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Abstract

Although a role of PD-L1 in the suppression of anti-tumor immunity and its value as a predictive biomarker has been sug-
gested by various preclinical and clinical studies, the precise mechanisms how PD-L1 and PD-L2, another ligand of PD-1,
regulate anti-tumor immunity in the tumor microenvironment are yet to be fully explored. Here, we address this issue using
PD-L1-deficient tumor cells, PD-L1-knockout (KO) mice, anti-PD-L1 monoclonal antibody (mAb), and anti-PD-L2 mAb.
Firstly, PD-L1-deficient or competent tumor cells were inoculated into wild-type or PD-L.1-KO mice. Results of tumor growth
and mouse survival indicated that both tumor- and host-derived PD-L1 are functional to suppress anti-tumor immunity, while
the former contributes predominantly than the latter. Experiments using bone marrow (BM) chimeric mice, generated by
transferring PD-L1-KO BM cells into wild-type mice or vice versa, further suggested that PD-L1 expressed on BM-derived
hematopoietic cells mediates the suppressive effects on anti-tumor immunity. Secondly, anti-PD-L2 mAb treatment demon-
strated a profound synergy with anti-PD-L.1 mAb therapy, whereas anti-PD-L2 mAb alone hardly induced any anti-tumor
effects, suggesting that PD-L.2’s function becomes evident when the effects of PD-L1 are abrogated by anti-PD-L1 mAb.
Consistent with this notion, PD-L2 expression was upregulated on tumor-associated macrophages (TAM) when mice were
treated with anti-PD-L1 mAb. Taken together, our study elucidated the importance of PD-L1 associated with tumor cells
and non-tumor host cells, particularly BM-derived hematopoietic cells, as well as PD-L2 inducibly expressed on TAM in
the suppression of anti-tumor immunity in the tumor microenvironment.

Keywords PD-L1 - PD-L2 - Tumor-associated macrophages - Tumor microenvironment

Abbreviations mAbs  Monoclonal antibodies

ATCC American Type Culture Collection PD-1  Programmed cell death-1

BM Bone marrow PD-L1 Programmed cell death-ligand 1
ip. Intraperitoneally PD-L2 Programmed cell death-ligand 2
KO Knockout s.c. Subcutaneously

mAb Monoclonal antibody TAM  Tumor-associated macrophages

Electronic supplementary material The online version of this .
article (https://doi.org/10.1007/s00262-018-2263-4) contains Introduction
supplementary material, which is available to authorized users.

Immune checkpoint blockade therapies targeting pro-
grammed cell death-1 (PD-1) and programmed cell death-
ligand 1 (PD-L1) have demonstrated significant clinical
Department of Immunology, Graduate School of Medicine, benefits superior to standard therapies in various types of
Yamaguchi University, 1-1-1 Minami Kogushi, Ube, advanced cancers, thus causing paradigm shift in the treat-
Yamaguchi 755-8505, Japan . .. .
ment of cancer [1-3]. In spite of the broad clinical applica-
tions, molecular and cellular mechanisms of PD-1/PD-L1
blockade are yet to be fully explored. In particular, it remains

Second Department of Surgery, School of Medicine, unknown which cells are targeted by PD-1/PD-L1 blockade
Wakayama Medical University, Wakayama, Japan

P4 Koji Tamada
ktamada@yamaguchi-u.ac.jp

Department of Urology, Graduate School of Medical
Sciences, Kyushu University, Fukuoka, Japan

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00262-018-2263-4&domain=pdf
https://doi.org/10.1007/s00262-018-2263-4

202

Cancer Immunology, Immunotherapy (2019) 68:201-211

therapy and how it modifies immune responses in the tumor
microenvironment. Exploring these issues is highly impor-
tant, as it could reveal novel biomarkers associated with
positive responses to PD-1/PD-L1 blockade therapy and
it may contribute to the identification of novel targets of
cancer immunotherapy.

One crucial and unsolved issue is whether PD-L1 on
tumor cells or non-tumor host cells is responsible for the
suppressive functions in anti-tumor T-cell responses, and
which of these cells are the primary targets of anti-PD-1/
PD-L1 monoclonal antibodies (mAbs). In this regard,
data from various clinical studies have demonstrated that
PD-L1 expression level on tumor cells can be used as a
predictive biomarker of patients who will display clinical
benefits by these therapies [4, 5]. On the other hand, it has
also been reported that PD-L1 positivity on tumor cells
shows no correlation with therapeutic benefits of anti-PD-1
mAD [6]. Other studies have further indicated that PD-L1
expression on immune cells infiltrating in tumor tissues is
associated with a higher response rate in patients treated
with PD-1/PD-L1 blockade [7]. To experimentally inves-
tigate this issue, preclinical studies using PD-L1-deficient
tumor cells and PD-L1-knockout (KO) mice have been con-
ducted by several groups [8—13]. Inconsistent results have
been reported in these studies, as crucial roles of PD-L1
on both tumor and non-tumor host cells [8—10], predomi-
nantly on tumor cells [11] or non-tumor host cells [12, 13]
have been suggested. Currently, the relative importance of
PD-L1 on tumor cells vs. non-tumor host cells in the sup-
pression of anti-tumor immunity and in PD-1/PD-L1 block-
ade therapy remains controversial and thus warrants further
investigation.

PD-1 delivers an inhibitory signal by interacting with pro-
grammed cell death-ligand 2 (PD-L2) as well as PD-L.1 [14].
Therefore, another important question is whether PD-L.2
expression in tumor tissues plays a role in the suppression of
anti-tumor immunity and if so, how and what types of cells
express PD-L2 in the tumor microenvironment. Although
PD-L2 expression was initially thought to be restricted to
macrophages and dendritic cells upon stimulation with
IFN-y, GM-CSF, or IL-4 [15], recent studies have indicated
that various types of tumor cells and non-tumor host cells,
including immune cells, endothelial cells, and fibroblasts,
express PD-L2 [16-18]. Regarding the role of PD-L2 in the
regulation of anti-tumor immunity, it remains controversial
as one study demonstrated a significant correlation between
PD-L2 expression and clinical benefits of anti-PD-1 mAb
therapy [17], while another did not observe such correlation
[19]. Thus, it is of importance to explore the potential roles
of PD-L2 in suppressing of anti-tumor immunity and resist-
ance to PD-1/PD-L1 blockade therapies.

In this study, we explored the relative importance of
PD-L1 expressions on tumor cells and non-tumor host cells
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including bone marrow (BM)-derived hematopoietic cells
in the regulation of anti-tumor immunity. In addition, the
importance of PD-L2 expression on tumor-associated mac-
rophages (TAM) as a biomarker and a therapeutic target for
immune checkpoint blockade was investigated.

Materials and methods
Mice

PD-L1-KO mice, with a C57BL/6 background, were origi-
nally generated by Lieping Chen [20] (Yale University, CT).
All mice were maintained under specific pathogen-free con-
ditions in the animal facility at Yamaguchi University (Ube,
Japan).

Tumor cell lines

3LL is a mouse lung carcinoma, B16F10 is a mouse mela-
noma, and MC38 is a mouse colon carcinoma cell line [21].
These cell lines were maintained in RPMI supplemented
with 10% FBS, 1% penicillin—streptomycin, 25 mM HEPES,
and 50 mM 2-mercaptoethanol.

Generation of a PD-L1-deficient MC38 cell line

To generate an MC38 cell line lacking PD-L1 expression,
we designed a single-guide RNA targeting mouse PD-L1 (5'-
TCCAAAGGACTTGTACGTGG-3'). Lentivirus particles
(U6-gRNA/Puro-Cas9-GFP) were purchased from Sigma-
Aldrich and transfected into MC38 cells in the presence of
polybrene (hexadimethrine bromide, Sigma-Aldrich). After
puromycin selection, a single cell of GFP-positive MC38
was isolated by FACS (SH800, Sony). A control MC38
cell line was generated in the same manner using CRISPR-
Lenti Non-Targeting Control Transduction Particles (Sigma-
Aldrich). Expression levels of PD-L1/L2 and MHC class
I/II on these cell lines were examined by flow cytometry
(BD LSRFortessa X-20, BD Biosciences) after staining with
the following reagents; PE-conjugated anti-PD-L1 mAb
(clone M1HS5, eBioscience), PE-conjugated anti-H-2Kb
mAD (clone AF6-88.5, BD Biosciences), PE-conjugated
anti-H-2Db mAb (clone KH95, Biolegend), PE-conjugated
anti-I-Ab mAb (clone AF6-120.1, BD Biosciences), and
APC-conjugated anti-PD-L2 mAb (clone TY25, BD Bio-
sciences). In some experiments, MC38 cell lines were incu-
bated in the presence of mouse IFN-y (Biolegend) prior to
the analyses.
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In vivo tumor models

Wild-type C57BL/6 mice or PD-L1-KO mice were inocu-
lated subcutaneously (s.c.) with 1x 10° PD-L1-deficient or
control MC38 in the right lateral flank. In some experiments,
wild-type C57BL/6 mice were inoculated s.c. with 1x 10°
3LL tumor cells. These tumor cells were suspended in HBSS
prior to injection. For Ab treatment, 200 pg of hamster IgG
(Innovative Research), rat IgG (Sigma-Aldrich), anti-mouse
PD-L1 mAb (clone 10B5) [22], or anti-mouse PD-L2 mAb
(clone TY?25, purchased from BioXcell) were injected intra-
peritoneally (i.p.) on days 4, 9, 14, 19, and 24 after tumor
inoculation. Tumor growth was measured at least twice a
week with a digital caliper and tumor volume was calculated
using the following formula; x X y*/2, where x is the long
diameter and y is the short diameter of the tumor. Mice were
euthanized when tumor volume reached 4000 mm® or severe
ulceration with bleeding in the tumor was observed.

Bone marrow chimeric mice

BM cells were harvested from wild-type or PD-L1-KO
mice by flushing the marrow cavity of the femur with
RPMI medium. After lysis of red blood cells with Ammoni-
umm-—Chloride—Potassium Lysing Buffer (Lonza), BM cells
were suspended with HBSS, passed through a cell strainer,
and counted. Recipient wild-type or PD-L1-KO mice were
given a lethal dose of irradiation, consisting of two split
6 Gy doses, 68 h apart (total of 12 Gy), followed by intra-
venous injection of 7.5x 10° BM cells per mouse. At least
6 weeks later, BM chimeric mice were inoculated s.c. with
1x 10° PD-L1-deficient MC38 cells.

Analysis of tumor tissue by flow cytometry

Wild-type C57BL/6 mice were inoculated s.c. with MC38
and treated with hamster IgG or anti-PD-L1 mAb on day
4. On day 9, tumor tissue was resected and minced with
scissors, followed by digestion with medium containing
liberase TL (Roche) and DNasel (Roche) for 2 h at room
temperature. Digested tumor samples were homogenized
by repetitive pipetting and passed through cell strainers to
generate single-cell suspensions. Tumor-infiltrating immune
cells were separated from tumor and stromal cells by mag-
netic cell sorting using anti-mouse CD45 mAb (Miltenyi
Biotec). CD45-negative populations were stained with
APC-conjugated anti-PD-L2 mAb (clone TY25, BD Bio-
sciences). CD45-positive populations were stained with
the following mAbs; BV421-conjugated anti-CD11b mAb
(clone M1/70, BD Biosciences), PE-Cy7-conjugated anti-
F4/80 mAb (clone BMS8, Biolegend), and APC-conjugated
anti-PD-L2 mAb (clone TY25, BD Biosciences). TAM
were identified as a population double positive for CD11b

and F4/80 within CD45-positive cells, while the remain-
ing populations (i.e., CD11b and F4/80 single positive or
double negative) within CD45-positive cells were identified
as non-TAM immune cells, including T cells. Expression
levels of PD-L2 on cells of tumor tissues were examined
by flow cytometer (BD LSRFortessa X-20), and the data
were analyzed using FlowJo software (FlowJo, LLC). All
cells were pre-incubated with anti-CD16/32 mAb (Fc block,
clone 2.4G2, BD Biosciences) prior to staining to block non-
specific binding of mAbs.

Rechallenge of tumor

Mice which had rejected the MC38 tumor after combined
treatment with anti-PD-L1 and anti-PD-L2 mAbs were
rechallenged s.c. with MC38 and B16F10 in the right and
left lateral flank, respectively, 3 months after the original
tumor inoculation. As a control, naive C57BL/6 mice were
also inoculated s.c. with MC38 and B16F10 in the same
manner. Tumor growth was measured at least twice a week
with a digital caliper.

Statistical analysis

JMP 13 (SAS Institute Inc., Cary, NC) was used for statisti-
cal analysis. The two-tailed Student’s ¢ test was applied to
compare two groups. For survival data, Kaplan—Meier sur-
vival curves were prepared and statistical differences were
analyzed using the log-rank test. p < 0.05 was considered
statistically significant.

Results

PD-L1 on tumor cells and non-tumor cells mediates
suppression of anti-tumor immune responses

Expressions of PD-L1 in the tumor microenvironment are
detectable on both tumor cells and non-tumor cells including
stromal and infiltrating immune cells. First, to explore the
relative importance of PD-L1 expressed on tumor vs. non-
tumor cells, we developed a model in which PD-L1-deficient
or competent tumor cells were inoculated into PD-L1-KO
or wild-type mice. PD-L1-deficient tumor cells were gener-
ated from MC38 mouse colon carcinoma by a CRISPR/Cas9
gene-editing method. PD-L1-deficient MC38 did not express
PD-L1, even in the presence of IFN-y, while control MC38
treated with a scrambled CRISPR/Cas9 gRNA showed a
significant upregulation of PD-L1 in response to IFN-y
(Supplementary Fig. 1a). We also confirmed that expression
levels of MHC class I were comparable between PD-L1-de-
ficient and control MC38 cell lines (Supplementary Fig. 1b).
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The extent of MHC class I upregulation by stimulation with
IFN-y was also equivalent in these cell lines. Neither PD-L2
nor MHC class II were expressed on these cell lines in the
presence or absence of IFN-y (Supplementary Fig. 1a, b).
To explore importance of PD-L1 expressed on tumor
cells or non-tumor cells in the suppression of anti-tumor
immunity, PD-L1-deficient or control MC38 cells were s.c.
injected into PD-L1-KO or wild-type mice. While control
MC38 grew in all cases when inoculated into wild-type
mice, PD-L1-deficient MC38 showed a significant delay in
tumor growth and resulted in tumor rejection in 6 out of 15
mice (Fig. 1a). Survival was also significantly prolonged
in wild-type mice inoculated with PD-L1-deficient MC38

Fig. 1 Important role of PD-L1
on tumor and host cells in
anti-tumor immune responses.
Control or PD-L1-deficient
MC38 tumor cells were inocu-
lated s.c. into wild-type or PD-
L1-KO mice. a Tumor growth
in each group is shown. Each
line indicates the tumor size in
individual mice. Data are shown
from two independent experi-
ments. The number of tumor- 0
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(Fig. 1b). When control MC38 cells were inoculated into
PD-L1-KO mice, tumor rejection was observed in 1 out of
17 mice along with a delay in tumor growth and prolonged
mouse survival. Importantly, when PD-L1-deficient MC38
cells were inoculated into PD-L1-KO mice, complete tumor
rejection and long-term survival were observed in 16 out of
17 mice. Taken together, these results suggest that PD-L1
on tumor cells and non-tumor host cells are both important
in the suppression of anti-tumor immunity, while PD-L1 on
tumor cells makes a primary contribution.
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Important role of PD-L1 on bone marrow-derived
hematopoietic cells in the suppression of anti-tumor
immunity

Our data revealed a potential role of PD-L1 expressed
on non-tumor host cells in the suppression of anti-tumor
immunity. However, it remains unclear whether stro-
mal non-immune cells or infiltrating immune cells are
responsible for this effect, since PD-L1 can be detected
on various host cells, including endothelial cells and
cancer-associated fibroblasts [18, 23]. To address this
question, BM chimeric mice, in which wild-type mice
were treated with systemic myeloablative irradiation fol-
lowed by transferring BM cells from PD-L1-KO mice
(PD-L1-KO BM into wild-type mice), were generated.
In addition, mice with BM transfer vice versa (wild-type
BM into PD-L1-KO mice) were also generated. These
BM chimeric mice were inoculated s.c. with PD-L1-de-
ficient MC38. In PD-L1-KO BM into wild-type mice,
tumors were rejected in all cases (Fig. 2). On the other
hand, eventual tumor growth was observed in four out of
ten cases in wild-type BM into PD-L1-KO mice. These
results suggest that, among non-tumor host cells, PD-L1
expressed on BM-derived hematopoietic cells, including

immune cells, plays a major role in the suppression of
anti-tumor immunity.

Anti-tumor effects of PD-L1 and PD-L2 blockade
in MC38 tumor model

The inhibitory effects of PD-1 can be mediated by its inter-
action with PD-L2 as well as PD-L1 [14]. To explore the
potential role of PD-L2 in the suppression of anti-tumor
immunity and its relevance to PD-L1 functions, mice inocu-
lated with MC38 were treated with anti-PD-L2 mAb with or
without anti-PD-L1 mAb. As control, rat IgG and hamster
IgG were injected, respectively. Treatment with anti-PD-L2
mAD alone induced hardly any anti-tumor effects, as shown
that tumor growth and mouse survival were equivalent to
those treated with control Abs (Fig. 3). On the other hand,
treatment with anti-PD-L.1 mAb alone significantly inhibited
tumor growth and induced tumor rejection in 5 out of 12
mice, resulting in prolonged mouse survival. When anti-PD-
L2 mAD was injected in combination with anti-PD-L1 mAb,
tumor growth was further inhibited and resulted in tumor
rejection in 11 out of 12 mice. Survival of mice treated with
both anti-PD-L1 and anti-PD-L2 mAbs was significantly
prolonged compared to those treated with anti-PD-L1 mAb

Fig.2 Suppressive role a PD-L1-KO BM into Wild-type BM into
of PD-L1 on BM-derived wild-type mice PD-L1-KO mice
hematopoietic cells in anti-
tumor immunity. BM chimeric — 800 800
mice, generated by transfer- £
ring PD-L1-KO BM cells into £ 600 - 600 A
wild-type mice or vice versa, “EJ
were inoculated s.c. with PD- 3 400 400 -
L1-deficient MC38. a Tumor S
growth in each group is shown. 5
Each 111.16 1.n(.hcates t.he tumor :E; 200 - tumor rejection 200 -
size in individual mice. The [t 9/9 6/10
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Fig.3 Therapeutic effects of
anti-PD-L1 and anti-PD-L2
mAbs in MC38. Wild-type mice
were inoculated s.c. with MC38
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and treated with anti-PD-L1
mADb alone, anti-PD-L2 mAb
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IgG were used as control Abs.
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alone. These results suggest that the suppressive effects of
PD-L2 are undetectable by itself, but become evident under
conditions that PD-L1/PD-1 interaction is ablated.

Enhanced expression of PD-L2 on tumor-associated
macrophages by PD-L1 blockade

To investigate the mechanism by which the effects of
PD-L2 become evident along with PD-L1 blockade,
expression levels of PD-L2 on cells in the tumor microen-
vironment, including tumor cells and infiltrating immune
cells, were analyzed in the presence or absence of anti-
PD-L1 mAb treatment. Mice were inoculated with MC38
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on day 0 and then treated with anti-PD-L1 mAb or control
Ab on day 4. On day 9, tumor tissue was harvested and
digested to a single-cell suspension, followed by separa-
tion into CD45-positive immune cells and CD45-negative
non-immune cells by magnetic sorting. Expression levels
of PD-L2 were assessed by flow cytometry, in which TAM
were identified as CD45TCD11b1F4/80% cells, while the
remaining CD45% subsets, i.e., CD11b, F4/80 single posi-
tive or double negative, were considered to be non-TAM
immune cells, including T cells, B cells, NK cells, and
dendritic cells. In the absence of anti-PD-L.1 mAb treat-
ment, slight expressions of PD-L2 were detected on TAM,
but not other CD45" subsets (Fig. 4). When mice were
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Fig.4 Inducible expression of PD-L2 on TAM by anti-PD-L1 mAb
treatment. Wild-type mice were inoculated s.c. with MC38 and
treated with anti-PD-L1 mAb or control Ab. Tumor tissue was har-
vested and analyzed for the expression of PD-L2 on TAM, non-TAM
immune cells, and CD45-negative non-immune cells by flow cytom-
etry. a Representative histograms are shown. The filled and solid lines

treated with anti-PD-L1 mAb, PD-L2 expression on TAM,
but not other CD45% subsets, significantly increased.
There were no significant differences in the number of
CD45-positive immune cells in the tumor tissue or the
percentage of TAM between control Ab- and anti-PD-L1

indicate unstained controls and stained samples, respectively. b Per-
centages of PD-L2 positive cells in TAM, non-TAM immune cells,
and CD45-negative non-immune cells were analyzed. Data are shown
as mean+ SEM of ten or eight mice per group. Data are shown from
two independent experiments. **p =0.0054, NS not significant

mAb-treated groups (data not shown). No expression
of PD-L2 was detected on CD45-negative non-immune
cells, which included tumor cells, irrespective of treatment
with anti-PD-L1 mAb. These results reveal that PD-L2
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expression is inducibly upregulated on TAM in the pres-
ence of PD-L1 blockade.

Long-term anti-tumor memory responses induced
by treatment with anti-PD-L1 and anti-PD-L2 mAbs

Combined treatment with anti-PD-L1 and anti-PD-L2 mAbs
achieved MC38 tumor rejection in almost all mice, resulted
in prolonged survival over 100 days. To confirm the gen-
eration of tumor-specific memory responses with this treat-
ment, the survived mice were rechallenged with MC38 and
B16F10, melanoma cells syngeneic to C57BL/6 mice but
unrelated to MC38 in terms of antigenicity. It was found that
all the tumor-survived mice were resistant to rechallenge
with MC38 but not B16F10 (Fig. 5). As a control, MC38 and
B16F10 inoculated into naive C57BL/6 mice in the same
manner led to apparent tumor growth. This result indicates
that combined blockade of PD-L1 and PD-L2 can induce
tumor-specific long-term memory responses.

Therapeutic effects of anti-PD-L1 and anti-PD-L2
mAbs in 3LL lung tumors

The therapeutic effects of combined treatment with anti-PD-
L1 and anti-PD-L2 mAbs were further examined in another
tumor model using 3LL, Lewis lung carcinoma. Mice inoc-
ulated s.c. with 3LL tumor were treated with anti-PD-L1
mAb, anti-PD-L2 mAb, or both of these mAbs. As shown
in Fig. 6, combined therapy of anti-PD-L1 and anti-PD-L2
mAbs significantly inhibited 3LL tumor growth, resulting in
prolonged mouse survival compared with the other groups
(»p=0.013 vs. control Abs, p=0.021 vs. anti-PD-L1 mAD,
p=0.021 vs. anti-PD-L2 mAb). No significant differences in
survival were observed among other groups. This result indi-
cates that the synergistic anti-tumor effects of simultaneous

MC38
2000 A

1500 A
1000 A

500 4

Tumor volume (mm?3)

0 10 20 30
Days after rechallenge

Fig.5 Induction of tumor-specific memory response by treatment
with anti-PD-L1 and anti-PD-L2 mAbs. Mice inoculated with MC38
were treated with both anti-PD-L1 and anti-PD-L2 mAbs to induce
tumor regression. After 3 months, the tumor-rejected mice (open
circle) were rechallenged s.c. with MC38 and B16F10 on the right
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Fig.6 Combined treatment with anti-PD-L1 and anti-PD-L2 mAbs
in a 3LL lung tumor model. Mice were inoculated s.c. with 3LL
and treated with anti-PD-L1 mAb alone, anti-PD-L2 mAb alone,
or a combination of these mAbs. Hamster IgG and rat IgG were
used as control Abs. a Tumor growth in each group is shown as the
mean=+SD of five mice per group. *: p<0.05. b Mouse survival
rates are shown. Open circle: control Abs, open triangle: anti-PD-L1
mADb + control Ab, filled circle: anti-PD-L2 mAb+ control Ab, filled
triangle: anti-PD-L1 mAb+anti-PD-L2 mAb. open circle vs. filled
triangle; p=0.013, open triangle vs. filled triangle; p=0.021, filled
circle vs. filled triangle; p=0.021
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and left lateral flank, respectively. As a control, naive C57BL/6 mice
(filled circle) were also inoculated s.c. with MC38 and B16F10 in
the same manner. Tumor sizes were measured and are shown as the
mean =+ SD of five or six mice per group
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blockade of PD-L1 and PD-L2 are also detectable in a 3LL
lung tumor model.

Discussion

In this study, we attempted to elucidate the molecular and
cellular mechanisms by which PD-L1 and PD-L2 inhibit
anti-tumor T-cell responses in the tumor microenviron-
ment. Our findings indicate that PD-L1 on both tumor cells
and non-tumor host cells mediates inhibitory effects, while
tumor-associated PD-L1 plays a predominant role. Among
non-tumor host cells, PD-L1 on BM-derived hematopoi-
etic cells was found to be essential. Although PD-L2 medi-
ated almost no effects in the presence of the PD-L1/PD-1
interaction, its immune-inhibitory effects became evident,
through inducible expression on TAM, when the PD-L1/
PD-1 interaction was attenuated. These findings provide
useful insights into the clinical applications of PD-1/
PD-L1 blockade therapies regarding the identification
of accurate biomarkers and the development of efficient
immunotherapies.

Several previous studies have explored the importance
of PD-L1 expressed on tumor cells and non-tumor host
cells utilizing PD-L1-deficient tumor lines and/or PD-
L1-KO mice [8-13]. While these studies have reached
inconsistent observations, i.e., crucial roles of PD-L1 on
both tumor and non-tumor cells, predominantly on tumor
cells, or host cells, these results are probably due to differ-
ences in experimental models, including the immunogenic-
ity of tumors and injection doses of cells and reagents. In
this regard, our study indicated that both tumor- and host-
derived PD-L1 can inhibit anti-tumor immune responses.
It should be noted that our findings further indicated more
primary role of PD-L1 on tumor cells than that on host
cells, based on direct comparison between wild-type mice
inoculated with PD-L1-deficient tumors and PD-L1-KO
mice inoculated with control tumors. Among host cells,
PD-L1 associated with BM-derived hematopoietic cells,
but not non-hematopoietic cells, played an essential role
in the suppression of anti-tumor immune responses. This
is consistent with previous studies indicating the impor-
tance of PD-L1 on macrophages and dendritic cells [12,
13]. These preclinical studies collectively suggest that
PD-L1 on tumor cells and host hematopoietic cells are
both involved in suppressing anti-tumor T-cell immunity,
while their relative importance changes depending on vari-
ous factors, including tumor immunogenicity and endog-
enous expression of PD-L1 by genetic and/or epigenetic
control. Further studies utilizing clinical samples from
various cancers are required to fully explore the role of
PD-L1 in the tumor microenvironment.

While the importance of PD-L2 as a target and potential
biomarker of anti-PD-1 mAb therapy has been suggested
[17], the precise mechanisms how PD-L2 inhibits T-cell
immunity in the tumor microenvironment have remained
unexplored. Our findings in this study revealed that PD-L2
expression is upregulated on TAM and its inhibitory
effects become evident when PD-L1 function is abrogated
by anti-PD-L1 mAb. This result implies that, although
PD-L1/PD-1-dependent suppression is the primary mecha-
nism of immune evasion in cancer, alternative mechanisms
that include PD-L2 upregulation, may compensate once
PD-L1 function is dampened. These findings are consistent
with previous reports suggesting that the presence of TAM
correlates with poor prognosis in human cancers [24] and
that PD-L2 is expressed on non-tumor cells according to
tumor cell types and the conditions of the tumor micro-
environment [17]. Regarding the molecular mechanisms
how PD-L2 expression is induced by PD-L1 blockade, it
has been reported that PD-L2 on TAM is upregulated by
IL-27 via Stat3 activation [25]. While the detailed mech-
anism of the PD-L2 upregulation in our study remains
unclear, we infer that changes in the cytokine milieu in the
tumor microenvironment by anti-PD-L1 mAb treatment
may trigger the expression of PD-L2. IFN-y may play a
certain role, since IL-27 production by macrophages can
be induced by IFN-y-mediated pathways [26].

In addition to PD-L2, various inhibitory mechanisms,
including PD-1-independent immune checkpoint mol-
ecules, regulatory T cells, and suppressive cytokines/
enzymes, may also mediate the compensatory effects when
the PD-L1/PD-1 system is abrogated. Consistent with this
notion, upregulation of TIM-3 in response to anti-PD-1
mADb treatment has been reported [27]. Furthermore, com-
bined therapy of anti-PD-1 mAb with anti-TIM-3, LAG-3,
or TIGIT mAb induces remarkable synergy to enhance
the anti-tumor effects of anti-PD-1 mAb, whereas mono-
therapy of anti-TIM-3, LAG-3, or TIGIT mAb hardly dis-
plays any therapeutic potential [28—30], suggesting that
these checkpoint molecules become adaptively functional
following PD-1 blockade. Taken together, adaptive resist-
ance of a tumor is a highly dynamic process which can be
affected by endogenous T-cell responses, as well as exog-
enous medical intervention, including immunotherapies.
Serial evaluation of immune-regulatory molecules before
and after immunotherapies is necessary for the develop-
ment of effective combination immunotherapies and the
identification of highly predictive biomarkers.
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