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Abstract
Tumor-related leukocytosis (TRL) is correlated with poor survival in various types of cancers, but the microenvironment of 
TRL-associated human tumors has not been fully elucidated. Here, we aimed to characterize the immune microenvironment 
of cancer patients with TRL. The transcriptional signatures of tumor tissues obtained from cervical cancer patients with 
(TRLpos) and without TRL (TRLneg) were compared. As a surrogate for TRL diagnosis, a leukocytosis signature (LS) score 
was derived using genes differentially expressed between TRLpos and TRLneg tumors. The immunological profiles of patients 
in the TCGA database with high (LShigh) or low LS scores were compared. TRLpos tumors were transcriptionally distinct 
from TRLneg tumors, exhibiting up-regulation of radioresistance and down-regulation of adaptive immune response-related 
genes. In the TCGA cervical cancer cohort (n = 303), patients with high LS had inferior survival rates compared to those 
with low LS (P = 0.023). LShigh tumors were enriched in radioresistance, wound healing, and myeloid-derived suppressor 
cell (MDSC) signatures and had a higher infiltration of M2 macrophages and a lower infiltration of M1 macrophages and 
lymphocytes. LShigh tumors also expressed higher levels of CXCR2 chemokines, CSF2, and CSF3. In the pan-cancer cohort 
(n = 9984), LShigh tumors also exhibited poor survival, signatures of a suppressive immune microenvironment, and higher 
expression of CXCR2 chemokines. Our data provide evidence for a suppressive immune microenvironment in patients with 
TRL and suggest promising targets, such as the CXCR2 axis, for its therapeutic intervention.
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TGF	� Transforming growth factor
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Introduction

Growing evidence suggests that there is a link between can-
cer and inflammation [1]. Inflammatory response is con-
sidered as one of the hallmarks of cancer and plays central 
roles at different stages of tumor development and pro-
gression [2, 3]. Cancer-related inflammation is known to 
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have tumor-promoting effects by aiding survival of cancer 
cells, promoting angiogenesis, and suppressing anti-tumor 
immunity [1]. In 10–20% cancer patients, such inflammatory 
responses are reflected in peripheral blood as increases in 
leukocytes referred to as tumor-related leukocytosis (TRL). 
TRL is associated with a poor response to radiotherapy or 
chemotherapy and, accordingly, poor survival [4–7]. Despite 
the dismal prognosis of patients with TRL, there is no effec-
tive therapy for such patients.

Myeloid cells, such as myeloid-derived suppressor cells 
(MDSCs) and tumor-associated macrophages (TAMs), are 
key components of tumor microenvironment inflammatory 
responses [8, 9]. MDSCs and TAMs aid tumor development 
by promoting the cellular stemness of cancer cells, angio-
genesis, and epithelial–mesenchymal transition and inhibit-
ing anti-tumor T cell responses [10]. Preclinical studies have 
shown that increased G-CSF secretion from tumor cells can 
increase both circulating and intra-tumoral MDSCs [4, 11]. 
In humans, TRL is associated with a higher frequency of 
circulating MDSCs and higher G-CSF concentrations [4, 
11, 12] and negatively correlated with tumor T-cell infil-
tration [7, 13]. However, comprehensive analysis of the 
immune microenvironment of patients with TRL has not 
been performed.

In the present study, we compared the immune landscapes 
of tumors from cervical cancer patients with and without 
TRL using RNA sequencing. Furthermore, we utilized 
TCGA data to extend our findings to a larger cohort of TRL 
patients with cervical and non-cervical cancer with the aim 
of discovering promising TRL therapeutic targets.

Materials and methods

Patients and sample preparation

Patients with pathologically confirmed squamous cell car-
cinoma of the uterine cervix without distant metastasis who 
received definitive chemoradiotherapy or radiotherapy were 
included in the study. TRL was defined as a white blood cell 
count exceeding 9000/μL at baseline without any evidence 
of infection [5]. RNA was extracted from formalin-fixed 
paraffin-embedded (FFPE) tissue sections with an RNeasy 
FFPE Kit (Qiagen, Hilden, Germany), and only samples 
that passed the quality control tests were used for RNA 
sequencing. RNA quality was assessed using an Agilent 
2100 bioanalyzer and an RNA 6000 Nano Chip (Agilent 
Technologies, Palo Alto, CA), and RNA quantification was 
performed using an ND-2000 Spectrophotometer (Thermo 
Fisher Scientific, Waltham, MA). This study was approved 
by the Institutional Review Board (4-2015-0454), and all 
patients provided informed consent before inclusion in the 
study.

RNA sequencing and analysis

Four patients with TRL (TRLpos) and four patients without 
TRL (TRLneg) were eligible for RNA sequencing. Detailed 
methods of RNA sequencing are provided in Supplemen-
tary materials. Gene counts were normalized by library 
size, and differential gene expression of genes was analyzed 
using DESeq2 (version 1.24.0). Differentially expressed 
genes (DEGs) were determined as those with an adjusted 
P < 0.05 and a log2fold change > 1. Gene set enrichment 
analysis (GSEA) was performed using Broad Institute soft-
ware (http://softw​are.broad​insti​tute.org/gsea/index​.jsp). 
Gene ontology (GO) analysis of the gene expression data 
obtained from MsigDB (http://www.gsea-msigd​b.org/gsea/
index​.jsp) was performed using GSEA and visualized by the 
Enrichment Map tool in Cytoscape version 3.7.1 (https​://
cytos​cape.org). The enrichment score for gene sets was cal-
culated using a gene set variation analysis (GSVA) with the 
GSVA R package (version 1.32.0). Heatmaps were generated 
using the pheatmap package (version 1.0.12).

The cancer genome atlas (TCGA) data acquisition 
and definition of subgroups

RNA sequencing data and patient clinical information from 
the TCGA database were obtained for 9984 patients com-
prising 32 solid tumors using FireBrowse (Broad Institute). 
A “leukocytosis signature (LS) score” was calculated for 
each individual using GSVA and was defined as the enrich-
ment score for the gene set derived from the genes differ-
entially expressed between TRLpos and TRLneg tumors. In 
detail, the GSVA score for significantly down-regulated 
genes in the TRLpos tumor was subtracted from the GSVA 
score of significantly up-regulated genes in TRLpos tumor. 
Patients within the upper quartile of the LS score were 
defined as LShigh, with the remaining patients being defined 
as LSlow.

Immune signature and tumor immune infiltrate 
analysis

The signature scores for five immune expression signatures, 
namely the interferon (IFN)-γ response, the transforming 
growth factor (TGF)-β response, macrophage/monocytes, 
lymphocyte infiltration, and wound healing, were obtained 
from a previous paper [14]. These five immune signatures 
were selected from 160 immune expression signatures 
that robustly reproduced the co-clustering of the immune 
signature sets, and signature scores were calculated using 
GSVA. Data for the fraction of immune cell subsets infil-
trating the tissue from the TCGA cohort were calculated 

http://software.broadinstitute.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
https://cytoscape.org
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using CIBERSORT [15]. The suppressive MDSC gene sig-
nature was derived from a previous study that identified the 
top 100 differentially expressed genes between suppressive 
MDSCs and monocytes sorted from peripheral blood mono-
nuclear cells [16]. The T cell-inflamed gene expression pro-
file, which is known to predict tumor response to anti-pro-
grammed death-1 (PD-1) therapy was calculated by GSVA 
using a previously reported gene set [17]. The neoantigen 
load for each patient from the TCGA cohort was obtained 
from a previous paper [14], which were determined from 
single-nucleotide variants and indel mutations that were pre-
dicted to result in Major histocompatibility complex bind-
ing peptides. The T cell receptor (TCR) and B cell receptor 
(BCR) diversities of patients from the TCGA cohort, which 
were measured using the Shannon entropy, were obtained 
from a previous report [14].

Statistical analysis

A Student’s t-test was performed to compare continuous 
variables between two groups. Survival curves were gen-
erated using Kaplan–Meier curves and compared using a 
log-rank test. A Cox regression was performed to determine 
the hazard ratio (HR) for the LS score on survival. A Pear-
son correlation analysis was performed to determine the 
correlation between two continuous variables. Two-sided 
P-values < 0.05 were considered significant. All statistical 
analyses were performed in R version 3.5.1 (http://www.r-
proje​ct.org) or GraphPad Prism version 6.0 (GraphPad Soft-
ware Inc., San Diego, CA).

Results

The characteristics of the four TRLpos patients and the four 
TRLneg patients are summarized in Table 1. TRLpos patients 
tended to have lower age, larger tumor, and more advanced 
tumor stage compared to TRLneg patients. In addition, 
TRLpos patients showed predominance of neutrophils among 
their leukocytes and a higher neutrophil-to-lymphocyte 
ratio (NLR) compared to TRLneg patients. All patients had 
received radiotherapy or chemoradiotherapy. Three of the 
four TRLpos patients experienced recurrence, while TRLneg 
patients experienced no recurrence. At last follow-up, two 
patients were alive among the four TRLpos patients and all 
TRLneg patients were alive.

Next, we performed RNA sequencing of tumors obtained 
from four TRLpos and four TRLneg patients. Principal com-
ponent analysis of TRLpos and TRLneg tumor gene expres-
sion showed distinct transcriptional landscapes (Fig. 1a). 
There were 591 differentially expressed genes in TRLpos 
tumors (log2fold change > 1, adjusted P < 0.05), of which 
227 genes were significantly up-regulated and 364 genes 
were significantly down-regulated (Fig. 1b; Supplementary 
Table 1). Unsupervised hierarchical clustering confirmed 
that the TRLpos and TRLneg tumor gene signatures were 
distinct (Fig. 1c). Genes up-regulated in TRLpos tumors 
included those related to cancer–testis antigens (MAGEA1, 
MAGEA3, MAGEA6, MAGEC2, ACTL8), neutrophil chem-
otaxis (CXCL3, CXCL8), inflammatory cytokines (IL1B), 
and epithelial–mesenchymal transition (LOXL2, PFN2) 
[18], whereas down-regulated genes included those related 
to T cells (CD8A, CD8B), T-cell immune response (HLA-E, 
IDO1), and the complement pathway (C7) (Fig. 1b, Supple-
mentary Table 1). GSEA using GO gene sets showed that 
TRLneg tumors exhibit enrichment in gene sets related to 
lymphocyte-mediated immunity, cellular response to IFN-γ, 
and T cell activation (Fig. 1d), while TRLpos tumors exhibit 
enrichment in gene sets related to DNA repair, replication, 
and cell cycle progression, implying the possibility of intrin-
sic radioresistance in TRLpos tumors (Fig. 1d). Supporting 
this, TRLpos tumors also showed enrichment in radioresist-
ance-related genes (Fig. 1e) [19]. We further assessed the 
radioresistance signature in the TCGA cohort of uterine 
cervical cancer patients. Due to the lack of blood count data 
in the TCGA cohort and as indicative of TRL diagnosis, we 
calculated the LS score for each tumor, and defined LShigh 
and LSlow tumors as TRLpos and TRLneg tumors, respec-
tively. The radioresistance signature score, derived from 
the radioresistance-related genes [19] by GSVA, showed a 
significant correlation with the LS (Fig. 1f), such that LShigh 
tumors exhibited a significantly higher radioresistance signa-
ture score than LSlow tumors (Fig. 1g). Patients with LShigh 
tumors had significantly lower survival rates than patients 

Fig. 1   TRLpos tumors exhibit a gene expression profile distinct from 
that of TRLneg tumors. a Principal component analysis of tumors 
from patients with (TRLpos; n = 4) and without (TRLneg; n = 4) TRL. 
b Volcano plot demonstrating the differentially expressed genes 
between the TRLpos and TRLneg tumors. The blue and red dots indi-
cate significantly down- or up-regulated genes in TRLpos tumors, 
respectively (log2fold change > 1, adjusted P < 0.05). c Unbiased 
hierarchical clustering analysis of differentially expressed genes in 
TRLpos and TRLneg tumors. d Expression levels of gene ontology 
(GO) gene sets in TRLpos and TRLneg tumors. A gene set enrich-
ment analysis (GSEA) was used to identify positive (red) and nega-
tive (blue) enrichment of GO gene sets in TRLpos tumors. The size 
of the nodes represents the number of genes in each pathway, and 
the links represent genes that are shared by two given pathways. Net-
works were generated using cytoscape. e GSEA of the radioresistance 
gene signature in TRLpos (n = 4) and TRLneg (n = 4) tumors. f Corre-
lation plot between the LS score and radioresistance gene signature 
score in the TCGA uterine cervical cancer cohort (n = 303). Signature 
scores were calculated using a gene set variation analysis (GSVA). 
g Radioresistance gene signature scores in LShigh and LSlow tumors. 
The lines in the boxplot indicate median values, the boxes indicate 
the IQR values, and the whiskers extend to 1.5 × the IQR values. h, i 
Overall survival of patients with LSlow tumors and those with LShigh 
tumors in the whole TCGA cervical cancer cohort (h; n = 303) and 
patients who did not receive radiotherapy (i; n = 176). Student’s t-test 
(g), log-rank test (h, i). ****, P < 0.0001

◂
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with LSlow tumors (Fig. 1h). Although TRLpos or LShigh 
tumors exhibited signatures for radioresistance, a high LS 
score was still associated with a poor prognosis in patients 
who did not receive radiotherapy (Fig. 1i), implying that 
the poor prognosis of patients with TRL may stem not only 
from the innate radioresistance of tumor cells but also from 
other factors.

We next investigated the tumor immune microenviron-
ment in uterine cervical cancer patients of the TCGA cohort 
based on the LS score. The LS score was significantly and 
negatively correlated with the macrophage/monocyte activa-
tion signature and the lymphocyte infiltration signature score 
and was significantly positively correlated with the wound 
healing signature score (Fig. 2a). A clustering analysis of 
LShigh and LSlow tumors also showed that the LShigh tumors 
were enriched in the cluster with a high wound healing 
signature score and low macrophage/monocyte activation, 
IFN-γ response, TGF-β response, and lymphocyte infiltra-
tion signature scores (Fig. 2b). However, there were some 
LShigh tumors that exhibited high IFN-γ response, TGF-β 
response, and lymphocyte infiltration signature scores, 
implying heterogeneity in the LShigh tumors (Fig. 2b). We 
next evaluated the degree of MDSC activation in the TRLpos 
and TRLneg tumors. The suppressive MDSC gene signature 
was significantly enriched in TRLpos tumors (Fig. 2c). In 
the TCGA cohort, the suppressive MDSC gene signature 
score was significantly correlated with the LS (Fig. 2d), and 
LShigh tumors exhibited higher suppressive MDSC gene sig-
nature scores than LSlow tumors (Fig. 2e). The LShigh tumors 
had a higher fraction of M2 macrophages, mast cells, and 
eosinophils and a lower fraction of M1 macrophages and 
lymphocytes (Fig. 2f). Among lymphocytes, the fractions 
of non-Treg CD4 T cells, B cells, and plasma cells were 
significantly higher in TRLneg tumors (Fig. 2f).

Given the importance of chemotaxis in the recruitment 
of immune cells to peripheral tissues, we next examined 

the expression of chemokines. An unsupervised hierarchi-
cal clustering of 42 chemokines in 303 uterine cervical 
tumors demonstrated the clustering of chemokines related 
to CXCR2, a chemokine receptor that mediates both neu-
trophil and MDSC trafficking (Fig.  3a). Moreover, the 
expression of the CXCR2 chemokines CXCL1, CXCL2, 
CXCL3, CXCL5, and CXCL8 was significantly higher in 
LShigh tumors (Fig. 3b). In addition to chemokines, we also 
examined the expression of growth factors for neutrophils or 
monocytes, such as CSF1 (M-CSF), CSF2 (GM-CSF), and 
CSF3 (G-CSF), and found that LShigh tumors had a signifi-
cantly higher expression of CSF2 and CSF3, but not CSF1 
compared to LSlow tumors (Fig. 3c). Thus, LShigh tumors 
showed the potential for enhanced chemotaxis of neutro-
phils or MDSCs to the tumor site and higher expression of 
neutrophil- or MDSC-inducing cytokines.

Considering the role of MDSCs in disrupting the effec-
tiveness of immune checkpoint blockade, we next investi-
gated the potential of TRLpos and TRLneg or LShigh and LSlow 
tumors to respond to anti-PD-1 therapy. The T cell-inflamed 
gene signature, which has been shown to predict responses 
to anti-PD-1 therapy in multiple types of cancer [17], 
was found to be significantly enriched in TRLneg tumors 
(Fig. 4a). The T cell-inflamed gene signature score was 
also higher in LSlow tumors, with a borderline significance 
(P = 0.0581; Fig. 4b). The neoantigen number, which is 
also known to be a predictive marker for anti-PD-1 therapy 
[20], was similar in the LShigh and LSlow tumors (Fig. 4c). 
TCR and BCR diversity was significantly lower in the LShigh 
tumors (Fig. 4d).

To extend our findings derived from patients with uterine 
cervical cancer, we compared the survival of patients with 
LShigh and LSlow tumors and the immune signatures of these 
tumors in the pan-cancer cohort of the TCGA database com-
prising 32 types of solid tumors and 9984 patients. Patients 
with LShigh tumors exhibited a significantly poorer overall 
survival compared to those with LSlow tumors (HR 1.57, 
95% CI 1.48–1.67, P < 0.0001; Fig. 5a). LShigh tumors also 
had a significantly higher MDSC signature score than LSlow 
tumors (Fig. 5b). As seen in the TCGA uterine cervical can-
cer cohort, LShigh tumors exhibited a higher wound heal-
ing signature, but lower IFN-γ response, TGF-β response, 
macrophage/monocyte activation, and lymphocyte infiltra-
tion signatures (Fig. 5c). In terms of chemokine expres-
sion, LShigh tumors expressed significantly higher levels of 
CXCL1, CXCL2, CXCL3, CXCL5, and CXCL8 (Supplemen-
tary Fig. 1a). In addition, LShigh tumors expressed higher 
levels of CSF2 and CSF3 (Supplementary Fig. 1b). We next 
evaluated the prognostic impact of the LS score in the 32 
types of solid tumors. A higher LS score was associated 
with poorer overall survival not only in uterine cervical can-
cer but also in adrenocortical carcinoma, bladder urothelial 
carcinoma, head and neck squamous cell carcinoma, kidney 

Fig. 2   LShigh tumors have a more suppressive immune microenvi-
ronment than LSlow tumors. a Correlation between the LS score and 
signature scores for the IFN-γ response, the TGF-β response, mac-
rophage, lymphocyte infiltration, and wound healing in the TCGA 
uterine cervical cancer cohort (n = 303). b Unbiased hierarchical 
clustering analysis for the signature scores for the IFN-γ response, 
the TGF-β response, macrophage, lymphocyte infiltration, and wound 
healing signatures in LShigh (n = 75) and LSlow (n = 228) tumors. c 
GSEA of the immunosuppressive MDSC gene signature in TRLpos 
(n = 4) and TRLneg (n = 4) tumors. d Correlation plot between the 
LS score and the immunosuppressive MDSC gene signature score 
(n = 303). e Immunosuppressive MDSC gene signature scores in the 
LShigh (n = 75) and LSlow (n = 228) tumors. The lines in the boxplot 
indicate median values, the boxes indicate the IQR values, and the 
whiskers extend to 1.5 × the IQR values. f The fraction of different 
immune cell subsets in the LShigh (n = 75) and LSlow (n = 228) tumors. 
The fractions of cells were derived from CIBERSORT. Bar graphs 
represent mean and s.e.m. Student’s t-test (e, f). ns, not significant; *, 
P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001
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chromophobe, kidney renal clear cell carcinoma, kidney 
renal papillary cell carcinoma, liver hepatocellular carci-
noma, lung adenocarcinoma, mesothelioma, sarcoma, skin 
cutaneous melanoma, uterine corpus endometrial carcinoma, 
and uveal melanoma (Fig. 5d).

Discussion

Although a large number of studies have demonstrated the 
prognostic impact of TRL in various cancer types and treat-
ment settings [4–7], the microenvironment in human TRLpos 
tumors has not been well studied. Here, we comprehensively 
characterized the immune microenvironment of TRLpos 
tumors in patients with cervical cancer, as well as various 
other types of cancers. TRLpos and TRLneg tumors exhibited 
distinct transcriptional profiles and TRLpos tumors exhibited 
increased radioresistant signature, but reduced lymphocyte 
activation signature. We utilized DEGs from the TRLpos 

and TRLneg tumors to derive an LS score and defined LShigh 
and LSlow tumors in the TCGA cohort as representative of 
TRLpos and TRLneg tumors, respectively. Further analy-
sis revealed that LShigh tumors exhibit a more suppressive 
immune microenvironment than LSlow tumors, characterized 
by higher MDSC and wound healing signatures and lower 
macrophage activation and lymphocyte infiltration signa-
tures. Furthermore, we found that TRLpos or LShigh tumors 
had higher expression levels of CXCR2 chemokines than 
TRLneg or LSlow tumors, suggesting the CXCR2 axis may 
be a promising target for patients with TRL.

TRL in cervical cancer has been suggested as a distinct 
clinical entity with a lower response rate to radiation and a 
higher potential for metastasis or locoregional recurrence [5, 
11]. As from the previous report [4], we found that patients 
with TRL tended to have lower age, larger tumor, and more 
advanced tumor stage than patients without TRL. Impor-
tantly, we found that TRLpos and TRLneg tumors have dis-
tinct transcriptional profiles. One of the features of TRLpos 
tumors was enrichment of radioresistant gene signatures. 
Extending these findings to the TCGA cohort, we found that 
patients with LShigh tumors also had a higher radioresist-
ant signature and poorer survival than patients with LSlow 
tumors. However, a high LS score was also associated with 
poorer survival in patients treated without radiation, which 
implies that the poor prognosis of LShigh patients may not be 
solely attributed to radioresistance. As a result, we focused 
on examining the immune microenvironment.

TRLpos or LShigh tumors exhibited features of suppres-
sive anti-tumor immunity. These tumors were enriched for 
suppressive MDSC gene signatures, implying that MDSCs 
are more likely to infiltrate human tumors associated 
with leukocytosis. In addition, not only MDSCs, but also 
M2 macrophages, mast cells, and eosinophils were more 
abundant in LShigh tumors. M2-polarized macrophages in 
tumors, or TAMs [9], mast cells [21], and eosinophils [22] 
are known to have pro-tumorigenic effects, which supports 
the suppressive anti-tumor immunity in patients with TRL. 
TAMs and mast cells are also key players in the chronic 
wound healing process [23], and we found that LShigh tumors 
exhibit an elevated wound healing process signature. The 
chronic wound healing process has remarkable similarities 
with tumor growth since during the wound healing process 
an immunosuppressive environment is established through 
the action of a diverse array of immune cells and cytokines 
[24]. LShigh tumors also showed a lower lymphocyte frac-
tion, notably including non-Treg CD4 T cells, B cells, and 
plasma cells. A higher faction of plasma cells in tumors has 
been shown to be a predictor of favorable survival, which is 
associated with tertiary lymphoid structures (TLSs) in the 
cancer microenvironment [25]. TLSs are ectopic lymphoid 
organs that develop in non-lymphoid tissues that are com-
posed of a T cell-rich zone and B cell follicle with germinal 

Fig. 3   Chemokine expression in LShigh and LSlow tumors. a Unbi-
ased hierarchical clustering analysis for gene expression of 42 types 
of chemokine in the LShigh (n = 75) and LSlow (n = 228) tumors in the 
TCGA uterine cervical cancer cohort. b Gene expression of selected 
CXCR2-related chemokines in LShigh (n = 75) and LSlow (n = 228) 
tumors. c Gene expression of CSF1, CSF2, and CSF3 in LShigh 
(n = 75) and LSlow (n = 228) tumors. The lines in the boxplot indicate 
median values, the boxes indicate the IQR values, and the whiskers 
extend to 1.5 × the IQR values. Student’s t-test (b, c). ns, not signifi-
cant; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001

◂

Fig. 4   TRLpos and LShigh tumors exhibit features of anti-PD-1 unre-
sponsiveness. a GSEA of the T-cell-inflamed gene signature in 
TRLpos and TRLneg tumors. b T-cell-inflamed gene signature scores 
in LShigh (n = 75) and LSlow (n = 228) tumors. c Neoantigen number 
in LShigh (n = 75) and LSlow (n = 228) tumors. d T-cell receptor (TCR) 
and B-cell receptor (BCR) diversity in LShigh (n = 75) and LSlow 
(n = 228) tumors. Diversity indicates the Shannon entropy score. The 
lines in the boxplot indicate the median values, the boxes indicate 
the IQR values, and the whiskers extend to 1.5 × the IQR values. Bar 
graphs represent mean and s.e.m. Student’s t-test (b-d). ns, not sig-
nificant; *, P < 0.05; ****, P < 0.0001
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center characteristics, are surrounded by plasma cells, and 
represent a privileged site for tumor antigen presentation 
to T and B cells [26]. The presence of TLSs in tumors has 
been shown to be associated with favorable clinical out-
comes [26].

Although the mechanism behind the formation of TRL in 
humans is yet to be revealed, preclinical studies have sug-
gested that G-CSF secreted from tumor cells may play a 
role in inducing the generation of MDSCs from the bone 
marrow [4, 12]. Here, we also found that the expression of 
CSF2 (GM-CSF) and CSF3 (G-CSF) is elevated in LShigh 
tumors. In addition, we also examined the expression 
of chemokines, since chemotaxis is a crucial process for 
immune cell recruitment to peripheral tissues. We found 
that LShigh tumors have a higher expression of CXCR2 
chemokines, such as CXCL1, CXCL2, CXCL3, CXCL5, and 
CXCL8 (IL-8). The CXCR2 chemokine axis has been shown 
to serve a central role in the recruitment of MDSCs lead-
ing to tumor progression, and blocking CXCR2 trafficking 
leads to enhanced anti-tumor effects of anti-PD-1 therapy 
in mouse tumor models [27, 28]. In humans, IL-8 has been 
suggested to be a potent chemotactic factor for MDSCs [29]. 
Therefore, targeting CXCR2 chemotaxis may be an effective 
strategy to improve the treatment outcome in patients with 
TRL. In human subjects, an anti-IL-8 antibody showed a 
favorable safety profile and reduction in serum IL-8 levels; 
however, there was no objective tumor response in patients 
with metastatic or unresectable solid tumors [30]. Although 
blocking the CXCR2 axis itself did not cause dramatic tumor 
reductions, it may be promising for combination with other 
treatments, such as radiotherapy, since local radiotherapy 
has been shown to enhance the production of IL-8 in tumors 
[31] and increase the frequency of MDSCs [32].

We found that TRLhigh or LShigh tumors exhibit a sig-
nificantly lower T-cell-inflamed signature which is a well-
established gene signature that predicts the response to 
anti-PD-1 therapy [17]. In addition, LSlow tumors exhibited 
a lower TCR and BCR diversity than LShigh tumors. A pre-
vious study has also shown that the diversity of peripheral 
blood T-cell repertoire is negatively correlated with NLR 
[33]. Furthermore, a higher TCR diversity has been associ-
ated with the response to immune checkpoint blockade [34]. 

Previous studies have also demonstrated that a high absolute 
neutrophil count or NLR, which is tightly associated with 
TRL, is associated with a poor response to anti-PD-1 therapy 
[35–37]. Taken together, tumors associated with leukocyto-
sis are less likely to respond to immune checkpoint blockade 
and further combinatorial treatments may be needed.

We performed our initial analysis of TRLpos and TRLneg 
tumors in uterine cervical cancer patients, but found that 
the findings could be reproduced in multiple types of solid 
tumors. Cancer types that showed a significant association 
between a higher LS score and poor overall survival in our 
study have also been shown to have significant associa-
tion between TRL or high NLR, with poor prognosis [4–7, 
38–40]. However, a higher LS score was significantly asso-
ciated with poorer survival, but not in all types of cancers. 
We, thus, suggest that TRL may not have the same prognos-
tic impact in all types of cancers and that the mechanisms 
for this differential impact in various cancers should be the 
subject of future investigations.

The current study had some limitations. First, the blood 
count data lacked in the TCGA cohort, which limited the 
diagnosis of TRL. As an alternative, we used the DEGs 
obtained from TRLpos and TRLneg tumors as a surrogate to 
define TRL in patients in the TCGA cohort. Another limita-
tion is that RNA was extracted from FFPE tissue sections; so 
as to overcome this limitation, we only used RNA samples 
that passed quality control tests to assure the accuracy of 
sequencing data. Moreover, a low number of patients were 
included for comparison of TRLpos and TRLneg tumors. In 
addition, TRLpos patients exhibited a heterogeneous clinical 
response. Although TRLpos patients are suggested to display 
a distinct clinical entity [4], one of the four patients was 
recurrence-free for over 4 years, while the others recurred 
within 1 year post-treatment. Future prospective studies uti-
lizing prospectively collected fresh tissue with blood count 
data in a larger cohort will better define the immune land-
scape of tumors associated with leukocytosis.

In conclusion, tumors associated with leukocytosis 
exhibit a more suppressive immune microenvironment char-
acterized by a higher wound healing signature accompanied 
by a higher infiltration of MDSCs and TAMs with lower 
lymphocyte infiltration compared to tumors not associated 
with leukocytosis. Our findings merit future clinical trials 
applying novel therapeutics based on the understanding of 
the distinct immune microenvironment of tumors associated 
with leukocytosis to improve the treatment outcomes of can-
cer patients with TRL.
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Fig. 5   Pan-cancer analysis of LShigh and LSlow tumors. a Overall sur-
vival of patients with LShigh and LSlow tumors in the TCGA pan-can-
cer cohort (n = 9984). b Immunosuppressive MDSC gene signature 
scores in the LShigh (n = 2496) and LSlow (n = 7488) tumors. c Signa-
ture scores for the IFN-γ response, the TGF-β response, macrophage, 
lymphocyte infiltration, and wound healing signatures in LShigh 
(n = 2496) and LSlow (n = 7488) tumors. d Forest plot demonstrat-
ing the hazard ratio and 95% CI of the LS in overall survival among 
32 types of solid tumors. Tumor types with a significant association 
between overall survival and the LS are marked in red. Bar graphs 
represent mean and s.e.m. Student’s t-test (b, c). Cox regression anal-
ysis (d). **, P < 0.01; ***, P < 0.001; ****, P < 0.0001
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