manner.

In the pre-training step, the model has to predict if a signal has been modified in the input 

time-window or not, and if modified, predict the moment (time-minute) of modification. 

This process is similar to the downstream task of detecting if an opioid has been 

administered or not and if detected, predicting the opioid administration moment. We used 

all the data from inpatient and outpatient settings for the pre-training step. In figure 1, we 
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show an overview of the pre-trained task. We fine-tuned the pre-trained model to detect 

opioid administration and predict the moment of administration (“opioid moment”) in the 

downstream setting. We used a hybrid loss function Loss = λLWCE + (1 − λ)LKAPPA to 

solve these tasks. A binary-weighted cross-entropy loss LWCE was used in the hybrid loss 

to traid the model to correctly detect whether the time series signals have been modified. 

We used the weighted kappa index LKAPPA ((Cohen 1968)) between the actual and predicted 

start time of signal modification (in minute) in the time-window.

We trained the self-supervised framework to detect opioid administration and predict opioid 

moment using different machine learning models that are widely used for time-series 

modeling including bidirectional LSTM (BiLSTM) (Graves and Schmidhuber 2005), LSTM 

with fully convolutional network (LSTM-FCN) (Karim et al. 2017), ResNet (Wang, Yan, 

and Oates 2017), and InceptionTime (Ismail Fawaz et al. 2020). Additionally, we also used 

Channel- Temporal Attention TCN (CTA-TCN) (Gullapalli et al. 2021) which was initially 

designed to detect intravenous (IV) opioid administrations in a hospital-based setting using 

physiological signals collected from E4 sensor data.

We evaluated the performance of opioid administration detection using weighted F1-score. 

We used a weighted F1-score instead of a binary F1-score to account for the class 

imbalance. To evaluate opioid moment prediction, we used normalized mean-absolute 

error (NMAE). For all analyses, we employed Leave-One-Subject-Out Cross-Validation 

(LOSOXV). As the data in the inpatient setting was collected in the presence of clinical 

personnel and consequently less noisy compared to the outpatient data, we present the 

results separately in the inpatient and outpatient settings. Table 1 highlights the main 

performance of different time-series models for opioid administration detection and opioid 

moment prediction, with and without self-supervised pre-training. Self-supervised learning 

improved both detection and moment prediction for all time-series models across both 

settings which clearly highlights a broader applicability of the technique. In the inpatient 

setting, the CTA-TCN model delivered optimal results, achieving an F1-score of 0.79 

and an NMAE of 0.13 for moment prediction. In the absence of SSL, the metrics were 

an F1-score of 0.73 and an NMAE of 0.21, respectively. In the outpatient scenario, the 

CTA-TCN model again was best, with an F1-score of 0.70 and an NMAE of 0.18. Without 

the inclusion of SSL, these figures stood at an F1-score of 0.65 and an NMAE of 0.27, 

respectively. The improved F1-score and the decreased NMAE across all the models imply 

that self-supervised learning helped to regularize and improve the model.

Step 2: Pharmacokinetics-Informed Auxiliary Task

In the previous subsection, we demonstrated how using self-supervised learning (SSL) 

improved the performance in opioid administration detection and opioid moment prediction 

across both inpatient and outpatient settings for various time-series models. However, all 

these predictions are purely data-driven by wearable data. To complement this, we used 

temporal information associated with the moment of opioid administration while training the 

model, in addition to the weighted kappa index loss, which only uses a one-hot encoding 

vector to represent this information.
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To that end, we utilized the plasma drug concentration information that changes over time 

from the moment the drug is administered. Calculating the exact plasma drug concentration 

at any point in time requires drawing and analyzing a blood sample, which is not a practical 

solution for a longitudinal study. However, we can estimate a relative plasma concentration 

(RPC) as a function of time for opioids using a single-compartment model shown in 

equation 1. In this model, the drug is distributed instantaneously throughout the body, and 

absorption and elimination occur with a first-order reaction. While the exact plasma drug 

concentration over time also depends on numerous factors such as the bioavailability of 

the drug, salt factor, volume of distribution, and renal function, the relative plasma drug 

concentration over time can be described by equation 1.

(1)

Where Dt= plasma drug concentration at time t, and Ke and Ka are the elimination and 

absorption rate constants that are dependent on the type of the opioid.

(2)

To calculate the plasma drug concentration over time using the opioid pharmacokinetics 

equation 1, we used the elimination and absorption rate constants Ke=0.17, Ka=4.19 for 

orally ingested oxycodone ((MANDEMA et al. 1996)), as this represents the majority of 

opioid administrations in the dataset. The auxiliary task aims to supervise intermediate 

layers and create a robust representation of the input signals that can better predict the 

moment of opioid administrations. Throughout the paper, computed plasma concentration 

refers to computed RPC. The new hybrid loss function is now defined by equation 2. For 

the auxiliary task, we used a root mean square error (RMSE) between RPC over time 

derived from equation 1 and predicted plasma concentration over time. λ1,λ2, and λ3 are 

the hyperparameters used to weigh the importance of the loss terms. The only condition on 

these was λ1+λ2+λ3=1. We evaluate the model’s performance only on opioid detection and 

opioid moment prediction, but not on the auxiliary task.

The opioid moment prediction results after using pharmacokinetics information in the 

auxiliary task are shown in figure 2. Utilizing pharmacokinetics-informed learning reduced 

NMAE for the majority of the models across both inpatient and outpatient settings. In the 

inpatient setting, we achieved the best NAME of 0.09 and when using SSL only, we get an 

NMAE of 0.13 (≈ 4% increase) and R2 of 0.53 (≈ 49% decrease) compared to the model 
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that used both SSL and auxilary task. This improvement is much more prominent in the 

outpatient setting, with the best model CTA-TCN having a NMAE of 0.11 and R2 of 0.77, 

a ≈ 165% increase from just using SSL. Figure 3 shows the scatter plot between actual and 

predicted administration moment for both settings with and without using pharmacokinetics 

information to visualize the improvement in R2.

Conclusion, Limitations, and Future Work

In our present work, we trained machine learning models on extensive wearable data to 

detect oral opioid administrations, focusing on both the occurrence and timing of intake. 

Improving these models with self-supervised learning and opioid pharmacokinetic data, 

we found that self-supervised learning modestly improved performance, and incorporating 

pharmacokinetic data significantly increased the accuracy of predicting the timing of opioid 

use.

1. Interpreting results by medical professionals: Medical professionals primarily 

rely on user self-reports to determine the frequency of opioid intake which can 

be biased and easily tampered with ((Vietri et al. 2014)). Passive measurement 

of opioid use using our proposed framework can assist medical professionals 

in tracking the subject’s frequency of opioid usage, allowing them to adjust 

prescriptions and dosages accordingly.

2. Opioid administration labels reliability and data quality: The present data 

collection utilized a research-grade Emptaica device, which is impractical 

for long-term use in the general population due to its cost and aesthetics. 

Determining if similar results could be obtained on commercially available 

devices will be an important future step to ensure translation to the real world. 

Additionally, EHR confirmation of administration time was only available for 

inpatient (not outpatient) events. Out-patient events were confirmed using the 

patient reports only as the ground truth for ingestion, which may introduce 

additional noise.

3. Generalizing to other opioids and estimating plasma drug concentration 
with different equations: The opioid oxycodone, examined in our study, 

exhibits first-order absorption and elimination kinetics. However, there is 

heterogeneity in opioid pharmacokinetics (PK). For instance, fentanyl adheres 

to a second-order compartment model, while morphine also follows first-order 

pharmacokinetics. The proposed PK-informed neural network training approach 

can generalize across different types of opioids following different PK equations 

and models.

Path to Deployment:

The proposed Pharmacokinetics-Informed Neural Network can potentially be integrated 

into commercial smartwatches, as these devices are capable of collecting the necessary 

wearable signals for inference. However, for effective deployment, it is crucial to preidentify 

the type of opioid commonly used by the user, to accurately incorporate it into the 

pharmacokinetics equation. Additionally, the model’s continuous measurements can result 
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in false positives and negatives, which necessitates an effective management strategy that 

does not overwhelm the user. Furthermore, since users may take various medications 

that influence their physiology, our model requires further experimentation in different 

polysubstance use scenarios in the presence of different comorbidities prior to deployment.
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Figure 1: 
Illustration of our pharmacokinetics-informed approach for monitoring opioid 

administrations. We first train a machine learning (ML) model with a pretext task of 

detecting whether and where the signal is modified. The pre-trained model is then fine-tuned 

to detect opioid administration and predict the moment of administration in the time-window 

while also learning the plasma drug concentration over time, which is used as an auxiliary 

task.
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Figure 2: 
Barplot showing the impact of pharmacokinetics-informed learning on the performance of 

different Opioid use moment prediction model in both inpatient (left) and outpatient (right) 

settings. All models are pre-trained with the self-supervised task described in Step 1.

Gullapalli et al. Page 12

Proc AAAI Conf Artif Intell. Author manuscript; available in PMC 2024 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Scatter plot of moment predictions with the model which uses pharmacokinetics-informed 

learning (‘with PK’) and the model which does not (‘without PK’) in the: a) inpatient 

setting; and b) outpatient setting. Both ‘without PK’ and ‘with PK’ models have been 

pre-trained with the self-supervision task.
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Table 1:

Modeling opioid administration with different time-series models for inpatient and outpatient settings with and 

without self-supervised learning (SSL). F1-score, Specificity, and Sensitivity metrics measure binary opioid 

use detection, while NMAE and R2 metrics measure the moment of opioid administration.

Setting Model SSL F1-score Specificity Sensitivity NMAE R 2

Inpatient

BiLSTM

X 0.65 0.57 0.74 0.24 0.07

✓ 0.74 0.67 0.82 0.18 0.05

LSTM-FCN

X 0.68 0.63 0.77 0.27 0.08

✓ 0.74 0.66 0.83 0.20 0.05

ResNet

X 0.67 0.62 0.71 0.25 0.17

✓ 0.76 0.71 0.75 0.19 0.21

Inception-Time

X 0.70 0.63 0.76 0.21 0.33

✓ 0.75 0.70 0.74 0.15 0.45

CTA-TCN

X 0.73 0.65 0.88 0.15 0.49

✓ 0.79 0.74 0.78 0.13 0.53

Outpatient

BiLSTM

X 0.48 0.35 0.61 0.37 −0.48

✓ 0.54 0.42 0.75 0.36 −0.43

LSTM-FCN

X 0.51 0.42 0.61 0.29 0.06

✓ 0.57 0.55 0.61 0.19 0.14

ResNet

X 0.65 0.62 0.69 0.27 0.13

✓ 0.70 0.66 0.78 0.21 0.15

Inception-Time

X 0.60 0.62 0.61 0.26 0.05

✓ 0.69 0.64 0.67 0.17 0.43

CTA-TCN

X 0.64 0.52 0.80 0.27 −0.64

✓ 0.70 0.62 0.77 0.18 0.29
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