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Abstract
The wide-ranging collection of malignancies arising at the upper aerodigestive tract is categorized as head and neck cancer 
(HNC), the sixth most prevalent cancer worldwide. Infection with human papillomavirus (HPV) or exposure to carcinogens 
is the leading causes of HPV+ and HPV− HNCs development, respectively. HPV+ and HPV− HNCs are different in clini-
cal and molecular aspects. Specifically, HPV− HNCs tightly associate with missense mutants of the TP53 gene (encoding 
for the p53 protein), suggesting a central role for mutant p53 gain-of-function (GOF) in driving tumorigenesis. In contrast, 
in HPV + HNC, the sequence of TP53 typically remains intact, while the protein is degraded. In tumor cells, the status of 
the TP53 gene affects the cargo of secreted exosomes. In this review, we describe the accumulated knowledge regarding 
the involvement of exosomes and p53 on cellular interactions between HPV+ and HPV− HNC cells, and the surrounding 
tumor microenvironment (TME). Moreover, we envision how TP53 status may determine exosomes cargo in HNC, and, 
consequently, modify the TME. The potential roles of exosomes described herein are based on both our studies and the stud-
ies of others on mutant p53-derived exosomes. Specifically, we showed how exosomes are shed by cancer cells harboring 
mutant p53 communicate with tumor-associated macrophages in the colon as well as with cancer-associated fibroblasts in 
the lung, creating immunosuppressive conditions and promoting invasiveness. Altogether, exosomes in HNC in the context 
of TP53 status are understudied and extensive research is required to shed light on the biology of HPV+ and HPV− HNC.
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Introduction

Head and neck cancers (HNC) represent the sixth most 
common malignancies worldwide and the sixth most com-
mon cause of cancer-related deaths. 600,000 new cases of 
HNC are diagnosed every year, worldwide [1]. HNC is 
developed primarily via transformation of the squamous 
epithelium layer of the oral cavity, throat, and larynx. 
Among these sites, over 90% of the cancers are squamous-
cell carcinomas, as reviewed in Warnakulasuriya et al. [2]. 
Two major risk factors for the development of HNC are 
exposure to carcinogens and viral infections. The chronic 
exposure to tobacco (smoking), together with alcohol 
consumption, is known to be the most common cause of 
HNC. Viral infections of Epstein–Barr virus (EBV) are 
known to induce nasopharynx cancer, while the Human 
Papilloma Virus (HPV) is more prevalent among the oro-
pharyngeal [3]. Moreover, recent studies have identified 
various types of HPV that are associated with both benign 
and malignant lesions in the oral cavity [4]. In the last 2 
decades, a dramatic increase has been observed in young 
(age < 60) patients diagnosed with HPV positive (HPV+) 
cancer. HPV + HNC incidence in the United States (U.S) 
has increased over the years and has become an epi-
demic, as reviewed in Khalid et al. [5]. The most recent 
estimate reports of HPV in HNC indicate that there are 
about 38,000 cases every year globally [6]. Moreover, in 
the US, HPV infection has been associated with 60–70% 
of all patients diagnosed with oropharyngeal cancer [7]. 
HPV + HNC is more prevalent in younger individuals with 
a history of multiple sexual partners. In addition, this type 
of cancer is usually associated with a lower risk of recur-
rence and death compared with HPV negative (HPV−) 
HNC [5]. HPV+ and HPV− HNC have diverse and unique 
molecular and clinical aspects [8]. This significant dif-
ference is related to the etiology that differently affects 
gene expression and the accumulation of genomic altera-
tions (mutations, amplifications, and deletions) [9]. One 
of the most significant differences between HPV+ and 
HPV− HNC is reflected by the genomic alterations in the 
TP53 gene encoding for the hallmark tumor suppressor 
protein p53.

p53 functions as a central molecular hub, maintaining 
cellular homeostasis, regulating cell proliferation, cell 
survival, genome integrity, and a plethora of additional 
functions [reviewed in 10]. As a transcriptional regulator, 
p53 integrates stress signals and, accordingly, promotes 
cellular decisions involving cycle arrest, senescence, and 
apoptosis to prevent the propagation of damaged cells 
[11]. The last decade of p53 studies has seen the revela-
tion of additional roles beyond transcription regulation and 
protection of genome integrity. Evidence has shown that 

p53 is a major regulator of cellular metabolism, stemness, 
autophagy, invasion, metastasis, microenvironment con-
trol, and inflammation. Notably, mutations in the TP53 
gene are considered the most frequent genetic alteration in 
human cancers [10] (IARC p53 database—http://p53.iarc.
fr/). In HNC patients, mutations in TP53 are significantly 
associated with shorter survival rates. The mutations in 
TP53 usually occur at an early phase in the malignancy, 
resulting in dysregulated cell-cycle progression and cel-
lular proliferation [3, 12]. While loss-of-function of the 
wild-type (WT) form of p53 is enough to expose the cell 
to a higher risk of transformation, there are additional 
tumorigenic mechanisms directly governed by the neomor-
phic mutant p53 (mutp53) proteins [13]. One direct can-
cer-promoting aspect of mutp53 is through transcriptional 
blockage of the WT activity mediated via the tetrameriza-
tion complex in a dominant-negative manner. While this 
mechanism, in effect, attenuates the WTp53 activity, the 
most aggressive phenotype driven by mutp53 is referred 
to as gain-of-function (GOF) [12–17]. Cancer cells gain 
selective advantages by retaining only the mutant form 
of p53 (due to loss-of-heterozygosity). This gaining of 
oncogenic functions is attributed to the ability of several 
missense mutp53 in reshaping the entire transcription and 
proteomic profiles of the tumor cell, establishing de-novo 
interactions with transcription regulators and other cellular 
proteins. To that end, specific missense mutations in p53 
have been reported to undermine central cellular pathways 
and to drive cancer cell proliferation and survival, promote 
invasion, migration, metastasis, and chemoresistance, as 
reviewed in [18]. Furthermore, recent studies, including 
ours, show that mutp53 can foster a non-cell-autonomous 
effect over immune and stromal cells in the adjacent tumor 
microenvironment (TME), via the secretion of extracel-
lular vesicles (exosomes) [19].

Today, the involvement of the TME in HNC progression 
is well acknowledged (reviewed in [20]). Non-cancerous 
subpopulations of cells are being recruited by cancer cells 
in an interacted web of communication mechanisms that 
include secreted cytokines, growth factors, and exosomes. 
While exosomes had been observed over 50 years ago [21], 
their significant involvement in intercellular communication 
has been unraveled only in recent years [22, 23]. Exosomes 
are small (~ 30–150 nm) lipid bilayer-membrane vesicles 
assembled in endosomes, formed from multivesicular bod-
ies. The exosomal transfer has been shown to deliver bio-
molecules between cells, consequently leading to modu-
lation of signal transduction [24], by delivering proteins, 
lipids, and nucleic acids which can regulate gene expres-
sion in recipient cells. Such cell-to-cell communication by 
exosomes was reported to affect recipient cells in various 
physiological but also pathological conditions, including 
cancer [19]. Transformed cells typically release excessive 
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amounts of exosomes that contribute to malignancy ini-
tiation, tumor cell progression [25], invasion, metastasis, 
angiogenesis, and resistance to therapy [26, 27], and can 
also determine drug efficacy [28]. In addition to the direct 
effect of exosomes on neighboring tumor cells, the exosomal 
cargo has been proven to affect the tumor microenvironment 
by mediating immune escape and plays a vital role in the 
formation of the pre-metastatic niche [29].

In this review article, we will ‘zoom-in’ on the potential 
role played by exosomes in the malignant process of HNC. 
Depending on our studies, we will analyze the possible link 
between GOF mutp53, exosomes, and aggressive phenotypes 
of HNC.

Genomic alterations of TP53, and exosomes 
in head and neck cancer

HNC biology and etiology More than 90% of HNC are squa-
mous-cell carcinomas. Most patients present with locally 
advanced disease, involving regional nodes or with distant 
metastases [30]. HNC standard of care involves surgery, 
radiotherapy, chemotherapy, targeted therapy (Erbitux), and, 
most recently, immunotherapy (anti-PD1) [17]. For recurrent 
or metastatic disease, the standard first-line treatment is cur-
rently platinum-based chemotherapy, with Pembrolizumab. 
Overall survival for patients progressing after the failure of 
platinum-based chemotherapy and immunotherapy remains 
unacceptably poor [31] (also reviewed in [32]). The HPV 
virus can be present as episomal or integrated forms, or both 
[33]. However, to promote cancer development, viral DNA 
integration into the host cell genome is essential [9]. HPV is 
known to drive tumorigenesis through the actions of its two 
major viral oncoproteins, namely E6 and E7. These proteins 
determine stable episomal maintenance of HPV [34], and 
target two major cellular pathways of p53 and retinoblas-
toma (Rb), respectively. Specifically, E6 enhances the degra-
dation of p53 via ubiquitinylation and proteasome-dependent 
degradation [35], and E7 releases Rb protein and enables 
E2F transcription activation [34].

TP53 mutations in HNC The genomic characteriza-
tion of human malignancy indicates the landscape of the 
genomic alterations in cancers. Specifically, according 
to The Cancer Genome Atlas Program (TCGA) analysis, 
TP53 is mutated in 84% of the cases in HPV− HNC, while 
in HPV+, the frequency drops to 3% [36]. Previous data 
analyzed from TCGA by Zhou et al. show that TP53 muta-
tion rate in HNC tumors is most common in the larynx and 
hypopharynx, less common in the tongue and oral cavity, 
and least common in the tumors of the oropharynx, includ-
ing the tonsils, and base of the tongue (83.5%, 75.6%, 
and 28.6%, respectively) [37]. Among the HPV− HNC 
patients, the frequent mutations of TP53 are in codons 

R248, R273, G245, R175, R282, and H179. Our analysis 
of the GENIE data set, which includes over 1200 HNC 
samples, shows TP53 mutation distribution in different 
tumor locations of the HNC: Hypopharynx 83%, Larynx 
68%, Oral cavity 55%, Oropharynx 26%, and Nasopharyn-
geal 14% (Fig. 1).

Exosomes in HNC and immunity In the last decade, an 
extensive research effort described the role of exosomes in 
cell-to-cell interactions. In different malignancies, includ-
ing in HNC, tumor cells release exosomes containing 
immunomodulatory factors, interacting with cells of the 
TME to facilitate immunosuppressive conditions [39, 40]. 
Exosomes that are secreted by HNC cells are enriched with 
suppressive compounds such as cyclooxygenase-2 (COX2), 
TGF-b, programmed death 1 (PD-1) [41], and cytotoxic T 
lymphocyte antigen 4 (CTLA-4). These exosomal cargoes 
promoted CD8+ T-cell apoptosis, inhibited CD4+ T-cell 
proliferation, upregulated Tregs, and damaged NK-cell func-
tion [42]. Furthermore, it was suggested in additional studies 
that such immunosuppression was mediated by exosomal 
cytokines, which presented exosomes containing IL-10 and 
IL-6 secreted by HNC [43]. On the same note, the IL-6-de-
pendent inflammatory stimulation also resulted in increased 
angiogenesis. Furthermore, the presence of JAG1, a Notch 
ligand in HNC, released exosomes, has also been noted to 
affect immune cells negatively [42]. In studies focusing on 
the plasma of HNC patients, protein cargo of exosomes was 
indicative of tumor stage, immunosuppressive tumor profile, 
and disease activity [28]. In addition, HNC-derived plasma 
exosomes induced apoptosis of activated CD8+ T cells by 
engaging the extrinsic and intrinsic apoptosis pathways, 
and thereby modulated the immune response and drove the 
tumorigenic process. Specifically, plasma-derived exosomes 
from HNC patients contained TGF-β, FasL, OX40, OX40L, 
and HSP70 [44]. Notably, exosomes obtained from HPV+ 
tumor cells carried the viral oncoproteins E6 and E7 [45], 
in addition to p16 and survivin. In comparison, exosomes 
derived by HPV− tumor cells did not contain p16, as the 
encoding gene (CDKN2A) is frequently mutated or deleted 
[46]. The majority of the detected proteins in exosomes from 
both HPV(+) and HPV(−) cell lines are cytoplasmic pro-
teins such as integrin family members, proteins mediating 
proteoglycan-syndecan signaling EGFR [47], and VEGF/
VEGFR signaling networks. Furthermore, a study by Pie-
trowska et al. suggested a list of membrane–surface proteins 
putatively involved in exosome-mediated cross-talk between 
the tumor and immune cells. From this list, 172 proteins 
were mutually expressed in exosomes obtained from HPV+ 
and HPV− tumor cells. However, there were 43 proteins like 
CD47, CD276, and CALM1, which were present only in 
exosomes secreted by HPV + HNC cell lines. Similarly, five 
proteins were detected only in exosomes from HPV− HNCs, 
such as C9, MUC-1, HLA-DRA [48].
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The involvement of exosomes derived 
from mutp53 tumor cells in affecting the TME

There is now ample evidence linking genetic alterations 
to the direct effect on the TME [49, 50]. Oncogenic muta-
tions might give rise to a clonal selection imposing a more 
aggressive tumor progression based on the ability of the 
mutated clone to communicate with surrounding stromal 
and immune cells. These dynamics are also reported to take 
place via subsets of exosomes uniquely released by cells 

carrying the mutation. To that end, cells harboring muta-
tions in oncogenes such as KRAS, c-Myc, and MET were 
shown to transfer TME-modulating exosomes taken up by 
neighboring cells, thus recruiting those normal cells towards 
the tumorigenic agenda [51–53]. Notably, two recent studies 
have highlighted mutp53 as another oncogenic event utilizing 
the exosomal machinery to subordinate the tissue and allow 
the tumor to progress. Since mutations in p53 are considered 
a frequent and late event in sporadic colorectal cancer (CRC) 
[54], exacerbating the disease outcome, we were intrigued to 

Fig. 1  p53 mutation rate and frequency in HNC. Analysis of the 
AACR Project GENIE Consortium: Powering Precision Medicine 
Through An International Consortium [38], showing the frequency 
and mutation types of TP53 in HNC sites. Left panel: rates of TP53 

mutation in different anatomic sites. Middle panel: mutational distri-
bution in the TP53 gene. Right panel: pie analysis of the TP53 muta-
tion types
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explore the direct mechanisms related to the TME, driven by 
mutp53 GOF. In particular, we focused on the non-cell-auton-
omous role played by mutp53 in reprogramming tumor-asso-
ciated macrophages (TAMs) [19]. Significantly, CRC cells 
harboring mutp53 were skewing neighboring macrophages to 
an anti-inflammatory M2-like phenotype not observed when 
macrophages were cultured together with cells that did not 
carry a GOF mutant in p53. We showed that this intercellu-
lar interaction is exosome-related, as mutp53 CRC cells pro-
duced and shed excessive amounts of exosomes, which were 
engulfed by the TAM. Importantly, we identified a specific 
microRNA (miR) signature dominated by miR-1246 in the 
released vesicles. These findings allow us to suggest a direct 
molecular mechanism through which mutp53 CRC cells can 
modulate the microenvironment and create an immunosup-
pressive milieu that would result in an increased metastatic 
burden and reduced survival rates (Fig. 2).

Another recent study sheds light on the mechanistic con-
tribution of mutp53-derived exosomes to metastases devel-
oped in lung carcinomas. In accordance with several reports 
indicating that exosomes have the potential to shape the 
metastatic niche [55], the authors revealed that lung tumor 
cells harboring specific GOF mutants of p53 interact with 
cancer-associated-fibroblasts (CAFs) via exosomes. mutp53 
tumor cells shed exosomes carrying integrin receptors 
remodeling the extracellular matrix (ECM). Integrin recep-
tors directed to ECM were shown to be trafficked through the 
endosomal pathway and returned, or recycled, to the plasma 
membrane, thus facilitating the migratory potential of the 
tumor and immune cells. Interestingly, mutp53 regulated 
the expression levels of Podocalyxin, a factor frequently 

dysregulated in various cancer types [56]. mutp53 was sug-
gested to control exosomal levels of Podocalyxin, which 
consequently led to elevated integrin recycling rates (Fig. 2). 
Since integrin recycling is a key to metastatic niche prim-
ing, this study describes a pathway through which mutp53 
operates via a well-orchestrated GOF mechanism to modify 
the ECM. Such microenvironmental promotion of inva-
siveness was observed to be directly dependent on mutp53 
and Rab35, which join forces and control the content of 
released exosomes. mutp53-expressing tumors affected col-
lagen organization in the tumor stroma, resulting in ECM 
cross-linking and assembly of parallel arrays of collagen 
fibers. This type of ECM organization, detected in the lungs 
of mutp53 tumor-bearing animals, is more conducive to the 
metastatic seeding of tumor cells [57].

Future perspectives

The concept of mutp53 GOF was first introduced in the early 
1990s following the realization that p53 is a tumor sup-
pressor, rather than an oncogene [15, 17, 58]. The fact that 
several groups worldwide were unknowingly working with 
mutp53 clones that were yielding oncogenic effects led to 
the GOF hypothesis. Ever since, a plethora of studies have 
been published, supporting this notion of oncogenic activi-
ties governed directly in the mutp53 cellular setting [59–62]. 
While the vast majority of these mechanisms are associ-
ated with driving tumorigenesis through the cancer cell 
itself in a cell-autonomous manner, several research groups, 
including ours, now suggest that mutp53 can also directly 

Fig. 2  Exosomes originat-
ing from mutp53 cancer cells 
promote cancer progression. 
Cancer cells harboring mutp53 
interact with TME cells via 
unique subsets of exosomes. In 
the colon, mutp53 cancer cells 
release exosomes enriched with 
miR-1246, taken up by TAMs, 
reprogramming their inflamma-
tory phenotype, thus promot-
ing immunosuppression and 
metastasis. In the lung, mutp53 
exosomes drive invasiveness 
by targeting CAFs. Increased 
integrin recycling governed by 
low levels of Podocalyxin in 
exosomes was associated with 
the modulation of the invasive 
front
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modulate other cells of the TME in a non-cell-autonomous 
manner [19, 57]. In HNC, mutations in the TP53 gene are 
a central part of the mutational landscape, particularly in 
the HPV− tumors. While the viral E6 oncoprotein facili-
tates the degradation of the WTp53, in cases not diagnosed 
with HPV infection, it is the mutant form of p53 leading 
the charge [63]. Indeed, several different molecular mecha-
nisms specific to various HNC sites have been suggested in 
the previous studies [36, 64]. Notwithstanding, and given 
the new findings described in this review, we hypothesize 
that in HNC patients, the tumor cells that harbor ‘hotspot’ 
mutations in p53 might utilize the exosomal machinery to 
produce and release oncogenic subsets of exosomes serving 
as a TME-modifying force. Various oncogenic alterations 
have been shown to both intensify the number of released 
exosomes and to change the molecular cargo encapsulated 
into the vesicles. The interaction between the tumor cells 
and the supporting stromal and immune cells such as CAFs, 
TAMs, neutrophils, and T cells, might be reinforced by a 
continuous uptake of exosomes enriched with reprogram-
ming factors (Fig. 3). Hence, it would be intriguing to 
explore whether exosomes shed by mutp53 tumor cells can 
exacerbate the pathogenesis of different HNC sites. As we 
presented here, in HNC, the mutational spectrum of p53 is 
typically dictated both by HPV infection status as well as the 
anatomical location of the disease. It is plausible to hypoth-
esize that the involvement of mutp53 derived exosomes will 
be mutant-specific, site-specific, and negatively correlated 
with HPV. For example, in the Oropharynx, where we fre-
quently observe lesions harboring mutp53 in residue 273, 
we can expect to discover a unique GOF mechanism that 

would not be detected in sites such as the Larynx, where p53 
mutations are seldom found. Nevertheless, in HPV+ cases 
of HNC, exosome-related mechanisms might still be a cen-
tral avenue through which E6 and E7 are being transported 
between cells.

Finally, since exosomes were reported to be involved in 
different aspects of tumor progression, from initiation to the 
metastatic niche, overarching studies covering various facets 
of tumorigenic mechanisms should be embarked. Isogenic 
models, both in vitro and in vivo, differing by HPV positiv-
ity, by site and by their tumorigenic and metastatic potential, 
may be used to decipher changes in the molecular cargo 
carried by exosomes. Potential molecular candidates could 
be further validated as effectors that modulate signaling 
pathways that contribute to the malignant process. Unrave-
ling the molecular pathways controlled by exosomes shed 
by HNC cells will strengthen our understanding of disease 
pattern by site, by p53 status, and by the non-cancerous com-
partment involved in the process.
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Fig. 3  Prospected oncogenic 
mechanisms of exosomes 
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oncogenic proteins (E6 and 
E7), while exosomes from HNC 
HPV−, mostly p53 mutated, 
carry different molecular cargo, 
including complement proteins 
and mucosal proteins
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