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Abstract
Acute myeloid leukemia (AML) is a common and lethal hematopoietic malignancy that is highly dependent on the bone 
marrow (BM) microenvironment. Infiltrating immune and stromal cells are important components of the BM microenviron-
ment and significantly influence the progression of AML. This study aimed to elucidate the value of immune/stromal cell-
associated genes for AML prognosis by integrated bioinformatics analysis. We obtained expression profiles from The Cancer 
Genome Atlas (TCGA) database and used the ESTIMATE algorithm to calculate immune scores and stromal scores; we then 
identified differentially expressed genes (DEGs) based on these scores. Overall survival analysis was applied to reveal com-
mon DEGs of prognostic value. Subsequently, we conducted a functional enrichment analysis, generated a protein–protein 
interaction (PPI) network and performed an interrelation analysis of immune system processes, showing that these genes 
are mainly associated with the immune/inflammatory response. Finally, eight genes (CD163, CYP27A1, KCNA5, PPM1J, 
FOLR1, IL1R2, MYOF, VSIG2) were verified to be significantly associated with AML prognosis in the Gene Expression 
Omnibus (GEO) database. In summary, we identified key microenvironment-related genes that affect the outcomes of AML 
patients and might serve as therapeutic targets.
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Abbreviations
AML	� Acute myeloid leukemia
BM	� Bone marrow
BP	� Biological processes
CC	� Cellular component
DAVID	� Database for Annotation, Visualization and 

Integrated Discovery
DEGs	� Differentially expressed genes
ECM	� Extracellular matrix
EPCs	� Endothelial progenitor cells

ESTIMATE	� Estimation of STromal and Immune cells in 
Malignant Tumours using Expression data

GEO	� Gene Expression Omnibus
GO	� Gene Ontology
KEGG	� Kyoto Encyclopedia of Genes and Genomes
MF	� Molecular function
PPI	� Protein–protein interaction
TCGA​	� The Cancer Genome Atlas

Introduction

Acute myeloid leukemia (AML) is one of the most com-
mon hematological cancers and is caused by clonal expan-
sion of undifferentiated myeloid progenitor cells [1]. AML 
is characterized by impaired hematopoiesis and bone mar-
row (BM) failure, resulting in fatal outcomes [2]. Although 
many patients with AML achieve remission with chemo-
therapy, relapse is common and leads to treatment failure, 
which is caused by minimal residual disease in the protec-
tive BM microenvironment [3–5]. Accordingly, an improved 
understanding of the pathogenesis of AML within the BM 
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microenvironment is crucially important for early diagnosis, 
prevention and personalized therapy.

Cytogenetic and molecular aberrations are key factors 
that influence treatment response and long-term outcomes in 
AML [6, 7]. In addition, the BM microenvironment plays an 
important role in tumor cell homing and survival. Overall, 
the BM environment is a dynamic system of immune cells, 
endothelial progenitor cells (EPCs), stromal cells, extra-
cellular matrix (ECM), growth factors and cytokines [8]. 
Among them, immune cells and stromal cells are the major 
components necessary for leukemogenesis and progression 
[9, 10]. In recent years, novel immunotherapeutic strategies 
for AML have been developed [11–13].

Estimation of STromal and Immune cells in Malignant 
Tumours using Expression data (ESTIMATE) algorithm is 
based on single sample Gene Set Enrichment Analysis and 
generates stromal and immune scores to predict the infiltra-
tion of stromal and immune cells in tumors [14]. Various 
studies have employed the ESTIMATE algorithm to explore 
the microenvironment of prostate cancer [15], colon cancer 
[16] and glioblastoma [17]; however, evaluation of immune/
stromal infiltration in AML has not been conducted.

In the current study, we obtained complete gene expres-
sion profiles for AML patients from The Cancer Genome 
Atlas (TCGA) database and calculated immune/stromal 
scores based on ESTIMATE. A series of microenvironment-
related genes were identified as being associated with the 
overall survival of AML patients. Moreover, we verified the 
prognostic value of the genes identified in the Gene Expres-
sion Omnibus (GEO) database.

Materials and methods

Database

The RNA-Seq dataset of adult AML patients and corre-
sponding clinical profiles were obtained from TCGA (https​
://gdc.nci.nih.gov/). Immune scores and stromal scores 
were calculated by the ESTIMATE algorithm of the down-
loaded database. We adopted two datasets (GSE12417 and 
GSE5122) from the GEO database. The data of GSE12417 
were based on GPL570 platforms (Affymetrix Human 
Genome U133 Plus 2.0 Array, 79 AML patients), GPL96 
platforms (Affymetrix Human Genome U133A Array, 163 
AML patients) and GPL97 platforms (Affymetrix Human 
Genome U133B Array, 163 AML patients). The GSE5122 
data were based on GPL96 platforms and included 58 AML 
patients.

DEGs identification based on immune scores 
and stromal scores

All AML patients were classified into high- and low-score 
groups according to their immune/stromal scores. Data 
analysis was conducted using the package edgeR. In this 
study, genes with a p value < 0.05 and |fold change| > 1.5 
were defined as DEGs. The heatmap of the DEGs was drawn 
using the Morpheus website (https​://softw​are.broad​insti​tute.
org/morph​eus).

GO and pathway enrichment analyses

Database for Annotation, Visualization and Integrated Dis-
covery (DAVID, https​://david​-d.ncifc​rf.gov/) was applied to 
analyze DEG functions and KEGG pathway enrichment. GO 
term analysis consists of BP, CC, and MF terms. Pathway 
enrichment was also performed based on the REACTOME 
online database (http://www.react​ome.org). The ClueGO 
plug-in in Cytoscape software was used to perform inter-
relation analysis between pathways. A p value < 0.05 was 
set as the cutoff.

PPI network construction

The STRING database (http://strin​g-db.org) was utilized 
to assess DEG-encoded proteins and PPI information. The 
PPI network was subsequently established using Cytoscape 
software. The MCODE plug-in in Cytoscape was applied to 
perform modular analysis, and the most significant module 
was identified based on the MCODE score and node number.

Survival analysis

Kaplan-Meier plots were constructed to illuminate correla-
tions between expression of DEGs and the overall survival 
of AML patients. The statistical significance of the correla-
tion was tested by the log-rank test. The online tool Pro-
gnoScan (http://dna00​.bio.kyute​ch.ac.jp/Progn​oScan​/) was 
used to verify the prognostic values of the genes identified. 
A short step-by-step bioinformatics protocol was listed in 
supplementary materials.

Results

Immune conditions are associated with AML clinical 
characters

We obtained the complete gene expression profiles and 
clinical information for 173 AML patients from TCGA 
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(Supplementary Table 1); 93 (53.8%) patients were male and 
80 (46.2%) female. The age at initial pathological diagnosis 
ranged from 18 to 88 years, with a median age of 58 years. 
The eight subtypes of these patients included M0 undifferen-
tiated (16, 9.2%), M1 (42, 24.3%), M2 (39, 22.5%), M3 (16, 
9.2%), M4 (35, 20.2%), M5 (18, 10.4%), M6 (2, 1.2%), and 
M7 (3, 1.7%) [18]; 2 patients were not classified. Employing 
the ESTIMATE algorithm, we calculated immune scores and 
stromal scores for all these patients, ranging from 1329.53 
to 3971.97 for the former and from −1888.81 to 435.75 
for the latter. In addition, the immune and stromal scores 
were significantly associated with the subtype classification 
(Fig. 1a, b).

The cytogenetic risk of AML patients was classified into 
three groups: favorable, intermediate/normal and poor [19]. 
We plotted the distribution of immune scores and stromal 
scores according to the degree of cytogenetic risk. As shown 
in Fig. 1c, the immune scores were meaningful in the corre-
lation of cytogenetic risk (p = 0.0396), though no statistically 
significant differences in cytogenetic risk were found for the 
stromal scores (Fig. 1d, p = 0.8585).

To explore the potential association of overall survival 
with immune scores and stromal scores, we classified 
the 173 AML patients into high- and low-score groups. 
Kaplan-Meier survival analysis (Fig. 1e) revealed that 
the median overall survival of patients with low immune 

scores was longer than that of patients with high scores 
(792 vs. 365 days, p = 0.0273). In addition, the median 
overall survival of the patients in the low stromal score 
group was longer than that of the patients in the high stro-
mal score group, with no significant difference (Fig. 1f, 
608 vs. 489 days, p = 0.4706).

Identification of differentially expressed genes 
(DEGs) based on immune scores and stromal scores 
in AML

To determine the association of gene expression profiles 
with immune scores and/or stromal scores, we analyzed 
the RNA-Seq data for all 173 AML patients obtained from 
TCGA. Setting the cut-off criteria as p < 0.05 and |fold 
change| > 1.5, we identified 403 and 350 DEGs based on 
immune scores and stromal scores, respectively (Fig. 2a). 
The DEGs of the low vs. high immune score/stromal score 
groups are also illustrated in the heatmap shown in Fig. 2b. 
Through integrated bioinformatics analysis, we identi-
fied 183 commonly upregulated genes and 17 commonly 
downregulated genes from the immune score/stromal score 
groups (Fig. 2c). Our subsequent analysis focused on these 
common DEGs.

Fig. 1   Immune conditions are associated with AML clinical features. 
a, b Distribution of immune scores and stromal scores for AML sub-
types. c The significant correlation between immune scores and AML 
cytogenetic risk (p = 0.0396). d The stromal scores show no signifi-
cant difference in cytogenetic risk (p = 0.8585). e Kaplan-Meier sur-

vival curve reveals that higher immune scores are associated with 
significantly shorter overall survival (log-rank test, p = 0.0273). f The 
low stromal score group showed a longer median overall survival 
than high stromal score group, with no significant difference (log-
rank test, p = 0.4706)
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Gene ontology (GO) term and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment 
analyses of DEGs

Based on the DAVID gene annotation tool, we performed 
GO analysis of the DEGs. As shown in Fig. 3a, the DEGs 
were analyzed for three subontologies: biological processes 
(BP), cellular component (CC), and molecular function 

(MF). For BP, DEGs were mainly enriched in the immune 
response, inflammatory response, defense response and 
response to wounding. With regard to CC, DEGs primar-
ily clustered in the plasma membrane, integral to plasma 
membrane, extracellular region and intrinsic to plasma 
membrane. DEGs in the MF category are mainly associ-
ated with sugar binding, carbohydrate binding and cytokine 
activity. In addition, we conducted interrelation analysis 

Fig. 2   Identification of DEGs based on immune scores and stromal 
scores. a Volcano plot of DEGs from the low vs. high immune score/
stromal score groups. Genes with p < 0.05 are shown in red (fold 
change > 1.5) and green (fold change < −1.5). Black plots represent 

the remaining genes (those with no significant difference). b Heat-
map of DEGs for the immune and stromal score groups. c Commonly 
changed DEGs in the stromal and immune score groups (183 up- and 
17 downregulated genes)

Fig. 3   Gene ontology (GO) term enrichment analysis of common 
DEGs. a The top 30 significantly enriched GO terms, including three 
subontologies, biological process, molecular function and cellular 

component, are shown. b Interrelation analysis of KEGG pathways of 
common DEGs
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by assessing BP (Supplementary Fig. 1), CC (Supplemen-
tary Fig. 2), and MF (Supplementary Fig. 3) for the DEGs 
in ClueGO and found that most of the genes are involved 
in more than two processes. Subsequently, we performed 
KEGG pathway enrichment and interrelation analysis. As 
shown in Fig. 3b, enrichment of DEGs was mainly observed 
for the cytokine–cytokine receptor interaction, osteoclast 
differentiation, the Toll-like receptor signaling pathway, 
hematopoietic cell lineage and the intestinal immune net-
work for IgA production.

Survival analysis of DEGs

To determine the potential value of the DEGs in predict-
ing the overall survival of AML patients, we constructed 
Kaplan-Meier survival curves. Among the 183 commonly 
upregulated DEGs, 55 (Supplementary Table 2) were nega-
tively associated with overall survival according to the 
log-rank test (p < 0.05). Representative genes are shown in 
Fig. 4.

Protein–protein interaction (PPI) network 
construction and functional enrichment of genes 
of prognostic value

To further explore the interplay among the 55 genes with 
prognostic value, we constructed a PPI network based on the 
STRING online database and Cytoscape software. As shown 
in Fig. 5a, the network contains 38 nodes and 85 edges. Clus-
tering analysis of the PPI network was then carried out using 
Cytotype MCODE, and the top two significant modules were 
selected based on the degree of importance. As shown in 
Fig. 5b, module 1 contains 6 nodes and 15 edges; module 

2 contains 7 nodes and 13 edges (Fig. 5c). GO term analy-
sis (Supplementary Fig. 4a) revealed the 55 genes of prog-
nostic value to be mainly enriched in the immune response 
and the inflammatory response (BP), intrinsic to membrane 
and extracellular region (CC), and cytokine activity (MF). 
In addition, KEGG and REACTOME pathway enrichment 
analyses (Supplementary Fig. 4b) demonstrated that these 
genes are associated with IL-10 signaling, the immune sys-
tem and the cytokine–cytokine receptor interaction. Inter-
relation analysis was also conducted using ClueGO to assess 
the immune system process. As depicted in Supplementary 
Fig. 5, we found enrichment of the genes primarily in the 
MyD88-dependent Toll-like receptor signaling pathway and 
negative regulation of myeloid leukocyte differentiation.

Validation in the GEO database

We further identified the prognostic values of the 55 genes 
described above using the PrognoScan online tool. Based 
on the GSE12417 and GSE5122 datasets, a total of 8 genes 
were verified (Fig. 6, Supplementary Table 3) to be signifi-
cantly associated with a poor prognosis in AML. Among 
them, CD163 and IL1R2 are associated with the immune/
inflammatory response. GO term analysis (CC) showed that 
IL1R2, KCNA5, MYOF, CD163 and VSIG2 clustered in the 
intrinsic to membrane.

Discussion

AML is a rapidly progressive disease with a poor 
prognosis that is highly dependent on the BM micro-
environment [20]. In this study, we analyzed BM 

Fig. 4   Correlation between expression of individual DEGs and AML overall survival in TCGA. Kaplan-Meier survival curves with the log-rank 
test were performed for the representative DEGs
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microenvironment-associated genes of prognostic value 
in AML based on TCGA. Common DEGs were identi-
fied from low vs. high immune score/stromal score groups 
and subjected to overall survival analysis. We also uti-
lized bioinformatics methods to deeply explore the DEGs, 

including GO term analysis, signaling pathway enrichment 
analysis and PPI network construction. Importantly, the 
genes identified as having prognostic value were also vali-
dated in the GEO database (Supplementary Fig. 6).

Fig. 5   PPI network of DEGs of prognostic value and module identi-
fication. a Based on the STRING database and Cytoscape software, 
a PPI network containing 38 nodes and 85 edges was constructed. 
The size of the node represents the degree, and the color of the node 

represents the p value for prognosis. b Two significant modules were 
identified based on the degree of importance. Module 1 contains 6 
nodes and 15 edges. c Module 2 contains 7 nodes and 13 edges

Fig. 6   Verification of genes with prognostic value in the GEO database. Kaplan-Meier survival curves with the log-rank test were performed for 
genes with prognostic value. Genes with statistical significance (p < 0.05) are shown
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First, we calculated the immune scores and stromal scores 
of AML patients based on the ESTIMATE algorithm and 
found these scores to be significantly associated with the 
classification of AML subtype. In addition, the immune 
scores were meaningful in correlating cytogenetic risk 
and overall survival. Previous studies have indicated that 
immune cells and stromal cells are important components of 
the BM environment that influence AML cell survival, pro-
liferation and therapeutic resistance [21]. Moreover, AML 
cells actively shape the BM environment and immune cells 
to promote disease progression through cellular, structural, 
and functional changes [20, 22, 23]. It is important to inte-
grate and reanalyze genomic profiles from public databases 
to better understand correlations between AML cells and the 
BM environment [24, 25].

Furthermore, we identified common DEGs from the 
low vs. high immune score/stromal score groups. GO term 
analysis revealed these DEGs to be mainly enriched in the 
immune response and the inflammatory response (BP), the 
plasma membrane and integral to plasma membrane (CC), 
and cytokine activity (MF). Moreover, according to KEGG 
pathway enrichment analysis, the DEGs mainly clustered in 
cytokine–cytokine receptor interaction, the Toll-like receptor 
signaling pathway and hematopoietic cell lineage categories. 
Consistent with these results, previous studies have demon-
strated that the biology of the immune system is crucial for 
the formation of a complex BM microenvironment [8, 21]. 
In recent years, knowledge of the immunological features 
of AML has increased, and the development of effective 
immunotherapeutic strategies for AML has attracted much 
attention [26–28].

Overall survival analysis of the commonly upregulated 
DEGs revealed that 55 genes correlate with unfavorable 
outcomes of AML patients. In addition, the PPI network of 
these genes consisted of two modules significantly associ-
ated with the immune/inflammatory response. Several genes 
in the two modules, such as IL-10, IL-15 and TLR8, have 
been indicated as being involved in the survival, prolifera-
tion and differentiation of AML cells [29–32]. Importantly, 
we verified the prognostic value of these 55 genes based on 
the GEO database. Eight genes were validated as unfavora-
ble prognostic biomarkers for AML patients, a finding that 
needs to be further tested in the clinic. Among them, CD163 
is expressed on M4/M5 AML cells but not on other subtypes 
and on normal hematopoietic progenitor cells [33, 34]. Thus, 
CD163 has been identified as a potential target for therapy. 
The functions of CYP27A1, FOLR1, IL1R2, KCNA5, 
MYOF, PPM1J and VSIG2 in AML have not been previ-
ously reported, but these factors might serve as biomarkers.

In conclusion, integrated bioinformatics analysis of the 
AML dataset from TCGA was performed with a focus on 
the immune microenvironment. Common DEGs were identi-
fied, tested and validated to determine their prognostic value 

for AML patients. Further investigation of these genes in 
the clinic is required and may provide new insight into the 
pathogenesis of AML. This study increases our understand-
ing of the complex interactions between AML tumor cells 
and the BM microenvironment and might provide novel 
therapeutic targets.
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