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Abstract
Hepatic stellate cells (HSCs) are important stromal cells and pivotal mediators involved in the pathogenesis and immuno-
suppression of hepatocellular carcinoma (HCC). The liver has been demonstrated to be a site for accumulation of tumor-
induced myeloid-derived suppressor cells (MDSCs). We previously reported that HSCs induced an increase in the number 
of MDSCs in HCC. However, how MDSCs are recruited in HCC remains largely unclear. In the present study, we found 
that HSC-conditioned medium (HSC-CM) induced bone marrow-derived cell and splenocyte migration, especially MDSC 
migration. Using chemokine-neutralizing antibodies and chemokine receptor inhibitors, we found that HSCs promoted MDSC 
migration through the SDF-1/CXCR4 axis. Subsequently, we used an orthotopic mouse liver tumor model to determine how 
HSCs mediated MDSC migration to HCC in vivo. The in vivo results indicated that pretreatment of MDSCs with a CXCR4 
inhibitor or injection with SDF-1-knocked down HSCs inhibited MDSC migration to the spleen and liver of the tumor-
bearing mice. Together, our findings indicate a central role for HSCs in MDSC migration mediated by the SDF-1/CXCR4 
axis, thus revealing a potentially effective approach for modulating the tumor microenvironment by targeting HSCs in HCC.
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Abbreviations
C3  Complement component 3
CCL/CCR   CC chemokine ligand/chemokine receptor
CXCL/CXCR  CXC chemokine ligand/chemokine 

receptor
DiR  1,1′-Dioctadecyl-3,3,3′,3′-

tetramethylindotricarbocyanine iodide

G-MDSCs  Granulocytic myeloid-derived suppressor 
cells

HCC  Hepatocellular carcinoma
HSC-CM  HSC conditioned medium
HSCs  Hepatic stellate cells
IL-1β  Interleukin-1 beta
IL-8  Interleukin-8
IVIS  In vivo imaging system
MDSCs  Myeloid-derived suppressor cells
Mo-MDSCs  Monocytic myeloid-derived suppressor 

cells
PD-L1  Programmed death ligand 1
RBC  Red blood cells
SDF-1  Stromal cell-derived factor 1

Introduction

Immune evasion, one of the hallmarks of cancer, is often 
achieved via recruitment of immunosuppressive cells, for 
example myeloid-derived suppressor cells (MDSCs) and 
regulatory T cells (Tregs), to the tumor microenvironment. 
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The liver, the largest solid organ, is enriched with blood and 
contains a large amount of innate and adaptive immune cells 
[1]. Published studies have demonstrated increased number 
of MDSCs in patients with hepatocellular carcinoma (HCC) 
and tumor-bearing mice; these MDSCs regulate immune sup-
pression networks and then contribute to all aspects of tumor 
progression [2]. However, how MDSCs are recruited in HCC 
remains largely unclear.

MDSCs are a population of heterogeneous immature immu-
nosuppressive myeloid cells, including myeloid progenitors 
and precursors of granulocytes, macrophages, and dendritic 
cells [3, 4], and have the notable ability to inhibit T cell func-
tion [5]. An increasing number of studies in in vivo systems 
such as tumor-bearing mice have demonstrated that diverse 
chemotactic factors, such as IL-8, IL -lβ, CCL2, CCL5, 
CCL12, CXCL12 (SDF-1), and CXCL5, produced by the 
tumor microenvironment stimulate the recruitment of MDSCs 
to tumors [6–9]. The liver has been demonstrated to be a site 
for tumor-induced MDSC accumulation [10, 11]. One study 
found that more MDSCs homed to the livers of tumor-bearing 
mice than to those of normal control mice [10].

In the last decade, the contribution of stromal cells to the 
immune escape has been extensively studied and is fulfilled 
by the expansion, recruitment, and activation of a variety of 
immunosuppressive cells in the tumor microenvironment 
[12]. As critical stromal cells in the liver, hepatic stellate cells 
(HSCs) are activated during liver injury, infection, or inflam-
mation [13–16] and perform an immunomodulatory activ-
ity [17, 18]. Recent evidence suggests that activated HSCs 
can facilitate the differentiation of inflammatory monocytes 
into MDSCs through complement component 3 (C3) [19, 20] 
and in a CD44-dependent fashion [21]. In our previous stud-
ies, we reported that activated HSC cotransplatation induced 
more immunosuppressive Treg cells and MDSCs in the tumor 
microenvironment in a mouse liver tumor model [22, 23]. We 
further confirmed that HSCs induced MDSCs from bone 
marrow cells with upregulated immunosuppressive activity 
and that HSC-mediated MDSC expansion and HCC progres-
sion were impaired by suppression of HSC-derived PGE2 
[24]. However, how HSCs influence MDSC mobilization and 
recruitment to the tumor microenvironment remains unclear.

In this study, we utilized MDSCs freshly isolated from 
tumor-bearing mice and investigated the relationship between 
HSCs and MDSC migration in vitro and in vivo. We demon-
strated that HSCs regulate the migration of MDSCs through 
the SDF-1/CXCR4 axis.

Materials and methods

Cell lines and animals

The H22 murine HCC cell line was maintained in RPMI 
1640 medium (HyClone, Logan, UT, USA), supplemented 
with 10% fetal bovine serum (FBS), 100 U/mL penicillin, 
and 100 U/mL streptomycin at 37 °C and 5%  CO2. Eight-
week-old male BALB/c (H-2d, haplotype) mice were used 
in this study and maintained under specific pathogen-free 
conditions in the animal center of Xiamen University.

HSC isolation and culture

HSCs were isolated from the livers of BALB/c mice as 
previously described [25]. HSC activation was assessed 
through α-SMA staining [22].

MDSC isolation

MDSCs were isolated from the spleens of tumor-bearing 
mice as previously described [26].

Knockdown of SDF‑1 in HSCs

The shRNA retroviral plasmid containing a puromycin 
resistance gene was purchased from Clontech. Turbofect 
transfection reagent (Thermo Scientific, Waltham, MA, 
USA) was used for cell transfection and transfection effi-
ciency was assessed by quantitative polymerase chain 
reaction. The primers for SDF-1 were 5ʹ-CTC TGC ATC 
AGT GAC GGT AAA-3ʹ (forward) and 5ʹ-CAC AGT TTG 
GAG TGT TGA GGA -3ʹ (reverse).

Tumor inoculation

To study the effect of SDF-1 secreted by HSCs on MDSC 
mobilization, mice were given an intrahepatic injection 
of 1 × 106 H22 cells, a mixture of 1 × 106 H22 cells and 
2 × 105 activated HSCs, or 2 × 105 SDF-1-knocked HSCs. 
Each group contained at least 5 mice.

To study the role of CXCR4 in MDSC migration 
in vivo, mice were given an intrahepatic injection with 
1 × 106 H22 cells or 1 × 106 H22 cells plus 2 × 105 acti-
vated HSCs. Ten days after injection, MDSCs were pre-
treated with 10 μM AMD3100 (R&D Systems, Minneapo-
lis, MN, USA), a CXCR4 inhibitor, for 2 h before transfer 
into the mice.
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IVIS imaging of mice

To evaluate the effects of SDF-1 and CXCR4 on MDSC 
migration, purified MDSCs or CXCR4 inhibitor-pretreated 
MDSCs were incubated with 5 μM 1,1′-Dioctadecyl-
3,3,3′,3′-tetramethylindotricarbocyanine iodide (DiR) 
(Invitrogen, Carlsbad, CA, USA) for 30 min, followed 
by intravenous (i.v.) injection of 3 × 106 cells/100 μL per 
mouse. The mice were scanned using an In Vivo Imaging 
System (IVIS) spectrum instrument (Lumina III, Caliper 
Life Sciences, Hopkinton, MA,USA) 24 h after the trans-
fer of MDSCs. Data were analyzed using Living Image 
Software (Caliper Life Sciences, Hopkinton, MA,USA).

In vitro chemotaxis assay

MDSC migration was assessed using a 5.0-μm pore size 
transwell chamber (Costar, Cambridge, MA, USA) in trip-
licate experiments. First, 800 μL RPMI 1640 medium with 
5% FBS and HSC-conditioned medium (HSC-CM) with 
5% FBS were prepared, and one was added to the lower 
chamber. Then, 1 × 106/100 μL splenocytes, 5 × 105/100 μL 
bone marrow cells, or 5 × 105/100 μL purified MDSCs were 
seeded in the upper chamber. After 6 h, the migrated cells 
were collected to count the total cell number and then the 
ratio of cells of interest was analyzed using flow cytometry. 
The absolute number of indicated cells = the percentage of 
indicated cells × cell number in the lower chamber.

To explore the mechanism of HSC-promoted MDSC 
migration, HSC-CM was pre-incubated with 5 μg/mL neu-
tralizing monoclonal antibodies against CCL2 or SDF-1 
(R&D Systems), or MDSCs were pretreated with 10 μM 
CXCR4 inhibitor AMD3100 or CCR2 inhibitor RS102895 
(R&D Systems) or 5 μg/mL CXCR2 antibody (R&D Sys-
tems) for 2 h before the migration assay.

HSC‑CM chemokine array

To detect the chemokines secreted by HSCs, 10 mL HSC-
CM was freeze dried and then re-dissolved in 1 mL  ddH2O. 
The chemokines were detected using the Mouse Chemokine 
Array Kit (R&D Systems). The Mouse Chemokine Array 
coordinates are shown in Supplementary Table 1.

Flow cytometry analysis

The following monoclonal antibodies were used: APC-
conjugated anti-CD11b, PE-conjugated anti-CD11c, anti-
Ly6C, anti-Gr-1, anti-CXCR4, and FITC-conjugated anti-
Ly6G antibodies (BD PharMingen, San Diego, CA, USA) 
and PE-conjugated anti-B220, FITC-conjugated anti-
CD49b, and APC-conjugated anti-CD3 antibodies (eBio-
science, San Diego, CA, USA). The appropriate isotype 

antibodies were used. The analysis was performed with 
a Gallio flow cytometer (Beckman Coulter, Miami, FL, 
USA), and the data were analyzed using FlowJo software.

Statistical analysis

Data are presented as the mean ± SD, and they were 
analyzed using SPSS software (version 22.0). Student’s 
t test was used for statistical analyses, and p < 0.05 
was considered statistically significant.

Results

HSC‑CM promoted MDSC migration in vitro

MDSCs are known to express a variety of chemokine 
receptors to enable their migration toward various 
cytokines and chemokines [27–30]. To explore the effect 
of HSCs on MDSC mobilization, first, we performed a 
transwell assay to evaluate the chemotactic activity of 
RPMI 1640 medium and HSC-CM. HSC-CM caused a 
dramatic increase in the absolute number of splenocytes 
and bone marrow-derived cells in a concentration-depend-
ent manner (Fig. 1a). Then, we analyzed the percentage of 
the splenocyte subpopulation in the lower chamber of the 
transwell. As shown in Fig. 1b, both RPMI 1640 medium 
and HSC-CM chemoattracted  CD3+,  B220+,  CD3−CD49+, 
and  CD11b+Gr-1+ splenocytes. According to the spleno-
cyte subpopulation ratios and cell numbers of migrated 
splenocytes, we calculated the absolute number of each 
splenocyte subpopulation. The results showed that HSC-
CM chemoattracted many more splenocyte subpopulations 
than RPMI 1640 medium and that  CD11b+Gr-1+ spleno-
cytes represented the subpopulation that was attracted the 
most (Fig. 1c).

Next,  CD11b+Gr-1+ MDSCs from the bone marrow and 
spleen of tumor-bearing mice were sorted, and the migration 
assay results showed that HSC-CM-mediated MDSC migra-
tion in a concentration-dependent manner as well (Fig. 1d). 
To determine whether MDSC subsets had different migration 
abilities toward HSC-CM, we analyzed the MDSC subsets 
in the lower chamber of the transwell by flow cytometry. As 
shown in Fig. 1e, the proportion of  Ly6G+Ly6ClowCD11b+ 
G-MDSCs and  Ly6G+Ly6ChighCD11b+ Mo-MDSCs in 
RPMI 1640 medium were 98.6% and 0.599%, respectively, 
whereas in HSC-CM, the proportions of G-MDSC and Mo-
MDSCs were 92.2% and 6.08%, respectively. Indeed, HSC-
CM induced a greater than fourfold and 500-fold increase in 
the absolute number of G-MDSCs and Mo-MDSCs, respec-
tively, compared with RPMI 1640 medium (Fig. 1f).
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HSCs promoted MDSC migration via CXCR4

The mobilization of MDSCs is regulated by a complex 
chemokine–chemokine receptor axis. We first determined 
which major chemoattractants present in HSCs were 
responsible for the migration of MDSCs, and then, the 
chemokines present in the CM derived from the mouse 
HSCs were analyzed using a Mouse Chemokine Array. 
The chemokines detected are shown in Supplementary 
Table 1. The results revealed that HSCs secreted high 
levels of CCL2, CXCL1, CXCL5, and SDF-1 (Fig. 2a). 
The chemokine receptors for these chemokines are CCR2, 

CXCR2, and CXCR4. Moreover, we previously reported 
the spectrum of chemokine receptors in MDSC subsets, 
and CCR2, CXCR2, and CXCR4 were found to be highly 
expressed in MDSC subsets [31]. Based on these data, we 
postulated that CCL2/CCR2, CXCL1/CXCR2, CXCL5/
CXCR2, and SDF-1/CXCR4 act as chemotactic axes 
for MDSC migration toward HSC-CM (Supplementary 
Fig. 1). To further confirm this hypothesis, specific inhibi-
tors of CXCR2 and CXCR4 and neutralizing antibodies 
against CCL2, SDF-1, and CXCR2 were used in the migra-
tion assays. As expected, HSC-CM promoted more MDSC 
migration than RPMI 1640 medium (Fig. 2b). The CXCR4 

Fig. 1  HSC-CM promoted MDSC migration in vitro. a The number 
of splenocytes and bone marrow cells that migrated to different con-
centration of HSC-CM. b–c The percentage (b) and absolute number 
(c) of  CD3+,  B220+,  CD3−CD49+, and  CD11b+Gr-1+ splenocytes in 
the lower chamber of the transwell. The absolute number was calcu-
lated as follows: number of indicated cells = the percentage of indi-

cated cells × the cell number in the lower chamber. d–f HSC-CM 
induced MDSC migration. The cell number in the lower chamber was 
calculated (d). The ratio (e) and absolute number (f) of G-MDSCs 
and Mo-MDSCs in the lower chamber. The lower chamber contained 
HSC-CM with 5% FBS. Data are representative of three independent 
experiments. *p < 0.05; **p < 0.01; ***p < 0.001
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inhibitor AMD3100 and the neutralizing antibody against 
SDF-1 suppressed the induction of MDSC chemotaxis 
toward HSC-CM, whereas the anti-CXCR2 antibody and 
CCR2 inhibitor RS102895 did not (Fig. 2b), which sug-
gested that HSCs may promote MDSC migration through 
the SDF-1/CXCR4 axis. Because HSCs release factors 
that are also able to induce T cell, B cell, and NK cell 
migration to different extents, we investigated the CXCR4 
expression of these cells. We found that the expression 
of CXCR4 in B cells, MDSCs, and MDSC subsets was 
much higher than that in T cells and NK cells (Fig. 2c). 
The CXCR4 expression level in these cells correlated with 
their efficiency of mobilization towards HSC-CM.

HSCs secreted SDF‑1 to promote MDSC migration

To further confirm the role of the SDF-1/CXCR4 axis in 
MDSC migration induced by HSCs, we used shRNA plas-
mids specific for SDF-1 to knockdown its expression level 
in HSCs and determine whether inhibiting SDF-1 would 
reduce the migration potential of MDSCs in response to 
HSCs. The sh1 and sh2 for SDF-1 were selected for further 
analysis (Fig. 3a). As shown in Fig. 3b, downregulation of 
SDF-1 significantly impaired the HSC-induced migration 
of MDSCs, which indicated that HSCs secreted SDF-1 
to promote MDSC migration. MDSCs isolated from the 
spleens of tumor-bearing mice were treated with increasing 

Fig. 2  HSCs promoted MDSC migration via CXCR4. a The 
chemokines in HSC-CM were detected using a Mouse Chemokine 
Array. b The number of MDSCs in the lower chamber of the tran-
swell after the indicated treatment. Ctrl: RPMI 1640 medium was 
added to the lower chamber; CM: HSC-CM was added to the lower 
chamber; Anti-CCL2/SDF-1/CXCR2: the CM was pretreated with 

CCL2 or SDF-1or CXCR2 neutralizing antibody 2  h before it was 
added to the lower chamber; AMD3100/RS102895: the MDSCs were 
pretreated with a CXCR4 or CCR2 inhibitor 2 h before migration; c 
Expression of CXCR4 on different splenocytes was detected by flow 
cytometry. *p < 0.05; **p < 0.01; ***p < 0.001



1964 Cancer Immunology, Immunotherapy (2019) 68:1959–1969

1 3

Fig. 3  HSCs secreted SDF-1 to promote MDSC migration. a The 
SDF-1 mRNA level of HSCs was identified by real-time PCR. b The 
absolute number of MDSCs migrated to HSC-CM which collected 
from SDF-1-knocked down HSCs. c The effect of ADM3100 on 
MDSC migration induced by HSC-CM. d The ratios of MDSC sub-

sets in the lower chamber of the transwell. e–f The absolute number 
of migrated G-MDSCs (e) and Mo-MDSCs (f) in the lower chamber. 
The absolute number of cells = the percentage of indicated cells × the 
cell number in the lower chamber
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concentrations of the CXCR4 inhibitor AMD3100 (1 µM, 
10 µM, 100 µM) for 48 h, and cell migration was evalu-
ated by counting the cell number in the lower chamber. 
As expected, AMD3100 inhibited MDSC migration in a 
dose-dependent manner (Fig. 3c). To further evaluate the 
effect of SDF-1/CXCR4 on MDSC subset migration, the 
ratio of G-MDSCs and Mo-MDSCs in the lower chamber 
was assessed by flow cytometry. The ratio of G-MDSCs 
and Mo-MDSCs and the cell number in the lower chamber 
(Fig. 3d) were used to calculate the absolute number of 
G-MDSCs and Mo-MDSCs, and the absolute numbers of 
both were reduced with AMD3100 treatment (Fig. 3e, f).

HSCs promoted MDSC migration to the liver 
and spleen via SDF‑1/CXCR4 in vivo

To assess the functional consequence of SDF-1 inducing 
MDSCs in vivo, an orthotopic mouse model of HCC was 
used in which mice were injected intra-hepatically with 
control or SDF-1-knocked down HSCs together with H22 
cells or H22 cells alone. Ten days after the tumor model 
was established, the mice were inoculated with DiR-labeled 
MDSCs through the tail intravenous injection, and the sig-
nal was evaluated by IVIS. The fluorescence intensity of 
the inoculated MDSCs was observed 24 h after injection, 
and the livers and spleens of all tumor-bearing mice dis-
played high signal intensity (Fig. 4a). As shown in Fig. 4b 

Fig. 4  HSCs promoted MDSC migration to the liver and spleen via 
SDF-1/CXCR4 in  vivo. a Representative mice, livers, and spleens 
are shown. The mice were given an intrahepatic injection of 1 × 106 
H22 cells, 1 × 106 H22 cells plus 2 × 105 activated shctrl HSCs (shc-
trl) or SDF-1-knocked down HSCs (sh1 or sh2). After the trans-
fer of DiR-labeled MDSCs, the signal was evaluated by IVIS. b–c 
Total and average signal intensity in the livers (b) and spleens (c) of 

tumor-bearing mice are presented. d Representative mice, livers, and 
spleens. Mice were treated as indicated. MDSCs were pretreated with 
or without 10 µM AMD3100 before transfer of MDSCs and IVIS was 
performed 24  h later. e–f Total signal intensity and average signal 
intensity in the livers (e) and spleens (f) of tumor-bearing mice are 
presented. *p < 0.05, **p < 0.01
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and c, the quantitative fluorescence intensity data indicated 
an increase in the number of MDSCs in the resected liv-
ers and spleens from MDSC-infused mice bearing HSCs 
plus H22 cells compared with that in mice given H22 cells 
alone, indicating that HSCs induced MDSC migration to 
the tumor site and spleen. However, when co-transplanted 
with SDF-1-knocked down HSCs, the fluorescence intensity 
in the liver and spleen was much weaker than that in the 
HSC group, which suggested a pronounced reduction in the 
number of MDSCs in the SDF-1-knocked down HSC group. 
To further investigate whether the CXCR4-expressing cells 
were also recruited by HSCs in vivo, we performed the same 
animal experiment with DiR-labeled RAW 264.7, a mouse 
monocyte/macrophage cell line, which express CXCR4. The 
results shown in Supplementary Fig. 2 demonstrated that 
HSCs could recruit the CXCR4-expressing cells to livers 
via SDF-1.

Next, we investigated the role of CXCR4 in MDSC 
migration, using a murine model in which H22 cells or HSCs 
plus H22 cells were inoculated orthotopically. Ten days 
later, MDSCs were pretreated with the CXCR4 inhibitor 
AMD3100 and then labeled with DiR and used to inoculate 
mice by intravenous injection in the tail. After 24 h, tumor-
bearing mice were imaged by IVIS. As expected, MDSCs 
mainly accumulated in the spleen and tumor sites (Fig. 4d). 
Then, the livers and spleens were resected to assess the 
fluorescence intensity. The data showed that HSC co-trans-
plantation clearly increased MDSC migration to the spleen 
and liver (Fig. 4e, f). However, when CXCR4 expression 
was inhibited by AMD3100 treatment, the effect of HSC on 
MDSC migration was attenuated. No significant difference 
in fluorescence intensity was observed between the HSCs 

and H22 groups when AMD3100 pretreated-MDSCs were 
used. Together, these results suggest that HSCs may secrete 
SDF-1, which can recruit MDSCs to the tumor microenvi-
ronment to exert a tumor-promoting effect.

Discussion

HSCs, the major stromal cells in the liver, are widely rec-
ognized as the key players in fibrogenesis. It has become 
increasingly clear that HSCs, in addition to their contribu-
tion to fibrogenesis, possess other pro-tumorigenic proper-
ties such as an immune-suppressive activity, resulting in 
them suppressing the immune microenvironment in HCC 
[22, 32]. Recently, there has been increasing interest in the 
cellular interactions between cancer cells and their micro-
environment. HSCs, an important type of liver stromal cell, 
induce multiple types of immune inhibitory cells, leading 
to a complex suppressive microenvironment that not only 
modulates immune responses in the liver [33] but also plays 
vital roles in HCC progression [23, 34]. The molecular 
mechanisms that govern MDSC function and accumulation 
have been extensively explored. However, how HSCs induce 
MDSC recruitment to the HCC microenvironment remains 
largely unknown. Using an in situ HCC model in immune-
competent mice, we showed that HSCs secreted SDF-1, 
which interacted with CXCR4 on MDSCs and promoted 
MDSC migration to the HCC microenvironment (Fig. 5). 
This work presents a novel mechanism of MDSC accumula-
tion in the HCC microenvironment.

Accumulating data have indicated the involvement of 
a variety of chemokine–chemokine receptors in MDSC 

Fig. 5  A schematic model 
depicting MDSC migration was 
induced by HSCs via SDF-1/
CXCR4. In an orthotopic 
mouse model of HCC, activated 
HSC-derived SDF-1 induced 
MDSC migration to the HCC 
microenvironment via CXCR4. 
Knockdown of the expression of 
SDF-1 in HSCs or treatment of 
MDSCs with a CXCR4 inhibi-
tor reduced the migration of 
MDSCs to the HCC microenvi-
ronment
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recruitment to the tumor microenvironment. The CCL2/
CCR2 and SDF-1/CXCR4 pathways have been shown to 
be essential for recruiting human MDSCs in breast, lung, 
and ovarian cancers [7, 35, 36]. However, the roles of HSCs 
in MDSC recruitment in HCC have rarely been addressed. 
HSCs are multifunctional fibroblast cells that can produce 
various cytokines. Activated HSCs produce large amounts 
of CCL2 but also secrete CXCL1, CXCL5, and SDF-1 
(Fig. 2a). We previously reported that both G-MDSCs and 
Mo-MDSCs express high levels of CXCR4 and CXCR2 and 
that Mo-MDSCs express high levels of CCR2. Thus, CCL2/
CCR2, CXCL1/CXCR2, CXCL5/CXCR2, and SDF-1/
CXCR4 may function as a chemotactic axis for MDSC 
migration toward HSC-CM (Supplementary Fig. 1). The 
tumor histopathology and spectrum of chemokines in the 
tumor microenvironment determine the migration of par-
ticular MDSC subset [12]. It has been reported that CCL2 
and its interaction with its receptors are involved in the 
recruitment of Mo-MDSCs in breast cancer and melanoma 
[37, 38]. A recent study showed that CCL2 recruits Ly-6C+ 
monocytic MDSCs through CCR2 within the glioma micro-
environment [39], suggesting that MCP-1/CCR2 plays a 
vital role in inducing Mo-MDSC migration. However, the 
CCR2 inhibitor RS102895 did not attenuate MDSC migra-
tion toward HSC-CM, possibly because the total number of 
Mo-MDSCs was too low.

In rhabdomyosarcoma, CXCR2 deficiency can prevent 
 CD11b+Ly6Ghi MDSC migration to the tumor [40], and 
CXCR2 loss was found to result in decreased MDSC infil-
tration into the colonic mucosa and tumor [41]. Additionally, 
CXCR2 ligands were shown to support G-MDSC migration 
to the tumor site [42]. In the current study, we found that 
anti-CXCR2 antibody did not suppress MDSC migration. 
Thus, the CXCL1/CXCR2 and CXCL5/CXCR2 axes do 
not seem to be involved in the HSC-mediated recruitment 
of MDSCs to the HCC environment. Meanwhile, both a 
CXCR4 inhibitor and SDF-1 neutralizing antibody exerted 
its inhibition on MDSC migration. Our data suggested that 
HSCs induced MDSCs through the SDF-1/CXCR4 axis, 
indicating that targeting MDSC recruitment is a novel thera-
peutic strategy for HCC.

As shown in Fig. 1c, CM generated by HSCs was able 
to recruit other immune cells, especially  B220+ B cells. 
B cells were another key constituent for the adaptive 
immune system, however, the role of B cells on tumor 
occurence and development is not so extensively studied 
as MDSCs. Therefore, in this study, we mainly focus on 
the influence of HSCs on MDSC recruitment. It has been 
reported that HSCs could directly suppressed B cells via 
programmed death ligand 1 (PD-L1), which may contribute 
to the liver’s immune homeostasis maintained by HSCs [43]. 
Whether HSCs exert its effects on B cells to form a tumor-
favoring environment requires further investigation.

Besides,  CD3+ T cells and  CD3−CD49+ NK cells, 
which are important in the innate immune response 
against tumorigenic cancer cells, were also recruited 
by HSC-CM. However, these cells were far fewer than 
MDSCs. Moreover, once MDSCs are attracted to the 
tumor microenvironment, they always affect the anti-
tumor immune responses [44, 45], while the functioning 
of T, B, and NK cells is impaired [46]. The generation of 
oxidative stress, depletion of l-arginine and increasing 
of ROS and iNOS levels are the main mechanisms for 
MDSC-mediated lymphocyte suppression [47]. MDSCs 
impair B cell responses through IL-7 and STAT5 and sup-
press B cell proliferation in an arginase-dependent man-
ner [48]. MDSCs from patients with cancer can inhibit 
FcR-mediated function and signal transduction in NK 
cells, in part through nitric oxide production [49]. HSCs 
also recruited RAW 264.7 cells in vivo (Supplementary 
Fig. 2), which further proved that HSCs could recruit the 
cells expressing CXCR4. These data demonstrated that 
the SDF-1/CXCR4 axis has an important role in tumor 
microenvironment to some extent. Therefore, in the tumor 
microenvironment, HSCs act as a mediator by attract-
ing different types of immune cells to the tumor micro-
environment and mediating the cross-talk between the 
immune cells. Whether HSC-CM induces changes in the 
gene expression pattern and behavior of these immune 
cells needs to be examined further.

In conclusion, HSCs are key regulators in HCC immu-
nosuppression and elimination of HSCs might represent a 
potential effective treatment. Activated HSCs secrete SDF-
1, which might mobilize and recruit MDSCs to promote 
tumor progression and immune evasion.
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