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Abstract
Adenosine signaling via the A2a receptor (A2aR) is emerging as an important checkpoint of immune responses. The pres-
ence of adenosine in the inflammatory milieu or generated by the CD39/CD73 axis on tissues or T regulatory cells serves 
to regulate immune responses. By nature of the specialized metabolism of cancer cells, adenosine levels are increased in 
the tumor microenvironment and contribute to tumor immune evasion. To this end, small molecule inhibitors of the A2aR 
are being pursued clinically to enhance immunotherapy. Herein, we demonstrate the ability of the novel A2aR antagonist, 
CPI-444, to dramatically enhance immunologic responses in models of checkpoint therapy and ACT in cancer. Furthermore, 
we demonstrate that A2aR blockade with CPI-444 decreases expression of multiple checkpoint pathways, including PD-1 
and LAG-3, on both CD8+ effector T cells (Teff) and FoxP3+ CD4+ regulatory T cells (Tregs). Interestingly, our studies 
demonstrate that A2aR blockade likely has its most profound effects during Teff cell activation, significantly decreasing 
PD-1 and LAG-3 expression at the draining lymph nodes of tumor bearing mice. In contrast to previous reports using A2aR 
knockout models, pharmacologic blockade with CPI-444 did not impede CD8 T cell persistence or memory recall. Overall 
these findings not only redefine our understanding of the mechanisms by which adenosine inhibits immunity but also have 
important implications for the design of novel immunotherapy regimens.
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Abbreviations
A2aR	� Adenosine A2a receptor
ARG1	� Arginase1
ATCC​	� American type culture collection
B16-OVA	� OVA-expressing B16 murine melanoma
dLN	� Tumor-draining lymph nodes
iNOS	� Inducible nitric oxide synthase
LM-OVA	� OVA-expressing Listeria monocytogenes
ndLN	� Non-draining lymph nodes
n.s.	� Not significant
r.o.	� Retro-orbital
Teff	� CD8+ effector T cell
Tet-OVA+	� OVA class-I tetramer+

Introduction

Initially described in seminal studies by the Sitkovsky group, 
adenosine signaling through the A2a receptor on immune 
cells is a critical regulator of inflammation and immune 
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response [1]. Findings from this initial work demonstrated 
that pharmacologic or genetic blockade of the A2a recep-
tor greatly enhanced inflammation in the setting of an anti-
pathogen immune response. These early studies were criti-
cal in prompting investigations of the role of the A2aR in 
modulating immune responses in cancer. As such, subse-
quent work by the Sitkovsky group demonstrated that A2aR 
signaling on antitumor T cells inhibits effector responses and 
protects tumor development [2]. This group was the first to 
report the therapeutic application of pharmacologic A2aR 
blockade in enhancing antitumor immune responses and 
improving tumor rejection in murine models of melanoma. 
Interestingly, tumor responses were shown to be secondary 
to both direct CD8+ T cell killing, as well as through A2aR 
blockade-mediated inhibition of neovascularization within 
the TME [2]. Subsequent studies from our group and others 
confirmed and extended the work of the Sitkovsky group 
by successfully applying A2aR blockade in combination 
with anti-PD-1 inhibition to antitumor regimens in murine 
models [3–5]. Work by Stagg and Smyth has elucidated the 
importance of adenosine-A2aR signaling in triple nega-
tive breast cancer metastasis and response to chemother-
apy [6–9]. Further broadening the understanding of A2aR 
signaling in immune regulation, our group has previously 
demonstrated the importance of A2aR to the generation of 
FoxP3+ LAG-3+ regulatory T cells [10].

The importance of adenosine signaling as an immune 
regulatory mechanism for tumor evasion is underscored 
by the high levels of adenosine generated within the TME. 
Cancer cells are metabolically reprogrammed to meet the 
enormous biosynthetic demands that accompany rapid and 
continuous proliferation. In addition to supporting tumor 
growth, this specialized metabolism serves to greatly alter 
the TME, making it hypoxic, acidic, and depleted of nutri-
ents [11, 12]. Adenosine generation is a direct consequence 
of profound hypoxia and high rates of cellular turnover in 
tumors [13–15]. Specifically, adenosine is generated through 
release of intracellular adenosine from tumor cells, as well 
as through the enzymatic degradation of extracellular ATP 
by the hypoxia-responsive ectonucleotidases CD39 and 
CD73, which are often highly expressed on a variety of cells 
within the TME [16–19].

Herein, we present initial preclinical immunotherapy 
data using the novel A2aR inhibitor CPI-444, which is cur-
rently being tested in a phase 1b clinical trial [20]. Using this 
inhibitor, we also present data refining the role of adenosine 
in modulating T cell responses in cancer. First, our studies 
show that inhibiting adenosine signaling through the A2a 
receptor suppresses a range of distinct checkpoint receptors 
(including PD-1 and LAG-3) on both Teff cells and Tregs. In 
lowering checkpoint expression on T cells, the threshold for 
productive anti-PD-1 therapy is lowered, resulting in a syn-
ergistic response with CPI-444 and anti-PD-1 combination 

therapy. Notably, the modulation of checkpoint pathways on 
Teff cells in these studies is a phenomenon detected primar-
ily at tumor-draining lymph nodes. In analagous findings, we 
report that CPI-444-treated mice receiving activated antitu-
mor T cells show enhanced antitumor responses in mouse 
models of ACT. These findings in distinct immunotherapy 
models suggest an especially prominent role for A2aR 
blockade during initial Teff priming, which may underlie 
the marked results in combination with PD-1 blockade in 
our models. Our work also describes previously unreported 
effects of A2aR blockade on Tregs within the TME. In this 
regard, we report suppression of FoxP3 expression, as well 
as downregulation of a range of immune checkpoint path-
ways, including PD-1 and LAG-3. Lastly, we show enhanced 
effector function of Teff cells within the TME in the set-
ting of CPI-444 monotherapy, as well as in combination 
with ACT. Overall, in addition to demonstrating the abil-
ity of CPI-444 to significantly enhance antitumor immune 
responses in a variety of immunotherapy regimens, we 
define novel adenosine-mediated mechanisms that promote 
tumor immune evasion.

Methods

Antibodies and reagents

Antibodies against the following proteins were purchased 
from BD Biosciences: CD4 (RM4-5), CD8α (53-6.7), CD69 
(H1.2F3), CD90.1 (OX-7), CD44 (IM7), IL-2 (JES6-5H4), 
TNF-α (MP6-XT22), and IFNγ (XMG1.2). Antibodies 
against the following proteins were purchased from eBiosci-
ence: PD-1 (RMP-130), LAG-3 (C9B7W), TIM-3 (RMT3-
23, 8B.2C12), CTLA-4 (UC10-4B9), FoxP3 (FJK-16s), 
Ki67 (SolA15), 41-BB (17B5), CD62L (MEL-14), CD127 
(A7R34), T-bet (eBio4B10), and granzyme B (GB11). 
Other reagents used included OVA class-I tetramer (H-2 kb/
SIINFEKL, MBL) and OVA class-I peptide (SIINFEKL, 
AnaSpec). GolgiPlug or GolgiStop (BD Biosciences) was 
used to inhibit cytokine secretion, and the BD Cytofix/
Cytoperm Kit (BD Biosciences) was used for intracellular 
staining of cytokines. The FoxP3 Fixation/Permeabilization 
Kit (eBioscience) was used for transcription factor staining.

T cell ex vivo stimulation

T cells were stimulated in the presence of GolgiStop for 4 h 
at 37 °C with either 10 µg/ml OVA class-I peptide (SIIN-
FEKL) or PMA (50 ng/ml) and Ionomycin (500 ng/ml).
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Flow cytometry

All experiments were performed on a BD FACSCalibur or 
BD Celesta and analyzed using FlowJo software (FlowJo, 
LLC). For all flow cytometry experiments, gates were set 
appropriately with unstimulated and isotype controls.

Vaccinia infection and Listeria rechallenge

C57BL/6 mice were infected with 1 × 106 PFU vaccinia-
OVA (made in-house) by retro-orbital (r.o.) injection. 
Cheek bleeds were performed at indicated time points for 
analyses during acute response. Distinct cohorts of mice 
received daily administration of vehicle or 1–10  mg/
kg CPI-444 (Corvus) by gavage from day 1 to 5. Mice 
received a secondary infection with 2 × 106 CFU of OVA-
expressing Listeria monocytogenes (DactA, Din1B) (LM-
OVA) (i.p.) (gift from Aduro Biotech) on day 30. Mice 
were sacrificed 6 days after secondary infection, and sple-
nocytes were isolated for analysis.

Tumor experiments

Unless otherwise noted, all tumor injections were admin-
istered on the right flank. For the MC38 model, C57BL/6 
WT mice were injected with 5 × 105 MC38 cells (s.c.) 
cultured in DMEM-based media. For the CT26 model, 
BALB/c mice were injected with 5 × 105 CT26 cells 
(s.c.) cultured in RPMI-based media. CPI-444 is sup-
plied in 40% hydroxypropyl beta-cyclodextrin which was 
administered for all vehicle-treated control experiments. 
Mice were treated with CPI-444 (Corvus) or vehicle by 
daily gavage at indicated times and concentrations. Mice 
were randomized based on tumor size before initiating 
anti-PD-1 therapy or transfer of activated OT1 cells for 
adoptive transfer experiments. Anti-PD-1 mAb (RMP1-
14, Bioxcell) was administered by i.p. injection (100 ug/
mouse) at indicated time points. For the OVA-expressing 
B16 melanoma model, C57BL/6 WT mice received a s.c. 
injection of 2 × 105 B16-OVA melanoma cells (gift of 
Hyam Levitsky) cultured under OVA selection media con-
taining 400 µg/ml G418 (Life technologies). Seven days 
after tumor injection, mice received an adoptive transfer 
of 1.5 × 106 activated OT1 cells derived from splenocytes, 
which had been stimulated in vitro with SIINFEKL pep-
tide for 48 h, expanded in IL-2 (1 ng/mL) for 24 h and iso-
lated with Ficol gradient centrifugation. Mice were treated 
with CPI-444 or vehicle by gavage daily at indicated times 
and concentrations administered in 200 µL volume. Tumor 
burden was assessed every 2–4 days by measuring length 
and width of tumor. Tumor volume was calculated using 

the formula V = (L × W × W)/2, where V is tumor volume, 
W is tumor width, and L is tumor length. Mice were sacri-
ficed when tumor reached 2 cm in any dimension, became 
ulcerate or necrotic, or caused functional deficits.

TIL isolation

Tumors were harvested from mice at indicated time points. 
Explanted tumors were manually disrupted before incubat-
ing in collagenase type I (Gibco) and DNase in RPMI for 
30 min at 37 °C. Tumor mixtures, spleens, and nondraining 
(left inguinal) and draining (right inguinal) lymph nodes 
were dissociated through a 70-µm filter and washed with 
PBS. Splenocytes and blood were treated with ACK (Qual-
ity Biological) lysing buffer and washed with PBS before 
staining for flow cytometry.

Cell lines

MC38 cells were donated by CORVUS pharmaceuticals. 
B16-OVA melanoma cells were a gift from Hyam Levit-
sky. All other tumor cell lines used were obtained from the 
ATCC.

Statistics

All graphs were created using GraphPad Prism software, 
and statistical analyses were calculated using GraphPad 
Prism. Comparisons between two independent groups were 
assessed by either Student’s t test or Mann–Whitney t tests. 
A p value of less than 0.05 was considered statistically 
significant.

Results

CPI‑444 suppresses checkpoint pathways, enhances 
initial immune response, and augments memory 
response to viral infection

CPI-444 is an oral small molecule inhibitor of A2aR [21] 
which has demonstrated high selectivity and ability to block 
A2aR in in vitro studies. To establish the effects of CPI-444 
during in vivo immune responses, we initially assessed its 
effect on CD8+ T cell responses to viral challenge. Follow-
ing immunization with vaccinia-OVA, mice were treated 
with vehicle or CPI-444, and the CD8+ T cell response was 
monitored in the peripheral blood. At the peak of response, 
flow cytometric analysis using tetramer staining revealed 
a significant enhancement in the antigen-specific CD8+ 
(Tet-OVA+) T cell response in mice treated with CPI-444 
(Fig. 1a, b). Furthermore, antigen-specific CD8+ T cells in 
CPI-444-treated mice had decreased expression of immune 
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Fig. 1   A2aR blockade with CPI-444 modulates checkpoint expres-
sion and enhances acute immune response to vaccine. C57BL/6 
mice immunized with vaccinia-OVA (106 PFU) by retro-orbital (r.o.) 
injection received either vehicle or CPI-444 (10 mg/kg) p.o. daily for 
5 days starting 1 day post-infection. a Flow cytometry showing time 
course of Tet-OVA+ T cell response monitored by cheek bleeding 
using tetramer-OVA staining. b Data summary plot for Tet-OVA+ T 
cell response on day 7 post-infection. c–e Flow cytometric analyses 
of PD-1 (c), TIM-3 (d), and LAG-3 (e) expression on Tet-OVA+ T 

cells harvested on day 7 (PD-1) and day 11 (TIM-3, LAG-3) are 
shown as representative MFI histograms (left) and summation data 
plots (right). f–g Data summary plots from flow cytometry analyses 
of PD-1, TIM-3, LAG-3 (f) expression, and FoxP3 (g) expression 
on Tregs in the peripheral blood on day 11 post-infection. Error bars 
represent SEM. Data are representative of three independent experi-
ments with n = 4–5 per group. *p < 0.05, **p < 0.01 using two-tailed 
Student’s t test
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checkpoint surface receptors, including PD-1, TIM-3, and 
LAG-3 (Fig. 1c–e). Interestingly, decreased checkpoint 
receptor expression, including PD-1, LAG-3, TIM-3, and 
CTLA-4 was also noted on Tregs (Fig. 1f, Supplemental 
Fig. 1). Tregs in CPI-444-treated mice also showed lower 
expression of the lineage-defining transcription factor FoxP3 
(Fig. 1g).

To assess the effects of CPI-444 on immune memory 
response, mice were rechallenged with OVA-expressing 
Listeria monocytogenes (LM-OVA) 30 days after initial vac-
cinia-OVA vaccination. Despite receiving no further treat-
ment during rechallenge, mice treated with CPI-444 during 
initial vaccinia-OVA exposure showed a significant enhance-
ment in recall response (Fig. 2a). Interestingly, as in the case 
of the acute viral response, Tet-OVA+ T cells responding 
to LM-OVA rechallenge showed reduced expression of 
checkpoint receptors PD-1, TIM-3, and LAG-3 (Fig. 2b). 
Furthermore, Tet-OVA+ T cells from mice treated with 
CPI-444 showed increased ability to produce TNFα, IFNγ 
(Fig. 2c), and IL-2 (Fig. 2d). Previous studies had reported 
decreased T cell persistence and decreased CD127 expres-
sion in A2a-deleted naïve and memory T cells [22, 23]. In 
our studies, while antigen-specific T cells did show a slight 
trend toward decreased expression of CD127 during initial 
vaccine response (Supplemental Fig. 2), memory response 
of TetOVA+ CD8+ T cells was not suppressed in mice that 
received CPI-444 during initial vaccination (Fig. 2a). Our 
data demonstrate that pharmacologic inhibition of A2a 
receptor with CPI-444 during initial CTL priming increases 
the magnitude of T cell response and suppresses immune 
checkpoint receptor expression during both initial vacci-
nation and subsequent challenge. Furthermore, CPI-444 
treatment during initial vaccination significantly enhances 
effector function of memory CD8+ T cells upon LM-OVA 
rechallenge.

CPI‑444 monotherapy modestly suppresses tumor 
growth and improves survival in mouse tumor 
models

Our initial application of CPI-444 to tumor immunotherapy 
evaluated its effect as monotherapy in MC38 and CT26 
colon murine cancer models. As shown in Supplemental 
Fig. 3a–c, daily CPI-444 treatment resulted in modest but 
significant reduction in tumor growth and survival benefit 
in the MC38 model. A trend toward reduced tumor growth 
in mice receiving daily CPI-444 was also noted in the CT26 
model (Supplemental Fig. 3d, e). Overall our findings show 
that CPI-444 treatment as a single agent results in modest 
suppression of tumor growth in mouse tumor models.

A2aR blockade with CPI‑444 enhances anti‑PD‑1 
immunotherapy

Recent studies have reported that decreased expression of 
PD-1 on antitumor T cells can lower the threshold for pro-
ductive anti-PD-1 immunotherapy [24]. Given our findings 
demonstrating suppression of PD-1 expression on anti-viral 
Teff cells (Fig. 1), we were interested in combining CPI-444 
with anti-PD-1 therapy. We titrated the dose and frequency 
of anti-PD-1 mAb as a single agent to yield a small but 
measurable effect on tumor control (10–20% cure rate in 
the CT26 tumor model). Strikingly, anti-PD-1 and CPI-444 
combination treatment demonstrated a dramatic improve-
ment in tumor regression and animal survival in both CT26 
(Fig. 3a–c) and MC38 (Fig. 3d–f) tumor models. The effect 
was particularly marked in the CT26 tumor model, wherein 
combination therapy increased the complete rejection rate 
from 20% in mice receiving anti-PD-1 alone to 70% in mice 
treated with combined CPI-444 and anti-PD-1 (Fig. 3a–c). 
Our data indicate that using CPI-444 in combination with 
anti-PD-1 therapy can lead to dramatic improvement in 
antitumor immune response over either agent used as 
monotherapy.

A2aR blockade with CPI‑444 suppresses PD‑1 
and LAG‑3 checkpoint pathways on CD8+ T cells 
and Tregs in tumor bearing mice

The marked enhancement of anti-PD-1 therapy with CPI-
444 in the CT26 model (Fig. 3a-c) was particularly interest-
ing in light of the modest effect of CPI-444 monotherapy 
(Supplemental Fig. 3d, e). As such, we wanted to understand 
how A2aR inhibition conditions T cells during anti-PD-1 
therapy and whether the expression of checkpoint receptors 
on Teff cells is affected. CT26 bearing mice were treated 
with vehicle or CPI-444. Tumor, spleen, draining, and non-
draining lymph nodes were harvested after 14 days of treat-
ment and assessed by flow cytometry (Fig. 4a). Infiltrating 
Teff cells within tumors or nondraining lymph nodes (ndLN) 
of mice treated with CPI-444 did not demonstrate decreased 
expression of PD-1 (Fig. 4b, c) or LAG-3 (data not shown) 
compared to vehicle-treated mice. Interestingly, however, 
we found a significant suppression of PD-1 and LAG-3 
expression on activated CD8+ CD44+ T cells within tumor-
draining lymph nodes (dLN) (Fig. 4d), with PD-1 expression 
also decreased on splenic CD8+ CD44+ T cells (Fig. 4e). 
Our results demonstrate a marked influence of adenosine 
signaling on Teff cells at draining lymph nodes, which, when 
blocked by CPI-444 treatment leads to suppression of check-
point pathways.

Tregs play an important role in regulating antitumor 
immune responses. Like Teff cells, Tregs have been shown 
to be influenced by checkpoint pathways [25, 26]. We sought 



1276	 Cancer Immunology, Immunotherapy (2018) 67:1271–1284

1 3

PD-1

%
 m

ax
im

um

a

b

TIM-3

%
 m

ax
im

um

LAG-3

%
 m

ax
im

um

CD8

TE
T-

O
VA

c 

Vehicle CPI-444

CPI-444Vehicle

TNFα

IF
N
γ

CPI-444Vehicle

C
D

44

IL-2

CPI-444Vehicled 

Tet-OVA+CD8+

Vehicle  CPI-444 
0

20

40

60

Te
t-O

V
A+

of
C

D
8+

(%
) **

Tet-OVA+CD8+

Vehicle CPI-444 
0

5

10

15

P
D

-1
(M

FI
)

**

Tet-OVA+CD8+

Vehicle CPI-444 
0

10

20

30

TI
M

-3
(M

FI
)

***

Tet-OVA+CD8+

Vehicle  CPI-444 
0

20

40

60

80

100

LA
G

-3
(M

FI
)

***

Tet-OVA+CD8+

Vehicle  CPI-444 
0

5

10

15

20

IL
-2

+
pe

rT
et

-O
VA

+(
%

)

*



1277Cancer Immunology, Immunotherapy (2018) 67:1271–1284	

1 3

to evaluate the effects of A2aR blockade on Tregs within 
the TME. In our model, A2aR blockade with CPI-444 had 
pronounced effects on coinhibitory receptor expression on 
Tregs as well (Fig. 4f). Analogous to changes on Teff cells, 
PD-1 and LAG-3 expressions were significantly decreased 
on tumor-infiltrating Tregs in CPI-444-treated mice. FoxP3 
expression in tumor-infiltrating Tregs was also suppressed in 
CPI-444-treated mice (Fig. 4g). Overall, our results demon-
strate a broad attenuating effect on suppressive pathways on 
both effector and regulatory T cells, with significant effects 
on Teff cells within draining lymph nodes and on Tregs 
within the TME.

A2aR blockade with CPI‑444 enhances effector 
phenotype and function of tumor‑infiltrating 
CD8+ T cells

We were interested in assessing the functional consequences 
of our findings within the CT26 tumor TME. Evaluation of 
transcription factors by flow cytometry revealed increased 
expression of T-bet on infiltrating CD8+ T cells (Fig. 4h), as 
well as increased expression of the activation marker 41-BB 
(CD137) within the TME (Fig. 4h). Upon ex vivo stimula-
tion with PMA and ionomycin, tumor-infiltrating Teff from 
CPI-444-treated mice showed significantly increased frac-
tion of TNFα+ CD8+ T cells, IFNγ+ CD8+ T cells, as well 
as TNFα+IFNγ+ double positive CD8+ T cells (Fig. 4i). 
These results demonstrate that A2aR blockade through 
CPI-444 monotherapy enhances effector function of tumor-
infiltrating CD8+ T cells.

CPI‑444 enhances ACT in the B16‑OVA tumor model

Given our findings demonstrating the impact of A2aR block-
ade on T cell expansion and effector function following vac-
cination (Figs. 1, 2), we were interested in applying CPI-444 
to a model of adoptive cell therapy. Mice with OVA-express-
ing B16 tumors received 1.5 million activated OVA trans-
genic (OT1) CD8+ T cells. Mice receiving daily CPI-444 

in addition to adoptively transferred OT1 cells showed a 
significant improvement in tumor control and survival com-
pared with vehicle-treated mice (Fig. 5a–c).

CPI‑444 enhances T cell infiltration and effector 
function in an ACT model against B16‑OVA

To further understand the specific role of A2aR signaling on 
the antitumor response in an ACT model, we were interested 
in interrogating antigen-specific T cell post-adoptive trans-
fer. Mice with established B16-OVA tumors received ACT 
with activated Thy1.1-expressing OT1 T cells (Fig. 6a). 
Mice received either daily vehicle or CPI-444 by gavage. 
Animals were sacrificed and tissues were harvested 4 days 
after ACT. Despite a relatively short CPI-444 exposure time 
in this experiment, tumor weight measured at the time of 
harvest still demonstrated a measurable response to CPI-
444 treatment and ACT (Fig. 6b). Notably, we observed a 
significant increase in OT1 cell infiltration within tumors 
(Fig. 6c). OT1 cells in CPI-444-treated mice had markers of 
enhanced activation, demonstrated by increased expression 
of 41-BB, T-bet, and increased fraction of cells expressing 
CD69 (Fig. 6d–f). Of note, transferred OT1 T cells in CPI-
444-treated mice did not express significantly altered levels 
of PD-1 or LAG-3, or other checkpoint markers in tumors, 
lymph nodes, spleen, or blood compared with vehicle-treated 
control animals (Fig. 6g and data not shown). CD127 expres-
sion was either unchanged or increased in CPI-444-treated 
mice (Fig. 6g, Supplemental Fig. 4). OT1 T cells from CPI-
444-treated mice showed significantly improved cytokine 
production (Fig. 6h, i). To assess the effect of A2aR block-
ade on the endogenous T cell response simultaneously, we 
examined the Thy1.1 negative fraction of CD8+ CD44+ T 
cells. Consistent with Teff response observed in the CT26 
model (Fig. 4), these endogenous cells showed decreased 
PD-1 and LAG-3 expression in dLNs, increased T-bet and 
41-BB, and enhanced cytokine production upon PMA-iono-
mycin stimulation (Supplemental Fig. 5). Overall, our stud-
ies show that A2aR blockade during adoptive transfer results 
in enhanced antitumor response, with increased infiltration 
of adoptively transferred cells, as well as enhanced effector 
function within tumor tissue.

Discussion

As the field of immunotherapy in cancer has evolved, it has 
become evident that the metabolic characteristics of the 
tumor microenvironment present critical obstacles to fur-
thering response rates [12, 27–31]. Several immunosuppres-
sive metabolic pathways within in the TME are presently 
being targeted in early phase clinical trials, including agents 
that block IDO1, arginase1 (ARG1), and inducible nitric 

Fig. 2   A2aR blockade with CPI-444 during initial vaccination 
enhances Tet-OVA+ T cell memory response. Without further treat-
ment, mice from Fig.  1 were rechallenged with OVA-expressing 
Listeria monocytogenes (LM-OVA; 106 CFU, r.o.) 30 days after ini-
tial vaccina-OVA immunization. Splenocytes were harvested 6 days 
post-LM-OVA rechallenge for analysis. a Flow cytometry showing 
Tet-OVA+ T cell response. b Flow cytometric analyses of checkpoint 
expression on Tet-OVA+ T cells are shown as representative MFI 
histograms (left) and summation data plots (right). c-d Flow cytom-
etry analyses of the fraction of cytokine production of CD8+ sple-
nocytes upon peptide stimulation is shown. Fraction of Tet-OVA+ T 
cells producing IFNγ, TNFα, double positive IFNγ+TNFα+ (c), and 
IL-2 (d) is shown. Error bars represent SEM. Data are representative 
of three independent experiments with n = 4–5 per group. *p < 0.05, 
**p < 0.01, ***p < 0.001 using two-tailed Student’s t test

◂
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oxide synthase (iNOS). While nutrient depletion in the TME 
is an important source of immunosuppression, the accumula-
tion of toxic metabolites, such as adenosine, is another cru-
cial consequence of a dysregulated tumor metabolism that 
forms a significant hurdle for effective immunotherapy. Here 
we demonstrate that pharmacologic blockade of adenosine 
signaling through the A2a receptor with CPI-444 greatly 
enhances the efficacy of anti-PD-1 therapy in unmodified, 

syngeneic mouse tumor models and adoptive T cell therapy 
in an OVA-expressing melanoma model. Further, these 
studies reveal several fundamental mechanistic aspects of 
adenosine signaling in the context of immune cell interac-
tions with cancer.

We demonstrate a striking synergy between A2a receptor 
blockade with CPI-444 and anti-PD-1 treatment in synge-
neic mouse tumor models (Fig. 3). It has previously been 
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Fig. 3   A2a receptor blockade with CPI-444 enhances efficacy of anti-
PD-1 treatment in syngeneic tumors. a-f BALB/c (a–c) or C57BL/6 
(d–f) mice were injected s.c. with 5 × 105 CT26 (a–c) or MC38 
(d–f) tumor cells on day 0. Mice were treated with vehicle or CPI-
444 (100  mg/kg) on days 0–12 ± anti-PD-1 mAb on days 7, 9, 11, 
and 13. Time course of tumor growth presented as the mean tumor 
volume until the point of first animal sacrifice (a, d, left). Tumor 

volume compared on day of first sacrifice (a, d, right); spider plots 
depict tumor growth on individual mice (c, f). Error bars represent 
SEM. Survival data presented as Kaplan–Meier curve (b, e). Data 
shown are from a single experiment representative of three independ-
ent experiments of n = 4–10 mice per group. *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001 using two-tailed Mann–Whitney t test 
(a, d, right)
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Fig. 4   A2a receptor blockade with CPI-444 modulates coinhibi-
tory pathways and enhances effector function in the CT26 tumor 
model. a BALB/c mice were injected s.c. with 5 × 105 CT26 tumor 
cells in the right flank on day 0. Mice were treated with daily CPI-
444 (100  mg/kg) or vehicle on days 1–14 and sacrificed on day 14 
for organ harvest. b–e CD44+ CD62L-CD8+ Teff cells analyzed 
for expression of PD-1 and LAG-3 by flow cytometry in b tumor-
infiltrating lymphocytes (TIL), c left inguinal non-draining lymph 
nodes (ndLN), d right inguinal draining lymph nodes (dLN), and e 
spleen. f–g Flow cytometry analysis of PD-1, LAG-3 (f) and FoxP3 
(g), expressed by tumor-infiltrating FoxP3+ CD4+ regulatory T cells. 
h Flow cytometric analysis of T-bet and 41-BB expressed by tumor-
infiltrating CD44+ CD8+ Teff cells. Data presented as representa-

tive MFI histograms (left) and summation data plots using combined 
data from two independent experiments of n = 4–6 mice per group. i 
Tumor-infiltrating CD8 T cells were analyzed by flow cytometry for 
cytokine expression after 4  h ex  vivo stimulation with PMA/iono-
mycin. Representative flow cytometry plots are shown. Fraction of 
CD8+ T cells producing IFNγ, TNFα, and fraction of double positive, 
IFNγ+TNFα+ CD8+ T cells are depicted in accompanying data sum-
mary plots. Error bars represent SEM. Data are compiled from two 
independent experiments of n = 4–6 mice per group (b–g) or from a 
single experiment representative of at least three independent experi-
ments of n = 4–6 mice per group (i). n.s. not significant, *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001 using two-tailed Student’s 
t test



1280	 Cancer Immunology, Immunotherapy (2018) 67:1271–1284

1 3

established that blockade of a single negative costimulatory 
pathway (e.g., PD-1), can trigger the expression of high 
levels of other unblocked checkpoint receptors that may 
curtail the function and expansion of responding immune 
cells [32, 33]. While this is a critical feature of several 
checkpoint pathways and should be considered as part of 
a rational basis for combination therapy, we demonstrate 
here that A2aR blockade with CPI-444 works in a signifi-
cantly different manner, allowing the suppression of multiple 
other negative T cell co-receptors, especially LAG-3 and 
PD-1 (Figs. 1c–e, 2b, 4d–f and Supplemental Fig. 5a–c). 
In lowering the expression of checkpoint pathways on acti-
vated CTLs, it is likely that A2aR blockade with CPI-444 
effectively expands the pool of CTLs poised to respond to 
subsequent anti-PD-1 therapy (Supplemental Fig. 6). This 
is consistent with our observation of a relatively mild effect 
of A2aR blockade as monotherapy in tumor models, but 
significant synergistic effect with anti-PD-1 therapy (Fig. 3 
and Supplemental Fig. 3). It is also consistent with previous 
reports showing that lower expression of PD-1 on T cells 
can lower the threshold for productive anti-PD-1 therapy 
[24]. It is important to note that, while T cells treated with 
CPI-444 expressed lower levels of these markers, this does 
not mean they are insufficiently activated. In fact, activated T 
cells in CPI-444 treated mice produce more cytokines upon 
restimulation, consistent with enhancement of an activated 
phenotype (Figs. 2c, d, 4i, 6h–I and Supplemental 5f–i).

Our studies in the CT26 tumor model strongly impli-
cate the lymph node as a site of significant impact of A2aR 
blockade. Inasmuch as Teff activation during acute viral 
challenge occurs within activating lymph tissue, our vac-
cinia-OVA experiments also strongly suggest the lymph 
node as a critical site of A2aR influence. Taken together, our 
experiments demonstrate that A2aR blockade dramatically 
influences Teff cells during initial priming and specifically at 
tumor-draining lymph nodes. These findings are particularly 
noteworthy in light of recent reports suggesting that PD-1 
blockade has its most pronounced effects on CD28 signaling, 
rather than TCR signaling, suggesting that PD-1 signaling, 
such as A2aR signaling, is highly active during T cell acti-
vation [34, 35]. In addition, other reports have specifically 
demonstrated that the antitumor effect of anti-PD-1 therapy 
requires CTL priming in the draining lymph node [36]. 
These reports in combination with our data, situate signifi-
cant activity of both anti-PD-1 therapy and A2aR blockade 
at the draining lymph node. This anatomic co-localization 
at the draining lymph node in the setting of downregulated 
PD-1 on Teff cells in CPI-444 treated mice is likely the basis 
for the marked synergy apparent in our tumor models. These 
findings can have significant impact on translational studies, 
wherein the immune cell status within the draining lymph 
nodes of cancer patients may hold more predictive and cor-
relative value than previously thought. The importance of 
the lymph node response in checkpoint regimens, such as 
those including CPI-444, could also have implications for 
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Fig. 5   A2aR blockade with CPI-444 enhances tumor growth sup-
pression in a model of ACT. a–c Seven days after injection of 2 × 105 
B16OVA tumor cells in the right flank C57BL/6 mice received 
1.5 × 106 activated OT1 CD8 T cells. Mice were treated with daily 
CPI-444 (100 mg/kg) or vehicle by oral gavage on days 7–21. Time 
course of tumor growth presented as the mean tumor volume until the 
point of first animal sacrifice in OT1 treated groups (a, left). Tumor 

volume compared on day of first animal sacrifice (a, right). Survival 
data presented as Kaplan–Meier curve (b). Spider plots depict tumor 
growth on individual mice (c). Error bars represent SEM. Data shown 
are from a single experiment representative of three independent 
experiments of n = 4–10 mice per group. *p < 0.05 using two-tailed 
Mann–Whitney t test (a, left)
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Fig. 6   CPI-444 increases T cell infiltration and effector function 
in B16-OVA ACT model. (a) Ten days after B16OVA injection 
C57BL/6 mice received 1.5 × 106 activated congenically labeled 
Thy1.1+ OT1 CD8 T cells. To ensure A2aR blockade upon trans-
fer OT1 cells were activated in the presence of CPI-444 (5  μM) or 
vehicle. Mice were treated with daily CPI-444 (100  mg/kg) or 
vehicle by oral gavage on days 10–14 and sacrificed on day 14 for 
organ and tumor harvest. (b) Weight of harvested tumors. (c) Repre-
sentative flow cytometry plots (above) depicting Thy1.1+ OT1 cells 
recovered per infiltrating CD8+ T cells in vehicle (left) and CPI-444 
treated mice (right). Thy1.1+ CD8+ cell recovery data summary plots 
(below) per CD8+ cells and per gram of tumor. (d) Representative 
flow cytometry plots depicting fraction of CD69+ Thy1.1+ OT1 cells 

with data summary plot (right). (e), (f) Representative flow cytom-
etry histograms depicting MFI of 41-BB (e), T-bet (f), and data sum-
mary plots for CD127 and PD-1 (g) expressed by Thy1.1+ infiltrating 
CD8+ T cells. (h), (i) Thy1.1+ OT1 T cells from tumors were ana-
lyzed by flow cytometry for cytokine expression following ex  vivo 
stimulation with SIINKEKL peptide. Representative flow cytometry 
plots are shown. Fraction of CD8+ T cells producing IFNγ, TNFα, 
fraction of double positive IFNγ+TNFα+ (h) and IL-2 (i) CD8+ T 
cells are depicted in accompanying data summary plots. Error bars 
represent SEM. Data shown are from a single experiment representa-
tive of three independent experiments of n = 4–9 mice per group. n.s. 
not significant, *p < 0.05, **p < 0.01 using two-tailed Student’s t test
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clinical application of vaccines or other modalities specifi-
cally directed at T cell priming processes.

While these findings imply that adenosine signaling is 
active within tumor-draining lymph nodes, the source of 
elevated adenosine within the lymph node is not clear. In this 
regard, it has been suggested that tumor derived exosomes 
expressing CD39/CD73 could have a significant influence 
on adenosine levels in draining lymph nodes [37, 38], and 
it has also been reported that metabolic characteristics of 
hypoxic regions of lymph nodes, such as germinal cent-
ers, can elevate adenosine levels intrinsically [39, 40]. In 
addition, elevated circulating levels of adenosine derived 
from hypoxic tumor tissue could be contributing to elevated 
adenosine levels within draining lymph nodes. Of note, sys-
temically elevated adenosine levels have been detected in 
patients with heart failure and in patients suffering from 
septic shock [41–44]. CD39/CD73 expressing cells within 
the lymph tissue itself, such as Tregs, could also be a source 
of locally generated adenosine. Overall, the effect of A2aR 
blockade during Teff cell priming is a novel finding of our 
work and implies that the most significant effects of adeno-
sine blockade on effector cells may not be in the TME itself 
but by enhancing the immune response at proximal lymph 
nodes. The degree to which adenosine blockade at drain-
ing lymph nodes is responsible for the improved effector 
function of tumor-infiltrating CTLs (Figs. 4i, 6h, i) versus a 
direct effect of A2aR blockade within the TME is unclear.

In contrast to Teff cells, Tregs are well adapted to the 
metabolic milieu of TME. Activity of FoxP3 in Tregs has 
specifically been found to be a critical factor in this adapta-
tion [45]. Transcriptional regulation of Tregs in response to 
hypoxia, adenosine and A2aR signaling has been an impor-
tant subject in the field [46]. We show that adenosine A2aR 
blockade with CPI-444 suppresses the expression of FoxP3 
on tumor-infiltrating Tregs (Fig. 4g). In addition, we pre-
sent novel findings regarding the downregulation of several 
checkpoint pathways on FoxP3+ CD4+ regulatory T cells 
within the TME (Figs. 1f, 4f). While we did not observe 
significant reduction in intratumoral Treg numbers, to our 
knowledge this is the first description of multiple check-
point pathways being downregulated on tumor-infiltrating 
Tregs in response to A2aR blockade. These findings are 
complementary to observations by Hatfield et al., demon-
strating downregulation of FoxP3 and CTLA4 on Tregs in 
response to A2aR inhibition via hyperoxia [47]. While the 
precise role of these pathways in tumor-infiltrating Tregs 
are not well defined [25, 26, 48], their response to A2aR 
blockade is quite striking in our studies and deserves further 
investigation.

Our findings showing increased effector function in adop-
tively transferred CD8+ T cells is in agreement with recently 
published studies of A2aR blockade in a CAR T cell model 
[49]. In our experiments, however, it is clear that A2aR 

blockade enhances the endogenous T cell response as well 
as adoptively transferred OT1 cells. Although suppressed 
expression of PD-1 and LAG-3 are observed in draining 
lymph nodes in these mice (Supplemental Fig. 5b, c), check-
point expression on adoptively transferred OT1 cells is not 
affected by A2aR blockade (Fig. 6g). This implies, that 
while checkpoint modulation during priming is an important 
aspect of A2aR blockade, there is also a significant effect 
directly on effector function of adoptively transferred T cells 
(Fig. 6h, i). While increased infiltration of adoptively trans-
ferred cells was not observed in previous studies using CAR 
T cells, it is likely that the differences between the CAR 
T cell model and our findings is related to distinct activa-
tion pathways downstream of chimeric receptors and native 
TCRs. While OT1 cells in our ACT model require TCR and 
CD28 signaling during priming, CAR T cells are designed 
with intrinsic CD3 and CD28 signaling. This may be a criti-
cal difference in the context of A2aR blockade. Understand-
ing the precise basis for these differences will be informative 
and requires further study.

As mentioned, previous studies have reported decreased 
T cell persistence in both A2aR-null mice and T cell-deleted 
A2aR mice [22, 23]. Using CPI-444 as pharmacologic 
blockade in our models has not caused a statistically sig-
nificant decrease in expression of the early memory marker 
CD127 in response to vaccine or in ACT (Figs. 2a, 6g and 
Supplemental Figs. 2, 4a) and did not suppress memory 
response upon antigenic rechallenge (Fig. 2a). These find-
ings demonstrate that, while persistent lack of A2aR signal-
ing (as in germline knockout or conditional T cell knockout 
mice) has been shown to negatively affect the production of 
long-term memory, transient pharmacologic blockade of the 
A2aR within genetically unmodified, and syngeneic tumor 
models does not limit the viability of active Teff cells. More 
generally, these observations underscore the importance of 
validating observations from genetically modified mouse 
experiments in the setting of pharmacologic blockade.

Overall, our studies lend significant evidence to the idea 
of the A2aR as a master regulator of anti-inflammatory path-
ways, first put forth by Michail V. Sitkovsky and Akio Ohta 
over a decade ago [50]. In coordinately suppressing several 
checkpoint pathways on multiple T cell subsets critical to 
antitumor immunity, and with clinical trials underway, A2aR 
blockade has significant potential to broaden the armamen-
tarium of cancer immunotherapy.
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