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ABSTRACT
There is no doubt that today’s life sciences would look very different without the availability of 
millions of research antibody products. Nevertheless, the use of antibody reagents that are poorly 
characterized has led to the publication of false or misleading results. The use of laboratory animals 
to produce research antibodies has also been criticized. Surprisingly, both problems can be 
addressed with the same technology. This review charts today’s maze of different antibody formats 
and the various methods for antibody production and their interconnections, ultimately concluding 
that sequence-defined recombinant antibodies offer a clear path to both improved quality of 
experimental data and reduced use of animals.
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Introduction

The development of methods for the generation of antibodies 
has forever changed research, diagnostics, and therapy. 
Behring’s antitoxins (now called polyclonal antibodies),1 

Milstein and Köhler’s hybridoma technology to generate 
monoclonal antibodies,2 and finally the development of anti-
body phage display by Breitling, McCafferty, Barbas and 
colleagues3–5 deeply influenced medicine, immunology, mole-
cular biology, biochemistry, and biotechnology. 
Immunofluorescence literally changed the way we look at 
biological molecules6 by allowing a single protein to be identi-
fied through a microscope. Building on developments that 
started in the mid-1980s, antibodies are now used in more 
than 160 new medications (www.antibodysociety.org/ 
resources/approved-antibodies/) to treat cancer, infections, 
autoimmune and other diseases, with many more expected.7 

The reason for this widespread use is the unique ability of 
antibodies to recognize a specific molecule among tens of 
thousands of other biomolecules and bind to it with extraor-
dinary affinity. This particular capability has contributed to the 
evolutionary success of longer-living animals including our-
selves, as it provides a very effective weapon system against 
parasites, microbes and viruses that otherwise would rapidly 
overwhelm us. As these small organisms evolve much more 
rapidly than we do, our bodies routinely generate antibodies 
recognizing molecules that the human species may never have 
encountered before. This marvellous capability makes antibo-
dies useful for research, as we can generate immunoglobulins 
to almost all molecules of suitable size that provide a defined 
structure and a minimum of interactions to assure high- 
affinity binding. This is illustrated by the creation of antibodies 

to molecules not generally considered antigens, such as 
Buckminsterfullerene8 or polyethylene glycol.9 This vast struc-
tural variability of millions of different molecular interaction 
surfaces originates from a clever loop arrangement at the tips 
of the immunoglobulin’s arms.10 The structural diversity is 
achieved by DNA fragment recombination and even new 
DNA synthesis in B cell development.11 Later, during antigen- 
dependent B cell differentiation and clonal selection, every 
individual antibody-producing cell undergoes clonal expan-
sion, and can further improve the antibody it produces by 
somatic hypermutation.12

Today, we can imitate all essential steps of this antibody 
generation process in vitro,14 allowing some restrictions of our 
own immune system to be bypassed, such as the bias intro-
duced by the necessity to present peptides on the major histo-
compatibility complex (MHC), or the limited options for 
heavy-chain/light-chain pairing in individual B cells. This 
approach also allows antibody generation to be done without 
any animal experiments,15 which has led companies to market 
them as “vegan antibodies”. Qualifying antibodies as vegan 
would mandate that generation, analysis, and production are 
achieved without the use of animals or animal-derived materi-
als. There are currently quite a number of different ways to 
discover new antibodies against a desired target and produce 
them in sufficient quantities (Figure 1). Many cross- 
connections between these methods further complicate the 
picture, so that the use of animals or animal-derived materials 
is not always readily apparent. Even de novo generated anti-
body sequences designed by artificial intelligence (AI)16 rely 
on the structural guidance of nature’s antibody repertoire, as 
the AI systems cannot be successful without training on the 
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sequences and structures of countless animal-derived immu-
noglobulins. However, this strict approach does not reveal 
actual animal use in a specific antibody generation project. In 
the analysis and discussion below, materials such as donor 
blood-derived human antibody DNA or the human HEK293 
production cell line are not considered animal-derived because 
they do not originate from animals, which typically include 
mice, rats, hamsters, rabbits, horses, goats, sheep and guinea 
pigs but may also include monkeys, chickens, dogs, llamas, and 
sharks.

How to make antibodies

For the first 85 years of their use, antibodies were only avail-
able in the form of blood serum or polyclonal immunoglobulin 
fractions obtained from it. Although these crude antibody 
preparations are always undefined in respect of their true 
specificity spectrum, they saved the lives of children with 
diphtheria and other diseases,17 and substantially expanded 
our understanding of histology and cell biology.6

The Use of polyclonal antibodies, however, has drawbacks, 
as only 0.5–5% of the immunoglobulins in a polyclonal reagent 
bind to their intended target.18 Polyclonal serum is composed 
of an antibody mixture resulting from all immune responses of 
the donor animal, which may be independent from the immu-
nization with the desired antigen. Further, this composition 
varies from batch to batch, because the immune response is 

different in every individual animal19, and even between sub-
sequent blood samples taken at different times from the same 
animal.20 The additional specificities are of course unwanted, 
but never mapped, resulting in poorly defined reagents. While 
affinity chromatography on the antigen to enrich the desired 
specificities is possible,21 this is only offered for a small fraction 
of the catalog products. Using the flow-through of an affinity 
chromatography on antigens that must not be recognized by 
the final polyclonal product allows the reduction of cross- 
reactivities. This approach is most prominently used to remove 
inter-species cross-reactivity of secondary antibodies.

Despite these approaches to improve their performance, the 
shortcomings of polyclonal antibodies are responsible for 
numerous false scientific conclusions.18,22 Fifteen papers pub-
lished on the dementia-related protein C9ORF72 that gener-
ated 3,500 first-layer citations and 66,000 secondary citations 
involve work with an antibody that does not recognize 
C9ORF72.23 Many antibodies underperforming in 
a validation study of more than 600 antibodies were used in 
a large number of published articles.24 Poorly characterized 
and ill-defined antibodies were in large part responsible for the 
failure to replicate the scientific results of 47 of 53 landmark 
preclinical studies.25 In a western blot analysis of 13,000 anti-
bodies, only about 45% recognized their expected targets.26 

While this could be explained in part by the denaturation of 
epitopes, Berglund et al. found that more than half of around 
6,000 routinely used commercial monoclonal and polyclonal 

Figure 1. The intricate paths of antibody generation. Organisms are shaded in black. Importantly, recombinant antibodies are not always non-animal derived, as today 
the various advantages of the recombinant format are utilized both by animal- and non-animal-derived antibodies. Vast antibody variable region gene libraries, which 
can be obtained from human donor blood or by in silico design, offer animal-free access to antibody genes. However, the use of gene libraries does not always 
guarantee animal-free products, as they can be used in transgenic animals or obtained after animal immunization. It is also often overlooked that, after the initial 
animal-free generation of an antibody clone, animal materials may be used to produce these antibodies in useful quantities. Conversely, today any recombinant 
animal- or non-animal-derived antibody could also be produced in a vegan cell culture system. Since this map shows several paths consisting entirely of green arrows, 
“vegan” antibodies are indeed a reality. *, see13
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antibodies recognized more than their specified targets.27 

Numerous authors have lamented the substantial amounts of 
money wasted per annum for antibodies that do not work or 
produce false results and the much higher follow-up cost for 
our society.28 Human lives are also at stake: In addition to 
research work, clinical trials and diagnostic tests for cancer 
were based on the use of antibodies that have since proven to 
not bind to the assumed target or were nonspecific.29–33 

Knowing all of this, it is surprising that polyclonals still repre-
sent the largest product group for research antibodies 
(Figure 2). But why are research products that obviously are 
“littering the field with false findings”34 still so popular? Sadly, 
this is not driven by their performance, but mainly due to their 
much lower price and lack of knowledge about the 
alternatives.15

The polyclonal nature of serum-derived antibodies also has 
a positive aspect: immune responses of the immunized animals 
typically lead to the expansion and differentiation of several 
antigen-specific B cells that in most cases cover different epi-
topes on the antigen of interest. The resulting serum therefore 
offers better chances to recognize the antigen in different 
experimental settings where parts of the epitopes may have 
changed due to denaturation (i.e., in western blots or fixed 
tissue sections), and the recognition of several epitopes on the 
same molecule can increase the detection signal in an assay.35 

These advantages can be exploited, as the presence of the 
unknown fraction of unwanted IgGs in polyclonal prepara-
tions is excluded. Multiclonal antibodies,36 composed of an 

exactly defined mixture of sequence-defined recombinant 
antibody clones, provide the polyclonal advantage, resulting 
in elimination of false positive signals, and they provide lower 
background because they do not contain any potentially mis-
leading off-target binders.37

The development of hybridoma technologies in 1975 was 
a substantial advance in antibody generation methods.38 

Hybridoma generation relies on the fusion of two cells: a B 
cell encoding the desired antibody and a tumor cell that pro-
vides the immortality necessary for unlimited future cultiva-
tion to produce the monoclonal. Monoclonal antibodies 
originating from a single immortalized B cell revolutionized 
many areas of life sciences. For example, the knowledge explo-
sion in molecular immunology was initiated and driven by 
a rapidly growing collection of monoclonal antibodies to lym-
phocyte surface markers. Monoclonal antibody clones literally 
defined cluster of differentiation (CD) antigens, allowing 
researchers for the first time to distinguish between the many 
different cell types of the adaptive immune system, which until 
then had all looked the same under the microscope.39 They 
also enabled the development of the first therapeutic mono-
clonal antibodies from the 1980s onwards.40

For decades, monoclonals provided the gold standard for 
specificity, as they represented a huge improvement in speci-
ficity over polyclonal serum products. Recent results, however, 
explain why some monoclonals are not monospecific.27 First, 
two or more VHDJH or VLJL recombination patterns of immu-
noglobulin heavy or light chains have been found in many 
single B cells.41 Second, due to the cell fusion that leads to 
hybridomas, these are initially tetraploid and carry four differ-
ent antibody alleles. Hybridoma cells grow like cancers and are 
not regulated by a surrounding immune system. As a result, 
the number of chromosomes found in hybridomas varies 
widely; some hybridomas were shown to have developed up 
to 50 additional chromosomes.42–45 A multicentric study that 
sequenced expressed antibody genes of 185 hybridomas, 
including a large number of viable research catalog products, 
showed that only 68.1% of the analyzed hybridomas expressed 
only one of their four alleles, while the rest produced addi-
tional antibody chains (mainly light chains), which resulted in 
the secretion of more than one antibody by many truly mono-
clonal cell lines.13 This led to false positive reactivities and 
lower sensitivity.

This problem can be solved by cloning the variable regions 
of the antibodies from the hybridomas to generate recombi-
nant versions. Many methods are available to do this, most 
prominently by PCR46,47 or next-generation sequencing.48,49 

Once the correct pair of VH and VL is identified, these can be 
re-inserted into the genes encoding the chains for a full IgG 
and efficiently produced in mammalian cell culture.50 

Nowadays, both transient production methods with HEK293 
cells51,52 and stable cell lines, typically CHO,53 are well estab-
lished for recombinant IgG and often provide yields of over 5  
g/l. All recombinant immunoglobulins resulting from such 
a clone have the same structure and specificity. Importantly, 
this recombinant approach can also be used if the hybridoma is 
contaminated with bacteria or fungi, produces antibodies with 
undesirable glycosylations, does not adapt to the cultivation 
medium or is no longer sufficiently productive. These 

Figure 2. Biocompare.com search for different research antibody products, as of 
February 2024. The search engine could not distinguish between different 
products derived from the same original antibody preparation, e.g., with different 
labels or packaging sizes. As different labels are more commonly offered for 
secondary antibodies, which are mostly polyclonals, this segment may be slightly 
overrepresented. * Only 27 antibodies made by animal-free methods were listed 
in this database; this label was obviously not yet provided for all recombinant 
antibodies made by these methods. The recombinant antibody website https:// 
afa.ehstaging.net/listed 5194 different animal-free antibody products by the 
same date, which would still represent only 0.14%.
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problems54,55 were usually solved by a passage of the hybri-
doma line through the abdomen of a living mouse,56 where 
they generate an ascites tumor that is very painful for the 
laboratory animals.57

Due to the knowledge of their sequence, recombinant anti-
bodies are therefore always structurally defined reagents, in 
contrast to the vast majority of monoclonal and polyclonal 
research antibodies available from commercial suppliers. As 
a result, recombinant antibodies improve the reproducibility 
of research because they can be provided as long as the 
sequence information is known – a remarkable logistic advan-
tage compared to the efforts necessary to keep hybridomas 
available in liquid nitrogen tanks. A substantial fraction of 
experiments published with monoclonals cannot be repeated 
because the hybridoma clones are no longer available. In con-
trast, databases collecting antibody sequences have been estab-
lished to support unlimited reproducibility of experiments 
with recombinant antibodies.58

Beyond IgG: the choice of different antibody formats

Once available, antibody variable region DNA can be cloned 
into vectors encoding various other formats or other Ig types. 
Most methods using E.coli as expression host and most in vitro 
selection methods use just antigen-binding portions of the 
antibodies, like single-chain variable fragments (scFvs),59,60 

antigen-binding fragments (Fabs)61 or scFab.62 Regardless of 
the format in which the antibodies were originally selected, the 
final application format is usually different today, as format 
conversions are uncomplicated in recombinant production 
systems. Various antibody formats are currently used for 
research (Figure 3).

IgG is the most commonly used antibody format in 
research. IgG molecules offer two antigen-binding sites and 
thus improved apparent affinity in all assays where antigen 
density and localization support avidity effects. Their Fc region 
is easily recognized by secondary antibodies for detection, and 
protein A enables efficient purification of all molecules con-
taining an Fc moiety in one step.63 Polyclonal antibodies are 

often supplied as IgG-enriched fractions, and most hybri-
doma-derived antibodies are supplied as purified IgG frac-
tions. However, some hybridomas only produce IgM,64 

which provides higher avidity due to their 10-12 antigen- 
binding sites, but must be carefully checked for cross- 
reactivity, as IgM represent an earlier stage of antibody 
maturation in the B cell and typically have lower monovalent 
affinities per antigen-binding site.

Antibody fragments can be either generated on the protein 
level by chemical/proteolytic cleavage of animal-derived IgG 
preparations, or by respective design of the antibody genes for 
recombinant production.65 F(ab’)2 are generated by enzymatic 
cleavage of immunoglobulins from animals or humans.66 They 
have two antigen-binding sites of an IgG but can be used in 
assays that would be interfered with by the presence of Fc 
parts, e.g., when using material with a high content of Fc 
receptors. Due to their smaller size, they penetrate tissue 
more efficiently. They allow double staining when combined 
with an IgG, as they can be detected by anti-Fab-specific 
secondary antibodies that do not interfere with anti-Fc- 
mediated antibody detection.

Fragments antigen-binding, F(ab), also known as Fab, can 
be produced either by chemical reduction of the disulfide 
bonds in the hinge of F(ab’)2,67 or recombinantly in E. coli 
or eukaryotes.68 Fabs provide monovalent antigen binding, 
which in some assays can result in much weaker signals com-
pared to the IgG from which they are derived due to the lack of 
avidity. Recombinant Fab are expressed from two separate 
open reading frames (encoding the light chain and the corre-
sponding Fd fragment). They are commonly used in phage 
display and mammalian cell display, and are the most efficient 
format for the expression of functional antibodies by yeast 
surface display.69 Single chain fragments antigen binding 
(scFab) are a variant of Fabs in which the light chain and the 
corresponding Fd fragment (VH and CH1) are joined by 
a peptide linker to be expressed from a single open reading 
frame.62 They can only be produced recombinantly. Their 
main advantage is that only one gene fragment needs to be 
transferred when subcloning the Fab fragment into other 

Figure 3. Antibody formats most frequently used in research assays: IgM, Immunoglobulin M; IgG, Immunoglobulin G; 
F(ab’)2, divalent fragment antigen binding; F(ab), fragment antigen binding, now usually named Fab; scFab, single chain fragment antigen binding; scFv-Fc, single 
chain fragment variable::Fc fusion protein; scFv, single chain fragment variable; diabody, dimerized scFv; and single domain antibodies/nanobody. Constant regions are 
colored dark blue (γ chains), green (µ chains), or light blue (κ or λ chains); variable (antigen binding) regions in pink. Yellow lines indicate disulfide bonds, red lines 
peptide linker, purple lines peptide tags. C, constant region, V, variable region, HC, heavychain; LC light chain. Elements are not drawn to scale.

4 S. DÜBEL



formats.70 However, scFab:Fc fusions (single chain immuno-
globulin G, scIgG) tend to form higher-order aggregates.71 

ScFab have also been used to generate mammalian cell surface 
expression libraries for in vitro selection using transposon 
technology.72

Single chain fragment variable:Fc fusion proteins (scFv-Fc) 
offer the advantage of full compatibility with common second-
ary anti-Fc fragment antibodies for their detection and generic 
protein A affinity chromatography for their purification, while 
requiring cloning of only one gene fragment encoding both the 
VH and VL regions that form the complete antigen-binding 
site,73 for example, after in vitro selection from an scFv gene 
library. ScFv-Fc makes up a large part of the non-animal 
derived catalog antibodies, as their subcloning and production 
are less costly compared to conversion to full IgG, while they 
can be used just like IgG.

Single chain fragment variable (scFv) is the smallest stable 
constructs to contain the full antigen-binding site.59,60 As they 
are produced with high yield in E. coli, they are often used in 
antibody phage display libraries. ScFv provides monovalent 
antigen binding, but because they lack structural stabilization 
by the constant regions, some of them can form bivalent 
homodimers (diabodies), which may have a higher apparent 
affinity due to avidity. This can lead to a different performance 
of the antibodies in assays where avidity plays a role compared 
to assays that only detect monovalent binding. Diabody for-
mation can be forced by shortening the linker between the 
V regions.74 This provides a simple way to produce bivalent 
antibodies in E. coli. However, it should be noted that in 
diabodies the flexibility in the spatial orientation of the two 
antigen-binding sites (paratopes) is severely restricted due to 
their rather rigid conformation, whereas the antigen-binding 
sites of naïve IgG have much greater freedom of movement to 
contact their antigens due to the flexibility of the hinge 
region.75 As a result, the gain in apparent affinity by avidity 
may differ between a diabody and an IgG with identical 
paratopes.

Single domain antibodies76 and nanobodies77 consist of 
only half of the antigen-binding site of an IgG (which comes 
from the heavy chain), as they have no light chain. They can be 
produced efficiently in E. coli. Some variants of them can 
efficiently fold in the cytoplasm,78 making them in particular 
suited to be used as intrabodies.79 Nanobodies derived from 
heavy-chain only IgG antibodies found in the Camelidae 
family have an enlarged complementary-determining region 
1 (CDR1) and an elongated CDR3 loop that facilitates the 
binding of antigens with a groove and allow binding to 
a different structural spectrum of antigens than IgG.80

ScFvs, diabodies and nanobodies can be used for research 
purposes, but usually require an additional incubation step for 
detection, as they do not have constant regions/Fc fragments 
that can be recognized by conventional secondary antibodies. 
Although the conserved framework sequences within 
V regions of some scFvs and nanobodies may be recognized 
by some preparations of anti-IgG polyclonals, this is not guar-
anteed for every single fragment due to their high variability. 
Therefore, peptide tags (usuallybetween 4-15 amino acids resi-
dues in length) are added to the scFv or nanobodies to enable 
a generic detection and/or purification procedure. The c-myc 

tag is often used for this purpose. It can be detected either with 
the animal-derived monoclonal antibody Myc1-9E1081 or the 
affinity/stability-enhanced “vegan” Hypermyc antibody.82 His- 
tags provide simple generic purification,83,84 the FLAG-tag 
provides both purification and detection,85 Strep-tag86 or Avi- 
tag87 allow to use avidin and streptavidin-based reagents, and 
many other tags are available. To avoid the use of tags, scFv can 
be converted into Fab or IgG by subcloning. However, this can 
affect stability and antibody function,88 and some scFvs loose 
binding affinity when converted to full IgG format. Therefore, 
in vitro selections using surface display systems should be 
performed in formats as close as possible to the final 
application.89

To be useful in the laboratory, antibodies must not only 
bind to an antigen with high specificity and affinity but also 
have additional properties such as long-term stability, low 
aggregation in solution, high expression yield for low-cost 
production and more. These “developability” factors90 must 
be taken into account when producing antibodies for the low- 
margin research markets. While the “natural” IgG format is 
considered the most inherently stable variant, not all in vitro 
selection systems are capable of producing complete IgG mole-
cules, which usually require mammalian cells for efficient 
production and correct folding. Gene libraries with a semi- 
synthetic design, in which natural complementarity- 
determining regions (CDRs) of antibodies are grafted into 
antibody frameworks of known “well-functioning” 
antibodies,91 or fully synthetic designs based on very stable 
scaffolds92 offer a way to generate good research reagents with 
minimal effort.

Since some scFvs and the widely used scFv-Fc fusions 
derived from in vitro selectionshave a higher tendency to 
aggregate, this parameter must be checked early inthe antibody 
selection process to exclude molecules with developability 
liabilities. It is important tonote that these are properties of 
individual scFv molecules, as the scFv formatis by no means 
always less stable. Very robust scFv reagents can be obtained 
directly from libraries93 or by in vitro optimization.94 This is 
also illustrated by many clinically used fusion proteins that 
contain scFvs, like the chimeric antigen receptors (CAR) 
where the largest group of extracellular-binding regions are 
scFvs,95 or bispecific antibodies96 and immunotoxins.97 For 
research applications, however, conversion to a full IgG is 
often the chosen solution to provide full compatibility to the 
assays established for animal-derived antibodies. This conver-
sion can also be used to add functionalities that are not easily 
available from animal-derived antibodies. For example, by 
cloning the variable regions of different antibodies into vectors 
encoding Fc parts of different species, antibodies originating 
from the same library can be converted to appear as IgG from 
different species, and detected by differently labeled detection 
reagents. Combined in one experiment, their use in combina-
tion with Fc-specific anti-rabbit, anti-rat, anti-human, or anti- 
mouse secondary antibodies for detection allows for multi-
color analyzes not possible in the same way with a set of 
mouse monoclonals or rabbit polyclonals.98 Conversion to 
other formats like IgA, IgE or IgM are also possible in case 
the respective functionality is needed. Even non-canonical 
amino acids can be inserted at defined positions during cell 
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culture production to provide functionalities not achievable 
with animal-produced antibodies.99,100 Last but not least, the 
availability of antibody variable (V) region DNA has allowed 
construction of a vast and growing zoo of non-IgG-like fusion 
proteins. The resulting bispecific antibodies,101 

immunotoxins,102 or CAR-T cells103 have already provided 
many new and successful therapeutic approaches.

Making antibodies without using animals

All the advantages of recombinant immunoglobulins also 
apply to antibodies developed entirely in vitro because these 
methods are based on antibody genes that are recombinantly 
expressed in cultivated cells, so that their genetic blueprint is 
always available. The first successful and still prevalent method 
to generate antibodies completely without immunization and 
independent from a living immune system is antibody phage 
display.3–5 It employs highly diverse gene libraries of rear-
ranged immunoglobulin genes (1010-1011 different clones), 
obtained either from B cells (often human), chemical synthesis 
or by a mix of both. These libraries encode a collection of 
variable (V) regions of antibodies that structurally determine 
the paratope (antigen-binding surface) of the antibody, and 
thus its specificity and affinity. “Universal” (also named 
“naïve”) antibody gene libraries can be made without the use 
of animals.104 These libraries are cloned into a phagemid 
vector4 which, when present together with a helper phage 
genome in the same E. coli cell, leads to the production of 
antibody phage that have a physical linkage of the antibody 
protein to the DNA encoding it. Mixtures of antibody-phage, 
containing billions of different functional antibody fragments, 
each linked to their encoding genes, are then incubated with 
immobilized antigen. While the vast majority of antibody- 
carrying phage does not interact with the antigen, a few anti-
body-phage are bound to the antigen and can be eluted, after 
washing away the unbound ones. As they are phage, after 
elution they are able to very efficiently re-infect E. coli. The 
antibody-phage also carry a resistance marker that allows only 
the antibody-gene carrying bacteria to multiply. DNA encod-
ing antigen-specific antibody genes can easily be isolated from 
the resulting E. coli colonies. This process, called “panning”, 
relies on individual single molecule interactions to identify the 
sequences of recombinant monoclonal antibodies.

The antibody DNA can be ligated into many different 
vectors providing a final antibody format of choice. 
Typically, it is cloned into suitable IgG expression vectors to 
produce the full monospecific immunoglobulin.105 These 
immunoglobulins carry all functions of IgG from animal 
sources, and consequently are applicable to any assay that 
has been developed for animal-derived antibodies,15 as they 
are structurally identical to them. More recently developed 
in vitro antibody selection methods, like yeast display106 or 
mammalian cell display,107,108 are based on the same principle: 
clonal selection from vast DNA repertoires using the antigen- 
binding function of antibodies that are physically attached to 
the cell carrying the encoding gene. These methods offer the 
advantage of glycosylation and the display of larger antibody 
formats including full IgG, which is extremely inefficiently 
expressed in E. coli. Although the diversity of the repertoire 

of antibody genes that can be utilized with eukaryotic cell 
display methods still is several orders of magnitude lower 
than the diversity of 1010-1011 different antibody genes typi-
cally used in phage display,109 complex selections can be made 
in cell display systems that would be much more difficult to 
perform with phage display. For example, with appropriate 
labeling in the selection step of flow cytometry, both antibody 
expression and antigen binding can be quantified simulta-
neously for each individual antibody-expressing cell. With 
the right gating in flow cytometry, significantly higher enrich-
ment factors can be achieved than with phage panning, redu-
cing the number of selection rounds required. A further 
advantage of these approaches is that they enable integrated 
selection for antibody developability. Here, the mammalian 
display can select not only for antigen binding but also simul-
taneously for well-expressing and stable antibody candidates. 
This is best achieved by displaying the “final” full IgG format. 
In addition, both display methods can be combined, using 
a phage display library with a diversity that cannot be achieved 
with cellular display in the first round of selection to obtain 
more initial binders, followed by batch subcloning into 
a cellular display system for refinement 110.

Phage display and the other surface display methods allow 
the generation of specific immunoglobulins against everything 
that can bind to antibodies with reasonable affinity, as they are 
not restricted by the bottleneck of peptide presentation on 
MHC (Major Histocompatibility Complex). This allows to 
obtain antibodies against antigens that cannot be handled by 
a living immune system, like toxins or non-peptidic materials. 
In addition, most in vitro display libraries use random pairing 
of light and heavy chains, which means that the chance of 
achieving an optimal VH/VL match is much greater than in 
any B cell. This is a significant advantage compared to anti-
body selection in animals, where B cells can only produce two 
rearranged versions of the light chain per heavy chain.111 This 
limitation is one reason why repeated immunizations (boosts) 
are necessary in animals to increase affinities by somatic 
hypermutation. In contrast, by using in vitro display libraries 
with random VH/VL pairing, similar affinity increases (>1000 
×) can be achieved without introducing point mutations, just 
by the identification of a better fitting light chain from reper-
toires of > 106 VL region genes.112 This process, named “chain 
shuffling”, exchanges the light chain of a given antibody with 
the full light-chain gene repertoire before performing a new 
phage, yeast or mammalian display selection.113 Since both 
chains of the resulting antibodies have sequences with 
a much lower number of mutations compared to the human 
germline, the probability of developing adverse immune reac-
tions in patients treated with these antibodies should be lower 
than with somatically hypermutated IgG. Combined with care-
ful adaptation of the selection conditions, even the kinetic 
properties of antigen binding can deliberately be changed 
while keeping specificity and affinity identical.114 Of course, 
somatic hypermutation can also be reproduced in vitro by 
adding point mutations prior to in vitro selection.94

The complete control over the biochemical milieu at the 
very moment of antibody-phage selection is another advantage 
of in vitro selections.114,115 Antibodies with pre-adapted prop-
erties can be obtained in this way. For example, the buffer 

6 S. DÜBEL



conditions of the final assay the antibody has to work in can be 
used during its selection, yielding only antibodies that survive 
these buffer conditions. Even the kinetic properties of an anti-
body can be adjusted: simple prolongation of the washing steps 
during the panning selects for antibodies with increased stabi-
lity and slower dissociation.94 Unwanted cross-reactivities can 
be counter-selected against by adding soluble competitors 
during the panning step. The other way round, sequential 
affinity selections on different homologous proteins can iden-
tify a common structural motive.116 This can be used to select 
for antibodies that cross-react with homolog proteins from 
different species – a feature that is important for preclinical 
development that relies on animal models to demonstrate 
efficacy and test for target-related toxicity.

In the future, combining sequencing of a person’s entire 
B-cell receptor immune repertoire (BCR sequencing) with 
deep-learning algorithms to identify disease related antibody 
sequences117 or de-novo prediction of antigen binding site 
(paratope) structures16 may offer additional ways to identify 
specific antibodies.

Why do different origins of antibodies matter?

The properties of polyclonal, monoclonal, and recombinant 
antibodies, in particular their specificity, false positive reactiv-
ities, recognized epitopes and reproducibility, differ signifi-
cantly (Figure 1 right). More rigorous validation certainly 
would be beneficial for all types of research antibodies. 
A systematic study analyzing 614 commercially available anti-
bodies targeting 65 protein targets24 underlined the para-
mount importance of validation of every individual antibody 
for each application. Polyclonal, hybridoma-derived, and 
recombinant antibodies were validated for their performance 
in western blot, immunofluorescence, and immunoprecipita-
tion. Within this set of antibodies, recombinant antibodies 
performed better when directly compared to hybridoma- 
derived monoclonals and polyclonals directed at the same 
protein. Also, some of the assumed advantages of polyclonals 
were not evident, as these did not outperform the monoclonal 
antibodies in immunoprecipitation and were universally worse 
across the three applications tested. In another study, recom-
binant IgG cloned from hybridoma lines performed better 
than the IgG purified directly from supernatants from that 
same monoclonal hybridoma line.13 In conclusion, we should 
at least minimize the risks of false positive reactivities that 
originate in the undefined nature of polyclonals118 by using 
monoclonal, or even better, recombinant antibodies whenever 
possible. Here, we should be aware that additional reactivities 
can be present in some hybridoma-derived antibodies despite 
the origin from a single clone.13 However, the latter risk is far 
lower than that originating from the use of polyclonal anti-
bodies. Luckily, the availability of suitable recombinant tech-
nologies enables the conversion of both reagent types to 
completely defined reagents with known polypeptide 
sequence.

As long as the animal that produced a polyclonal serum is 
still available, single B cell cloning119 or V region libraries 
generated from lymphatic tissue or blood combined with 
phage or yeast display120 can be used to save the information 

on the immune response against the antigen used for immu-
nization, by generating one or several individual recombinant 
antibody clones, which should provide similar specificities 
completely without the contamination by a large fraction of 
unknown IgG. Most importantly, this conversion allows 
unlimited production of these antibodies in the future, in 
contrast to the limited amount of serum-based polyclonals, 
which is defined by the blood volume that a single animal can 
provide over its lifespan. Even the multi-epitope recognition 
advantage of polyclonal antibodies can be restored in recom-
binant form by using multiclonals37 that avoid the disadvan-
tages of serum products.

The advantages of the recombinant formats and vast gene 
libraries inspired the creation of many approaches that use 
a mix of animal-based and in vitro methods. As a consequence, 
antibody phage display is often not animal free. Antibody gene 
repertoires isolated from immunized animals are frequently 
used to combine the advantages of the in vitro selection pro-
cess with the results of immunizing a natural immune system. 
For example, nanobodies can be identified from phage display 
libraries generated from the blood cells of immunized llamas 
or camels.121

Another approach is offered by transgenic animals, which 
were originally created to avoid adverse side effects induced by 
a patient’s immune response against murine therapeutic 
antibodies.122 While genetic engineering allows for many dif-
ferent approaches to convert a mouse monoclonal to a more 
“human-like” sequence (humanization),123,124 a more direct 
approach was made possible by cloning the entire antibody 
gene repertoire of humans into mice, rats or rabbits which had 
their own IgG genes knocked out.125–127 Immunization of 
these “human IgG-transgenic” animals leads to the production 
of antibodies using the human sequence repertoire – a major 
source of the currently used therapeutic antibodies.

By amplification of the antibody genes from single 
B cells,119 recombinant versions of antibodies can be generated 
very quickly, as recently demonstrated during the SARS-CoV 
-2 pandemic.128 The race to produce therapeutic antibodies 
against the coronavirus also highlighted the potential of the 
phage display antibody to generate antibodies against antigens 
previously unknown to the human immune system. Before the 
first COVID patient materials were available in Europe, uni-
versal phage display libraries provided SARS-CoV-2 neutraliz-
ing antibodies within a few weeks, as the only material that was 
needed was the sequence information of the antigen.129 So, 
antibody phage display demonstrated the capability to identify 
binders against newly emerging pathogens more rapidly than 
any animal immunization-based approach can,130 and today’s 
naïve/universal antibody libraries for in vitro surface display 
now match immune sources for the affinities of antibodies that 
can be obtained.91,131–133

With all of these advantages, one might wonder why recom-
binant antibodies are not used much more frequently. In fact, 
while they represent less than 5% of the research reagents 
(Figure 2), all monoclonal antibody products currently used 
in human therapy are recombinant. The explanation for this 
dramatic difference in the acceptance of an obviously superior 
technology is complicated but is clearly based on their 
intended use. A report by the European Union Reference 
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Laboratory for Alternatives to Animal Testing (EURL 
ECVAM)15 found that a combination of a lack of knowledge 
about recombinant formats and scientific misconceptions, 
including preconceptions about new methods stemming 
from issues encountered during the early days of the technol-
ogy, contributed to the causes. The most important factors, 
however, are the limited availability and the usually higher 
price. Even antibodies derived from hybridomas, which have 
been available for almost half a century and have much better 
properties, have not been able to replace polyclonals as 
research reagents for the same reason (Figure 2), as they are 
around 5–10 times more expensive than polyclonals. 
Generation of new recombinant antibodies currently costs at 
least the same or even more than hybridoma generation, 
mainly due to their still small market share. Wider adoption 
of recombinant research reagents that meet the optimal stan-
dards available today would therefore require significant 
investments to broaden the industrial base for their supply, 
which should also lead to a significant reduction in price. 
Notably, the current research catalog prices of animal-free 
recombinants are not higher when compared to animal- 
derived antibodies.

Vegan antibodies?

The technology currently available can provide DNA blue-
prints for highly specific antibodies with high affinity without 
the need for animal experiments. In particular, antibody phage 
display has yielded many research antibodies.134,135 Non- 
animal-derived antibodies are used in diagnostics without 
being identified as such, and a growing number of antibodies 
obtained by animal-free methods are used as therapeutics.136 

Consequently, the ECVAM report concluded that methods 
that do not involve animals can now yield research antibodies 
as good as animal-derived antibodies,15 and thousands are 
already available in catalogs today (Figure 2; see also https:// 
afa.ehstaging.net/).

Nevertheless, it is not always easy for researchers who want 
to avoid animal use to understand which antibodies fulfill this 
criterion. Importantly, in vitro antibody production methods 
are not a priori animal-free. To identify those approaches that 
would qualify as “vegan” according to the practical criteria for 
animal use set forth in the introduction, we first have to look at 
the origins of the V region DNA. Antibody V genes can be 
collected from the genomes or transcriptomes of non- 
immunized or immunized animal or human donors, or they 
can be synthesized chemically, typically in the form of “syn-
thetic” libraries.137–139 The latter are based on one or a few 
antibody V region genes (frameworks) taken from databases. 
Only the loops directly contacting the antigen (CDRs) are 
randomized during DNA synthesis to provide the structural 
diversity within the antigen binding site.140 Even in vitro cell- 
based methods to replicate both primary and secondary anti-
body diversification mechanisms were conceived.141

While human antibody libraries usually qualify as non- 
animal derived, not all antibodies labeled as “human antibo-
dies” do. They could have been produced in human IgG 
transgenic animals after immunization,125–127 or originate 
from humanizing a hybridoma.123,124 A pragmatic approach 

in respect of minimizing animal use would be to check whether 
the antibody diversity originates from animal immunization or 
directly from an animal used for this purpose, or whether it 
just uses antibody structures originating from databases or 
from human blood donations.

Another route to recombinant antibodies uses V genes 
identified by sequencing hybridomas. This is a valuable path 
to further utilize the huge trove of historically created mono-
clonal antibodies. It would be detrimental to the progress of 
science to forego their use, since the animal experiments for 
their generation are finished, and if done right, no new animals 
are needed for their ongoing production. Instead of using the 
ascites method56 to save deteriorating or contaminated hybri-
doma lines, recombinant production could be used. Moreover, 
an “Antibody Heritage Program”142 to generate recombinant 
versions of all available hybridomas would not cause more 
animal use, but assure the long-term survival of valuable 
monoclonals and upgrade them with the advantages of the 
recombinant format. This would even allow their fully vegan 
production – of course, not qualifying them as vegan antibo-
dies, but it would be a step to reduce animal suffering.

Although they are still rarely found in research reagent 
catalogs, a large number of alternative molecular scaffolds 
has been developed over the past decades that could replace 
the antibody molecule in many usual assays.143 However, 
many of them need different detection systems, for example 
by using anti-tag antibodies, which takes away some of their 
original advantages and still limits their routine use in research 
today. All of these are initially identified by in vitro selection 
methods analogous to those used for antibody generation, and 
that do not require animals.

While antibody discovery from gene libraries can be done 
with or without animal experiments, the same is also true for 
their recombinant production (Figure 1). Here, sequences 
obtained by gene synthesis from databases or from clones 
established decades ago that encode the constant regions of 
different animals are always required to reconstruct the 
V regions into full IgG. Only this format is fully interchange-
able for animal-derived antibodies in typical research 
applications.15 While human Fc parts that meet the “non- 
animal-derived” criterion could be used in many applications, 
they are less suitable when analyzing human samples and 
tissues that naturally contain immunoglobulins. 
Consequently, recombinant IgG versions with the constant 
parts from animals such as mice, rats, rabbits will be needed 
for research. Of course, new animal experiments will never be 
necessary to use this constant region DNA, as all the necessary 
gene fragments have long been made available in commercially 
sourced vectors.

The actual use of animal materials in the protein produc-
tion step of non-animal-derived in vitro generated antibodies 
is often much more difficult to identify. While the inhumane 
ascites method to produce monoclonals from hybridoma 
tumors in mice56 has been used to generate monoclonals, it 
is not used for the production of recombinant antibodies. 
Nevertheless, in vitro production in cell culture often relied 
on animal materials, such as fetal calf serum in the growth 
medium. However, defined media that completely avoid the 
use of animal-derived reagents are available for both 
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hybridomas144 and recombinant antibody-expressing cells.51,52 

In addition, various systems for the plant-based production of 
antibodies have been developed,145 offering an undisputable 
vegan solution. Along the same lines, antibodies can be made 
in yeasts, which have proven to be particularly useful to pro-
vide defined glycosylation of the antibodies. For example, 
glycoengineered Komagataella (formerly named Pichia) pas-
toris strains were used for the production of humanized mAbs 
with glycosylation patterns optimized for therapeutic 
use.146–148

Various materials derived from animals may also be used in 
the assays that are an integral part of the discovery and pro-
duction processes. Bovine serum albumin or skimmed milk 
powder is typically used as blocking reagents in the ELISA 
screening required to identify the correct clones or test the 
correct function of production batches. These animal-derived 
reagents can be replaced by chemically synthesized or plant- 
derived materials (Abcalis, personal communication). While 
we cannot completely avoid animal use in the development of 
therapeutic antibodies,149 we now have a choice to go the 
“vegan” way of antibody making for many research 
applications.

The author would like to reiterate his opinion that legal 
restrictions on the use of animals for the production of anti-
bodies would considerably hinder research and the develop-
ment of drugs.149 Rather, efforts should be made to improve 
general access to non-animal-derived antibodies, allowing 
more researchers to recognize the intrinsic advantages of 
in vitro-derived antibodies. Wider use of animal-free methods 
for the generation of antibodies should be encouraged, as the 
resulting use of defined recombinant reagents would be bene-
ficial not only for the animals but also for the quality and 
reproducibility of our experimental results.
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