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Abstract
Purpose To evaluate the clinical–pathological and prognostic significance of the circulating PD-L1 level in patients with sur-
gically treated NSCLC, by combining data for PD-L1 expression with other immune-related markers and tumor metabolism.
Methods Overall, 40 patients with resected NSCLC (stage Ia–IIIa) who had preoperative blood storage and underwent 
staging PET/CT were enrolled for the study. In all cases, we determined plasma levels of PD-L1 (pg/ml), immune-reactive 
areas (IRA %) covered by CD3, CD68, CD20, CD8, PD-1, and PD-L1 in the tumor specimen, and metabolic parameters on 
PET, i.e.,  SUVmax,  SUVpeak, metabolic tumor volume (MTV), and total lesion glycolysis (TLG). Variables were statistically 
analyzed to establish their association with disease-free survival (DFS).
Results The circulating levels of PD-L1 in the bloodstream could be determined in 38/40 (95%) samples. The mean and 
median expression levels were 34.86 pg/ml and 24.83 pg/ml, respectively. We did not find any statistically significant cor-
relation between circulating PD-L1 and tissue expression of PD-L1/PD-1. Some mild degree of positive correlation was 
determined between tissue PD-L1 and  SUVmax (ρ = 0.390; p = 0.0148). Hierarchical clustering combining circulating, tissue, 
and metabolic parameters identified clusters with high metabolic tumor burden or high expression of plasma PD-L1 levels 
(Z score ≥ 2) as having a poor DFS (p = 0.033). The multivariate analysis detected stage and metabolism (i.e.,  SUVmax and 
 SUVpeak) as independent prognostic factors for DFS.
Conclusion Plasma levels of PD-L1 are independent of the expression of PD-1/PD-L1 in NSCLC tumor tissue and, when 
combined with other clinical–pathological parameters, allow for the identification of clusters with different outcomes.
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CHT  Chemotherapy
DFS  Disease-free survival
IRA %  Immune-reactive area (%)
MSC  Mesenchymal stromal cells
MTV  Metabolic tumor volume
PBMC  Peripheral blood mononuclear cell
PET/CT  Positron emission tomography/computed 

tomography
RT  Radiation therapy
SUV  Standardized uptake value
TAMs  Tumor-associated macrophages
TLG  Total lesion glycolysis
VOI  Volume of interest

Introduction

Lung cancer remains the leading cause of cancer-related 
death worldwide, with non-small cell lung cancer (NSCLC) 
representing the predominant subtype [1, 2]. Cytotoxic 
chemotherapy has for decades been the only treatment capa-
ble of prolonging survival in advanced NSCLC, although 
durable responses have been rare [3]. In recent years, 
however, treatment options for NSCLC have profoundly 
changed, moving towards an increasingly personalized, 
molecular-based medicine [4].

The development of immune checkpoint inhibitors and 
the unprecedented results reported in second/third-line 
regimens prompted the evaluation of these novel agents in 
chemotherapy-naïve patients either alone or in combina-
tion with platinum-based chemotherapy [5–11]. To date, 
nivolumab, pembrolizumab, and atezolizumab represent 
the programmed death-1/programmed death ligand-1 (PD-1/
PD-L1) inhibitors approved as monotherapy for the treat-
ment of advanced NSCLC. Along with the approval of these 
drugs by the Food and Drug Administration (FDA) and the 
European Medicines Agency (EMA), new diagnostic assays 
have been implemented to evaluate PD-L1 expression and to 
improve patient selection [12]. Of the available checkpoint 
inhibitors, however, only pembrolizumab has been approved 
for the first-line treatment of NSCLC patients with PD-L1 
expression ≥ 50% [7, 8]. Although all clinical trials require 
either a core needle biopsy or surgical resection to evaluate 
PD-L1 immunoexpression in tumor cells, variability in tis-
sue preparation and processing as well as cut-off values has 
complicated the interpretation of these assays and delayed 
the achievement of a broad consensus [12–14]. Around 80% 
of advanced NSCLC patients will only have tissue from 
small biopsies or cytology and as many as 31% of patients 
do not have adequate tissue, making them ineligible for clini-
cal trials [15].

On the other hand, it is possible to assess soluble PD-L1 
in patients with neoplasia. The rationale behind this assay 

is that serum PD-L1 levels are significantly higher in 
patients with malignancies than in healthy individuals [16, 
17]. Zheng et al. have in addition described an association 
between serum PD-L1 levels and prognosis in patients 
with advanced gastric cancer [17, 18]. Other authors have 
reported similar results for melanoma [19], diffuse large B 
cell lymphoma [20, 21], pancreatic cancer [22], biliary tract 
neoplasia [23], renal cell carcinoma [24], hepatocellular 
carcinoma [25], multiple myeloma [16], and lung cancer 
[26]. In particular, in NSCLC patients treated with erlotinib, 
Sorensen et al. [26] have demonstrated that an increase in 
soluble PD-1 during treatment is predictive of a more favora-
ble outcome.

Based on the above findings, we decided to evaluate the 
clinical–pathological and prognostic significance of circulat-
ing PD-L1 levels in patients with surgically treated NSCLC. 
In addition, we correlated these data with the tissue expres-
sion of PD-L1 and other immune-related markers, as well 
as with the metabolic parameters measured on fluorine-18 
fluorodeoxyglucose (18F-FDG) PET/CT.

Materials and methods

Patient population

We conducted a retrospective analysis of 40 patients with 
NSCLC who were treated at the Humanitas Clinical and 
Research Hospital between March 2016 and August 2017. 
The inclusion criteria were as follows: (a) pathologically 
confirmed NSCLC (stage Ia–IIIa); (b) 18F-FDG PET/CT 
performed within 45 days prior to surgery; (c) availability 
of tumor samples for immunohistochemistry (IHC) staining.

Baseline epidemiologic and clinical characteristics of the 
study population are shown in Table 1.

Circulating PD‑L1 assessment

Peripheral blood samples had been collected in EDTA 
(ethylene diamine tetra-acetic acid) Vacutainer tubes from 
patients included in the study before surgery. In accord-
ance with the Humanitas Centre for Biological Resource 
Standard Operating Procedures, samples were centrifuged 
at 1700 rpm (revolutions per minute) for 15 min at + 4 °C 
and the plasma obtained was immediately frozen and stored 
at − 80 °C. The circulating levels of PD-L1 were assessed 
in plasma samples using the Human Programmed Death 
Ligand-1 (PD-L1/B7-H1) ELISA kit (Quantikine ELISA, 
R&D Systems, Inc). Plasma samples were centrifuged for 
15 min at 1000g and the assay was performed according to 
the manufacturer’s instructions. Briefly, 96-well precoated 
plates were incubated with standards and plasma samples for 
2 h at room temperature. Then, 200 μl of human/cynomolgus 
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monkey B7-H1 conjugate was added to each well. After sev-
eral aspiration/wash processes, 200-μl substrate solution was 
added for 30 min at room temperature. Subsequently, 50-μl 
stop solution was added and sample absorbance was read 
within 30 min at 450 nm with the Microplate Absorbance 
Reader (Biorad, Italy). The concentrations of PD-L1 were 
calculated according to standard curves.

Immunohistochemistry

Tumor specimens were subjected to IHC analyses with 
monoclonal antibodies against CD3 (F7.2.38 clone, Dako, 
Glostrup, Denmark), CD8 (C8/144B clone, Dako), CD20 
(L26 clone, Dako), PD-1 (NAT105 clone; Abcam, Cam-
bridge, UK), and PD-L1 (22C3 clone, Dako), as previously 

described [27, 28]. Briefly, two board-certified pathologists, 
blinded to clinical outcome, evaluated the stained slides and 
selected non-overlapping and non-contiguous areas for quan-
tity analysis. An ad hoc software quantified the percentage 
of immune-reactive area (IRA %) covered by CD3 tumor-
infiltrating lymphocytes (TILs), CD68 tumor-associated 
macrophages (TAMs), CD20 B cells, CD8 TILs, PD-1, and 
PD-L1.

Imaging protocol and tumor delineation

PET/CT scans were performed in fasting patients approxi-
mately 60 min after tracer administration. An activity of 
2.5–5.0 MBq/kg of 18F-FDG, depending on patient weight, 
was administered. Two integrated PET/CT systems were 
used: Siemens Biograph LSO 6 scanner or GE Discovery 
PET/CT 690. After low-dose CT (30 mA, 120 keV), PET 
images were obtained from the base of the skull to the mid-
thigh. Scanners used in this study were accredited by the 
EANM Research Ltd (EARL) programme.

All PET/CT images were reviewed by two board-certified 
nuclear medicine physicians using GE ADW4.6 workstation 
(GE Healthcare, Waukesha, WI, USA).  SUVmax (maximum 
standardized uptake value) was defined as the pixel with 
the highest value within the tumor masses outlined on PET 
images.  SUVmean was defined as mean SUV related to the 
metabolic tumor volume (MTV) outlined by the sum of vol-
umes of interest (VOIs) drawn on tumor volumes with an 
uptake greater than 42% of  SUVmax.  SUVpeak was defined as 
the average activity concentration within a 1-cm3 spherical 
VOI centered on the hottest focus within the tumor image 
multiplied by the ratio of lean body mass to injected activity 
decayed to time of scan. Finally, we computed total lesion 
glycolysis (TLG) as the product of  SUVmean and MTV.

Statistical analysis

Continuous variables were presented for means, medians, 
range and standard deviation (SD) and compared using an 
independent t test or Wilcoxon test, when appropriate. Cat-
egorical variables were analyzed and compared between two 
groups by means of the Chi squared test. Spearman’ correla-
tion coefficient (ρ) was used for rank correlation.

The Kaplan–Meier method with log-rank test was 
adopted to calculate survival probabilities. Primary out-
come was disease-free survival (DFS), defined as the time 
from surgery until relapse, death from any cause, or the last 
follow-up visit at our institution. Overall survival (OS) was 
excluded from the analysis, since in our cohort, only one 
patient died during follow-up. To identify prognostic factors 
associated with DFS, the Cox proportional hazards regres-
sion model was used. The median follow-up of our cohort 
was 12.5 months (Table 1).

Table 1  Patients’ clinical 
characteristics

NS not specified

Variables

Age Years
 Median 71
 Range 43.4–84

Sex N (%)
 Male 23 57.5
 Female 17 42.5

Smoker
 Yes 16 40
 No 7 17.5
 Former 17 42.5

Histology
 ADC 26 65
 SCC 10 25
 Other 4 10

Grade
 II 20 50
 III 16 40
 NS 4 10

Stage
 Ia–b 20 50
 IIa–b 11 27.5
 IIIa–IV 9 22.5

CHT adj.
 Yes 8 20
 No 31 77.5
 NS 1 2.5

RT adj.
 Yes 4 10
 No 35 87.5
 NS 1 2.5

Follow-up Months
 Median 12.5
 Range 0.4–24.8
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Hierarchical clustering with heatmap visualization was 
used for circulating and tissue-related immune markers 
and PET-based semiquantitative parameters. The heatmap 
representation was obtained by default clustering based on 
Euclidean distance and scaled by row. The Z scores were 
computed from the centered data by dividing by the SD. 
The heatmap was displayed in red (lowest score) and green 
(highest score) colors. Statistical significance was set at 
p ≤ 0.05 for each evaluation. Statistical analyses were per-
formed using the Statistical Package for Social Sciences, 
version 23.0, for Windows (SPSS, Chicago, IL).

Results

Circulating PD‑L1 and IHC results

The circulating levels of PD-L1 in the bloodstream could 
be determined in 38 out of the 40 (95%) samples analyzed. 
The mean and median expression levels were 34.86 pg/ml 
and 24.83 pg/ml, respectively. Table 2 summarizes the dis-
tribution of all circulating and tissue markers in our study 
cohort. PD-L1 expression could be visualized in 23 out of 
40 tumor specimens (57.5%). The corresponding mean and 
median values of IRA % were 10.64 and 4.58, respectively. 
The tissue expression of PD-1 was determined in 37 cases 
(92.5%), with mean and median IRA % of 1.44 and 0.71, 
respectively (Table 2). On statistical analyses, we found no 
correlation between the circulating and the tissue expression 
of PD-L1, or between plasma PD-L1 and tissue expression 
of PD-1. Figure 1 illustrates the comparative scatter plots for 
the above-mentioned parameters.

Correlation with PET‑based parameters

Table 2 shows the overall distribution of PET-based param-
eters analyzed in our cohort. On Pearson’s rank test, we did 
not find any statistically significant correlation between 
either circulating PD-L1 or tissue PD-L1 and metabolic 
parameters. Some mild degree of positive correlation was 
determined between tissue PD-L1 and  SUVmax (ρ = 0.390; 
p = 0.0148).

Heatmap and hierarchical clustering

The default hierarchical clustering produced two cluster 
models. The first model was represented by five different 

Table 2  Distribution of circulating and tissue markers in the study 
cohort

Variables Median Range Mean SD

PD-L1 plasma 24.83 0–140.86 34.86 ± 29.37
CD3 (%) 8.94 2.02–41.2 11.32 ± 8.59
CD8 (%) 5.18 1.31–37.21 7.84 ± 7.38
CD20 (%) 5.04 0.11–24.61 6.36 ± 5.2
PD-L1 (%) 4.58 0–54.51 10.64 ± 14.29
PD-1 (%) 0.71 0–6.68 1.44 ± 1.64
SUVmax 10.3 1–34.8 11.78 ± 8.34
SUVmean 5.7 0.9–17.4 6.45 ± 3.94
SUVpeak 8.05 0.9–31.2 9.91 ± 7.46
MTV 5.75 0.4–239.1 27.31 ± 49.46
TLG 41.9 0.4–2775.8 275.3 ± 573.1

Fig. 1  Scatter plots for circulating PD-L1 for tissue PD-L1 (a) and PD-1 (b). As is noticeable from the Spearman coefficient ρ and regression 
lines, in both cases there was no significant correlation between plasma levels of PD-L1 and tissue expression of checkpoint inhibitors
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clusters (Cluster-5 model) combining all analyzed param-
eters. Figure 2 illustrates the heatmap obtained from the 
analysis. The second model was represented by three clusters 
(Cluster-3 model), defined visually as follows: cluster I (#1; 
n = 15), high metabolic tumor burden (TLG ≥ Z score 2) with 
average expression of circulating PD-L1 (− 1 ≤ Z score ≤ 1); 
cluster II (#2; n = 20), increased expression of circulating 
PD-L1 (Z score ≥ 1); cluster III (#3; n = 5), all the other com-
binations of circulating, tissue, and metabolic parameters. 
Corresponding box plots for the above-mentioned param-
eters classified in these three clusters are visualized in the 
Supplementary Fig. 1.

Univariate and multivariate analyses

The different cluster models determined in our analyses 
were significantly correlated with DFS, as shown on the 
Kaplan–Meier curves (Fig.  3) (p = 0.000 and 0.033 for 
Cluster-5 and Cluster-3 models, respectively). Using the 
Cox proportional hazards regression model, we performed 
uni- and multivariate analyses of all clinical and study-based 
parameters (Table 3). Univariate analysis revealed grade, 
stage, adjuvant radiation treatment, Cluster-3 model, and 
PET parameters (i.e.,  SUVmax,  SUVpeak, MTV, and TLG) to 
be significantly associated with DFS. Among these, stage 
(p = 0.049),  SUVmax (p = 0.028), and  SUVpeak (p = 0.03) 

were found to be independent predictive factors for DFS 
(Table 3).

Discussion

PD-L1 expression in tumor tissue is regarded as a predic-
tive biomarker for response to immunotherapy, although its 
use has been widely debated and about 20–25% of patients 
show clinical benefit and durable response despite low or 
absent PD-L1 staining [29–31]. In this scenario, there is 
a compelling need to identify reliable biomarkers able to 
select patients and predict early tumor response to check-
point inhibitors.

For this purpose, we evaluated the clinical–pathologi-
cal and prognostic significance of PD-L1 plasma levels in 

Fig. 2  Heatmap with hierarchical clustering obtained based on 
Euclidean distance and with the option scale by row. The color scale 
used is red/green based on row Z score

Fig. 3  Kaplan–Meier curves with log rank (Mantel–Cox) test 
obtained from: a cluster-5 model (p = 0.000) and b cluster-3 model 
(p = 0.033)
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patients with surgically treated NSCLC, by combining circu-
lating and tissue immune markers with metabolic parameters. 
Our first observation was the lack of correlation between the 
circulating and tissue expression of PD-L1 levels (Fig. 1a), 
or between plasma PD-L1 and tissue PD-1 expression levels 
(Fig. 1b). This apparent independent expression of tumor 
and soluble checkpoints might be related to the secretion of 
PD-L1 by other cells, not just tumor. For example, one possi-
ble source of soluble PD-L1 is represented by mesenchymal 
stromal cells (MSCs) [32]. These multipotent cells typically 
exert a contact-dependent inhibitory effect on T-cell prolif-
eration by upregulating PD-L1 expression on their cell sur-
face [33–35]. Recently, Davies et al. [32] have demonstrated 
the ability of MSCs to secrete soluble PD-1 ligands (PD-L1 
and PD-L2) for suppression of T-cell activation, especially 
in response to proinflammatory cytokines. It is noteworthy 
that the presence of PD-1/PD-L1 has also been acknowl-
edged in peripheral blood mononuclear cells (PBMCs) [36, 
37]. This percentage of PBMCs has been documented to 
be higher in cancer patients than in healthy donors [36]. 
Patients with increased inflammatory biomarkers in the 
blood could be more sensitive to chemotherapy combined 
or not with immune strategies. In addition, patients with 
a high percentage of PD-1 + PBMCs, PD-1 + CD3 + , 
PD-L1 + CD3 + , PD-L1 + CD3 + CD8 + , PD-L2 + CD3 + , 
PD-L2 + CD3 + CD4 + , or PD-L2 + CD3 + CD8 + cells 
have been reported to have a poorer survival in multivariate 

analysis [36]. These findings suggest that increased expres-
sion of co-inhibitor molecules, i.e., PD-1 and its ligands, on 
peripheral T cells may represent a further means of tumor 
escape from immune surveillance, regardless of its correla-
tion with tissue expression at IHC [37]—hence the need for 
direct sampling of PD-L1 levels in the blood.

Our subsequent analyses compared circulating PD-L1 
and tissue PD-L1/PD-1 levels with metabolic parameters. 
In the current cohort, we found some mild degree of positive 
correlation between tissue PD-L1 and  SUVmax (ρ = 0.390; 
p = 0.0148). This finding is not completely new in the lit-
erature, since previous studies published by our group [27] 
and Takada et al. [38] have demonstrated a statistically sig-
nificant correlation between tumor metabolism and tissue 
expression of checkpoints, such as PD-1 and PD-L1. In 
particular, tumors presenting with higher levels of PD-1 or 
PD-L1 tend to have a higher glycolytic metabolism [27, 28, 
38, 39]. Similar findings were also reported in two recently 
published papers [40, 41] for squamous cell carcinoma and 
adenocarcinoma of the lung. In fact, in these publications 
[40, 41], apart from correlating with each other, PD-L1 
tumor expression and metabolic parameters were prognos-
tic for DFS or OS in NSCLC patients undergoing surgery. 
Kasahara et al. [40] analyzed 167 patients (153 men and 
14 women) with squamous cell carcinoma, reporting a 
significant correlation between tumor  SUVmax and PD-L1 
expression (p = 0.02). On multivariate analysis, poor OS 
was reported for advanced stage, elevated PD-L1 expres-
sion, and high  SUVmax. Moreover, patients with elevated 
 SUVmax could be stratified for poor prognosis based on 
advanced stage and high expression of PD-L1. Similar find-
ings were reported by Kaira et al. in 315 surgically resected 
adenocarcinomas of the lung [41]. PD-L1 expression was 
significantly correlated with  SUVmax, and both were found to 
be independent prognostic predictors of DFS. Paradoxically, 
a higher glycolytic metabolism might be associated with a 
higher probability of patient response to immunotherapy 
with checkpoint inhibitors, as preliminarily reported by our 
group recently [39] on the basis of an increased immune 
infiltrate and a higher PD-L1 expression. Moreover, gly-
colytic metabolism could be correlated with the oxidative 
stress, thereby improving the efficacy of immunotherapy.

In view of these previous findings and the known prog-
nostic relevance of PET parameters in NSCLC [42–44], we 
combined all tissue, circulating, and metabolic variables to 
test the occurrence of different prognostic clusters in the 
analyzed NSCLC cohort. In fact, when plotting the param-
eters in the hierarchical clustering, we could obtain different 
prognostic groups. The cluster models depicted in our analy-
ses were significantly correlated with DFS (p = 0.000 and 
0.033, respectively). In particular, cluster I (Fig. 3b), char-
acterized by 15 patients with a high metabolic tumor bur-
den (TLG ≥ Z score 2) and average plasma levels of PD-L1 

Table 3  Summary of the univariate and multivariate analyses for all 
study parameters

Variables Univariate Multivariate

HR p value HR p value

Smoking status 1.299 0.533 – –
Histology 1.720 0.188 – –
Grade 6.459 0.019 0.386 0.501
Stage 2.705 0.002 4.503 0.049
CHT adj. 2.776 0.093 – –
RT adj. 4.663 0.014 3.035 0.503
PD-L1 plasma 1.009 0.265 – –
CD3 (%) 0.942 0.258 – –
CD8 (%) 1.010 0.786 – –
CD20 (%) 0.888 0.144 – –
PD-L1 (%) 1.004 0.829 – –
PD-1 (%) 1.129 0.475 – –
SUVmax 1.101 0.032 3.393 0.028
SUVmean 1.156 0.096 – –
SUVpeak 1.100 0.043 0.269 0.030
MTV 1.008 0.032 0.974 0.588
TLG 1.001 0.041 1.002 0.589
Cluster-5 1.594 0.104 – –
Cluster-3 0.255 0.017 0.256 0.256
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(− 1 ≤ Z score ≤ 1), presented with the worst prognosis. The 
second in order, cluster II (Fig. 3b), was represented by high 
levels of PD-L1 in plasma; while the good prognostic cluster 
of patients, cluster III, was characterized by low metabolism 
and low circulating PD-L1 levels. The univariate analyses 
in the cohort allowed us to confirm the association between 
tumor grade and stage, adjuvant radiation treatment, meta-
bolic parameters (i.e.,  SUVmax,  SUVpeak, MTV, and TLG), 
and the Cluster-3 model and DFS. Of these, the multivariate 
analysis detected stage,  SUVmax, and  SUVpeak as independ-
ent factors. Previously, our group [28] has combined meta-
bolic parameters, image heterogeneity analysis, and immune 
markers to develop a comprehensive score for the prediction 
of survival in surgically resected NSCLC. In that cohort, the 
scoring system was confirmed to be strongly associated with 
DFS (median: 19 months; p < 0.004).

Potentially, the contemporaneous detection of soluble 
PD-L1 levels and glycolytic metabolism might boost pre-
diction of immunotherapy response. This hypothesis is 
sustained by our observations [39] and recent findings on 
advanced lung cancer that document a poor prognosis for 
patients with high plasma levels of PD-L1 [45], even when 
treated with radiotherapy [46] or when investigated prior to 
immunotherapy with checkpoint inhibitors [47, 48]. Okuma 
et al. [45] were the first to report a prognostic role for plasma 
soluble PD-L1, in a heterogeneous cohort of 96 lung cancer 
patients (65 chemo-naïve; 73 adenocarcinoma). Although 
the authors found no correlation of plasma PD-L1 levels 
with histology, genetic status, smoking history, stage, or lab-
oratory data, there was a significantly reduced OS in patients 
with high compared with low (< 7.32 ng/ml) plasma PD-L1 
levels. The same group later [48] reported on 39 NSCLC 
patients treated with nivolumab. When using an optimal cut-
off value of 3.357 ng/mL, 59% of patients having a base-
line PD-L1 plasma level lower than the cut-off achieved a 
complete or a partial response. Moreover, plasma PD-L1 
levels significantly correlated with driver mutation status, 
patient performance status, and smoking status (p < 0.05) 
[48]. In parallel with Okuma and colleagues, Zhao et al. [46] 
investigated plasma PD-L1 levels in 126 clinically inoper-
able NSCLC patients at baseline, at week 2, and at week 4 
during thoracic radiation therapy. The cut-off value in this 
case was 96.5 pg/ml; again, patients with lower baseline 
plasma PD-L1 levels had a longer OS than those with higher 
levels (27.8 months vs 15.5 months, p = 0.005) [46]. In all 
cases, there was a decrease in soluble PD-L1 during the 
course of radiotherapy compared to baseline. Interestingly, 
the authors reported no significant difference between the 
baseline and post-radiotherapy plasma PD-L1 levels, mean-
ing that after treatment the soluble PD-L1 levels returned to 
the original levels. The clinical significance of this finding 
remains to be established. More recently, Costantini et al. 
[47] monitored several factors, i.e., soluble PD-L1, soluble 

PD-L2, interleukin-2, interferon-gamma, and Granzyme 
B, in 43 patients with advanced NSCLC at diagnosis, at 
the initiation of nivolumab, and 2 months thereafter. The 
authors for the first time demonstrated the lack of a correla-
tion between PD-L1 expression on tumor samples and the 
levels of soluble PD-L1. Interestingly, baseline values of 
plasma PD-L1 and Granzyme B were antithetically corre-
lated with outcome. More specifically, high levels of soluble 
PD-L1 and low levels of Granzyme B were associated with 
poor progression-free survival and OS.

Overall, current results and those previously published 
[36–40] might help us to develop an algorithm that is helpful 
in clinical practice and capable of overcoming biases recog-
nized in the prediction of the efficacy of checkpoint inhibi-
tors application [28]. The determination of both circulating 
PD-L1 levels and tumor expression of checkpoint inhibi-
tors, along with clinical and metabolic information, would 
contribute to a possible scoring system for immunotherapy.

Despite its innovative nature, our study presents some 
limitations. Firstly, the data presented herein were col-
lected retrospectively. Although it is common practice in 
our institution to perform a timely staging prior to surgery 
and to collect blood samples for oncological biobanking, 
it is still possible to obtain biased data. Secondly, it would 
have been preferable for the sample size to exceed 40 and to 
have involved more than one center. Both these limitations, 
however, are related to the exploratory nature of the study. 
We hope that larger, multicenter series of patients undergo-
ing immunotherapy will be investigated in the near future, 
providing robust evidence on the potential predictive mark-
ers analyzed in this study.
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