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of clinically relevant antitumor immunity in patients with 
cancer. DC-targeting tumor-derived factors and their effects 
on resident and administered DC in the tumor milieu are 
described and discussed in this review.
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box 1
HSP	� Heat-shock protein(s)
IDO	� Indoleamine-2, 3-dioxygenase
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M-CSF	� Macrophage colony-stimulating factor
MIC-1	� Macrophage inhibitory cytokine-1
MMP	� Matrix metalloproteinase
MUC1	� Mucin 1
NMDAR	� N-methyl-d-aspartate receptor
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Abstract  Dendritic cells (DC) play unique and diverse 
roles in the tumor occurrence, development, progression 
and response to therapy. First of all, DC can actively uptake 
tumor-associated antigens, process them and present anti-
genic peptides to T cells inducing and maintaining tumor-
specific T cell responses. DC interaction with different 
immune effector cells may also support innate antitumor 
immunity, as well as humoral responses also known to 
inhibit tumor development in certain cases. On the other 
hand, DC are recruited to the tumor site by specific tumor-
derived and stroma-derived factors, which may also impair 
DC maturation, differentiation and function, thus resulting 
in the deficient formation of antitumor immune response 
or development of DC-mediated tolerance and immune 
suppression. Identification of DC-stimulating and DC-
suppressing/polarizing factors in the tumor environment 
and the mechanism of DC modulation are important for 
designing effective DC-based vaccines and for recovery of 
immunodeficient resident DC responsible for maintenance 
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PSA	� Prostate-specific antigen
RAGE	� Receptor for advanced glycation end product
regDC	� Regulatory dendritic cell(s)
ROS	� Reactive oxygen species
SDF-1	� Stromal cell-derived factor-1
STAT3	� Signal transducers and activators of transcrip-

tion 3
TGF-β	� Transforming growth factor beta
TGFBR	� TGF-β receptor
TIM-3	� T cell immunoglobulin domain and mucin 

domain-3
TLR	� Toll-like receptor
Treg	� Regulatory T cell(s)
TREM1	� Triggering receptor expressed on myeloid 

cell-1
UPR	� Unfolded protein response
VEGF	� Vascular endothelial growth factor
XBP1	� X-box-binding protein 1

Introduction

The development and progression of a tumor is a complex 
process that includes multidirectorial interactions between 
malignant and non-malignant cells occurring systemically 
in lymphoid and non-lymphoid tissues and in the local 
tumor milieu. Active and passive communications between 
different cell types direct formation of the tumor microen-
vironment and may result in either elimination of cancer-
ous cells or their growth and spreading. Immune effector 
cells are able to recognize tumor cells, initiate the antitu-
mor immune reactions and erase tumors, while immune 
regulatory cells support tumor escape from immune attack 
by different mechanisms and pathways. Tumor- and tumor 
stroma-derived factors include both “danger signals” acti-
vating immune responses and various molecules suppress-
ing and polarizing immune cells, thus leading to tumor sur-
vival and progression. Although many of these factors are 
identified and characterized, there are no effective tools to 
control their levels or expression in the tumor environment 
in order to shift their balance from the protumorigenic to 
proimmunogenic outcome in a clinical setting.

Dendritic cells (DC) are well-characterized antigen-
presenting cells known to play a key role in initiating and 
maintaining the antitumor immunity, bridging innate and 
adaptive immune responses, and sustaining immune tol-
erance. The proven role of DC in the tumor immunosur-
veillance supported designing and testing of DC-based 
vaccines for different types of cancer, which, however, 
demonstrated different levels of efficacy and feasibility 
[1]. Further analyses of DC functioning and longevity in 
the tumor environment revealed that DC may be inhibited 
or functionally polarized and thus unable to support the 

development of antitumor immunity [2]. Furthermore, new 
data demonstrated that DC polarized in the tumor milieu 
were immunosuppressive and tolerogenic, and supported 
tumor growth and spreading [3]. It is well established 
now that there are several phenotypic functional subsets 
of tumor-associated DC: fully functional immunostimula-
tory DC, abnormal functionally deficient DC, dying DC 
and polarized immunosuppressive regulatory DC (regDC) 
[4, 5]. Thus, identification of tumor-derived factors target-
ing DC, understanding the mechanisms of DC modulation 
in cancer and revealing the means of changing the balance 
between DC-altering molecules in the tumor environment 
will not only improve the efficacy of DC vaccine and allow 
development of novel DC-based and DC-targeting thera-
pies, but also provide novel perspectives for revealing com-
plex cellular interactions during cancer development and 
therapy [6].

Tumor‑derived DC‑activating factors

DC are proven to play a central role in the initiation and 
regulation of antitumor immunity—proactive anticancer 
immunosurveillance mechanism—which suggests that in 
many instances, DC uptake malignant cells or their bodies 
and respond to local stimulation leading to DC maturation, 
emigration from the tumor mass and homing in the regional 
lymph nodes to present tumor antigens to antigen-specific 
T cells. Immunogenic signals released by dying tumor cells 
are able to prompt antigen uptake, antigen processing and 
antigen presentation by DC. Cancerous cells may undergo 
cell death due to hypoxia, nutrient deprivation and innate 
immune responses resulting in the release of host-derived 
damage-associated molecular pattern (DAMP), some-
times termed alarmins or danger signals, as an indicator of 
dying, stressed or dead cells. Such type of apoptotic and 
necroptotic cell death is characterized by the induction of 
endoplasmic reticulum stress and autophagy, exposure of 
calreticulin on the cell surface, the secretion of adenosine 
triphophosphate and the release of the chromatin-binding 
protein high-mobility group box 1 (HMGB1) [7]. DAMP-
associated proteins include endogenous molecules, such 
as HMGB1, heat-shock proteins (HSP), histones, the S100 
family of proteins and serum amyloid A, whereas nonpro-
tein DAMP includes heparin sulfate, uric acid, ATP, DNA 
(genomic and mitochondrial DNA) and RNA [8].

HMGB1 is one of the HMGB family members consist-
ing of three domains—HMGB A box, HMG B box and 
the C-terminal acidic tail [9]. HMGB1 functions to protect 
cells from injury in normal conditions, but may serve as 
DAMP in inflammation, cancer, sepsis, trauma and auto-
immunity. HMGB1 receptors include toll-like receptors 
(TLR) TLR-2, TLR-4 and TLR-9, receptor for advanced 
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glycation end product (RAGE), CD24, α-synuclein fila-
ments, proteoglycans, the T cell immunoglobulin domain 
and mucin domain-3 (TIM-3), N-methyl-d-aspartate recep-
tor (NMDAR) and the triggering receptor expressed on 
myeloid cell-1 (TREM1) [9, 10]. HMGB1, via its B box 
domain, has been reported to induce phenotypic matura-
tion of DC demonstrated by increased expression of CD83, 
CD54, CD80, CD40, CD58 and MHC class II molecules 
and decreased CD206 expression [11, 12]. The B box 
also caused increased secretion of the proinflammatory 
cytokines IL-12, IL-6, IL-1α, IL-8, TNF-α and RANTES. 
Saenz et  al. [13] showed that peptide Hp91, whose 
sequence corresponds to an area within the B box domain 
of HMGB1, activates DC and acts as an adjuvant in vivo. 
Hp91-induced DC activation is mediated by a MyD88- 
and TLR4-dependent pathway involving p38 MAPK and 
NF-κB. Thus, HMGB1 released by dying cells may be a 
signal of tissue or cellular injury that, when sensed by DC, 
induces or enhances an immune reaction. Interestingly, new 
results revealed that HMGB1 secretion during cervical car-
cinogenesis could support the achievement of a tolerogenic 
activity by plasmacytoid DC [14].

There is rising evidence that S100 proteins, which are 
structurally similar to calmodulin, may also act as DAMP 
and might play a role similar to HMGB1 in regulating tis-
sue injury and inflammation operating via the same recep-
tors [15]. This is a family of 24 related calcium-binding 
proteins that display differential tissue and cell-type 
expression profiles in vertebrates. The functions of intra-
cellular S100 proteins have been extensively studied, and 
most members participate in the regulation of a diverse set 
of intracellular processes such as cell cycle progression, 
cell proliferation, differentiation and migration, protein 
degradation, cytoskeletal organization, protein phospho-
rylation and transcriptional factor activity [16]. Recently, 
it has been shown that S100 proteins released from differ-
ent cell types may serve as useful markers of disease activ-
ity including such diseases as asthma, chronic obstructive 
pulmonary disease, colitis, rheumatoid arthritis, Alzhei-
mer’s disease and cancer [17]. Furthermore, S100A8 and 
S100A9, with well-proven activity in inflammation, have 
been progressively recognized not only as markers, but also 
as new regulators with essential roles in modulating tumor 
growth and progression [18].

The S100 genes of the A series are sited in a region of 
chromosome 1 which is prone to rearrangements, linking 
these S100 proteins with cancer [19]. Marked changes in 
the expression of S100B, S100A2, S100A4, S100A6, 
S100A8/A9 and S100P have been reported for different 
types of cancer [20, 21]. For instance, serum S100B protein 
has been suggested as a biomarker of malignant melanoma 
[22], and serum S100A2 and S100A6 may have the poten-
tial for being used as a NSCLC biomarker [23]. Although 

it is known that S100A8 and S100A9 proteins can regulate 
the differentiation and function of different myeloid cells, 
including DC [24], new data allow speculating that other 
S100 proteins released in the tumor microenvironment may 
also affect DC activity. For instance, DC have been shown 
to require S100A4 for activating T cells [25].

Another well-established DAMP in cancer are heat-
shock proteins, which function as intracellular chaperones 
and have been implicated in the activation and bridging 
of innate and adaptive immune systems. Studies based 
on molecular weight and phylogenetics have separated 
five major HSP families; however, only HSP96, HSP90, 
HSP70, HSP110 and HSP170 have proven immunogenic 
interactions as membrane-bound and extracellular compo-
nents [26]. Stimulation of cross-presentation is achieved 
through binding of HSP to distinct cell surface receptors 
followed by antigen internalization, processing and presen-
tation. For instance, HSP-CD91 binding on immune cells 
can assist in DC maturation, secretion of cytokines and T 
helper cell priming [27]. HSP70 binds to immature DC and 
induces their maturation as evidenced by an increase in 
CD40, CD86 and CD83 expression and enhanced ability to 
present model antigen to specific CTL [28]. Tumor-derived 
antigenic peptide or protein complexes with HSP can also 
be involved in immune activation via cross-presenting the 
chaperoned proteins to DC when they are released from 
necrotic tumor cells or secreted in response to cellular 
stress [29].

Tumor‑derived DC‑suppressive factors

Dendritic cells, together with other immune cells, such 
cytotoxic T cells, macrophages, NK cells, γδ T cells and 
B cells, play an important role in cancer immunosurveil-
lance—the ability to recognize and destroy newly ascend-
ing malignant cells. As cancer is linked to certain defects in 
immunosurveillance, newly appearing cancerous cells pro-
gressively gain a variety of mechanisms to escape immune 
recognition and elimination that favor further tumor sur-
vival and progression. Immune escape is the consequence 
of a direct or indirect cross talk between malignant cells 
and the immune system occurring in the local tumor micro-
environment as well as at a systemic level. Soluble media-
tors produced by both tumor cells and stromal cells repre-
sent crucial performers in this cross talk (Table 1).

Tumor‑derived DC‑suppressive factors: growth factors, 
cytokines and chemokines

Vascular endothelial growth factor (VEGF) is a secreted 
heparin-binding protein produced by the majority of tumors 
and responsible for the formation of tumor neovasculature 
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and tumor development [30]. The increased serum level 
of VEGF correlates with poor prognosis in patients with 
different types of cancer [31]. VEGF seems to be the first 
identified tumor-derived factor affecting DC: It inhib-
its differentiation and maturation of DC via binding and 
activation of two tyrosine kinase receptors, VEGFR-1 and 
VEGFR-2 [32]. VEGF inhibits the development and matu-
ration of DC in vitro and in vivo by blocking NF-κB acti-
vation in hematopoietic progenitor cells [33, 34]. Not only 
exposure of cultured DC to VEGF affects DC differentia-
tion by induction of apoptosis, alteration of DC phenotypic 
profile and increasing CXCR4 expression, DC numbers 
in the peripheral blood of patients with cancer inversely 
correlate with VEGF serum levels [35]. VEGF molecules 
are also known to regulate DC migration and homing by 
recruiting immature myeloid cells and immature DC from 
the bone marrow to the tumor site [36].

As inhibition of the VEGF pathways has become an 
appreciated approach in the treatment of cancers, it is 
important to mention that inhibition of VEGF signaling 
by using VEGF-Trap, which significantly increased the 
proportion of mature DC in patients with refractory solid 
tumors, enrolled into a phase I clinical trials [37]. Direct 
in vitro studies showed that the inhibition of VEGF expres-
sion in breast cancer cells by small interfering RNA effec-
tively recovered differentiation and maturation of DC 
inhibited by tumor cells and increased DC potential to 
induced tumor-specific cytotoxic T cells [38].

Different members of the transforming growth factor 
beta (TGF-β) superfamily have been shown to regulate 
activity and differentiation of DC [39]. Indeed, DC express 
both type-1 TGF receptors, including activin receptor 1 
(ACVR1), ACVR1B, bone morphogenetic protein recep-
tor (BMPR) 1A, BMPR1B and TGF-β receptor (TGFBR)1, 
and type-2 TGF receptors, including TGFBR2, BMPR2, 
ACVR2A and ACVR2B to respond to different TGF-β 
family ligands. DC also express all components of the prin-
cipal signaling cascades, such as the R-SMAD, receptor-
regulated SMAD—SMAD1/5/8 and SMAD2/3, and the 
Co-SMAD—SMAD4 [40]. However, with the exception of 
TGF-β, the role of different members of the TGF-β super-
family in DC regulation in the tumor microenvironment 
has not been yet established. TGF-β overexpression in the 
tumor milieu may be associated with suppressed DC mat-
uration and function resulting in the defects of the tumor-
specific immune responses [41]. Tumor-derived TGF-β 
has been shown to be responsible for downregulating the 
expression of DC maturation markers CD83, CD80, CD86 
and MHC II molecules [42] and inhibiting the expression 
of proinflammatory cytokines inducing DC maturation, 
such as TNF-α, IL-1, IL-12 and IFN-α, while promot-
ing the release of regulatory cytokines, including TGF-β 
itself [43]. TGF-β family ligands also affect DC motility 

and migration through the regulation of the expression of 
chemokines and chemokine receptors [39]. TGF-β might 
also induce apoptosis in DC [44].

These and other data showing decreased maturation 
of DC under the influence of TGF-β suggest that tumor-
derived TGF-β can significantly suppress DC function and 
their ability to initiate antitumor immune responses. Addi-
tional results revealed that TGF-β can not only inhibit DC 
function, but may also polarize DC into immunosuppres-
sive tolerogenic phenotype. These regulatory DC (regDC) 
display a strong ability to suppress proliferation of effector 
T cells and induce differentiation of T cells into regulatory 
(Treg) T cells [3, 5]. For instance, TGF-β has been shown 
to increase the expression of programmed death ligand 1 
(PD-L1) and signal transducers and activators of transcrip-
tion 3 (STAT3) in DC in both a time- and dose-dependent 
manner [45].

The DC-targeting effects of other members of the TGF-β 
superfamily produced in the tumor microenvironment 
are not well investigated. We have evaluated whether the 
ligands from the activin subfamily are expressed by tumor 
cell lines and can alter DC phenotype and function. We 
found that Nodal that is produced by different tumor cells 
and shares the SMAD2/3 signaling pathway with TGF-β1 
can polarize DC into the regulatory phenotype by upregu-
lating COX2 expression (Agassandian et al. in preparation).

Growth differentiation factor-15 [GDF-15, macrophage 
inhibitory cytokine-1 (MIC-1)], a divergent member of 
the TGF-β family of proteins, was detected in tissues and 
serum samples in patients with glioblastoma, and ovarian, 
prostate, gastric and colorectal cancers. GDF-15 was shown 
to inhibit the expression of CD83, CD86 and HLA-DR on 
DC, downregulate IL-12 and upregulate TGF-β1 produc-
tion and activate phagocytic but inhibit T cell stimulatory 
activity of DC in  vitro. Furthermore, GDF-15 suppressed 
DC potential to stimulate tumor-specific immune responses 
in vivo [46].

Interleukin-10 (IL-10), also known as human cytokine 
synthesis inhibitory factor (CSIF), is an anti-inflammatory 
cytokine primarily produced by monocytes and lympho-
cytes. However, IL-10 release has been reported from some 
tumors including melanoma, multiple myeloma and lung 
cancer [47, 48]. Tumor-derived IL-10 has been shown to 
have an inhibitory effect on DC maturation and the T cell 
stimulatory ability of DC [49]. In addition, increased serum 
levels of IL-10 also correlate with profound numerical 
deficiency and immature phenotype of circulating DC sub-
sets in patients with hepatocellular carcinoma, indicating 
a dominant correlation between tumor-derived IL-10 and 
defects in DC differentiation [50].

The inhibitory effect of IL-10 on the expression of 
costimulatory and MHC molecules on DC has been well 
documented [51]. For instance, tumor-derived IL-10 not 



825Cancer Immunol Immunother (2016) 65:821–833	

1 3

only inhibits DC maturation and longevity and induces 
DC tolerance, but also inhibits CD40 expression, sup-
presses CD40-dependent IL-12 production, decreases 
chemokine receptor expression, blocks antigen presentation 
and induces upregulation of B7-H1 expression on DC [52, 
53]. It is likely that p38 MAPK and STAT3 pathways are 
involved in the inhibition of DC by tumor-derived IL-10 
[54]. Recent microarray studies showed that IL-10 not 
only inhibited DC function but also redirected differentia-
tion of DC into cells with a different phenotype leading to a 
decreased pool of DC precursors [55].

IL-6, originally identified as a B cell differentiation fac-
tor, is known to display a plethora of effects on cell growth, 
differentiation, longevity and migration during immune 
responses, hematopoiesis and inflammation [56]. Over-
production of IL-6 is proved to be associated with a func-
tional defect in DC from cancer patients [57]. For instance, 
increased plasma levels of IL-8 and IL-6 were detected in 
epithelial ovarian cancer patients, and production of both 
cytokines by cultured epithelial ovarian cancer cell lines 
was also reported [58]. Interestingly, immunosuppres-
sion of human DC by culture supernatant of ovarian tumor 
cells was reversed when the production of IL-6 and IL-8 
was blocked. Furthermore, tumor-derived IL-6 affects the 
differentiation of hematopoietic progenitor cells and mono-
cytes, including the macrophage and DC in vitro [59], and 
may be responsible for tolerogenic phenotype of DC [60]. 
It has been reported that IL-6-associated DC suppression 
could be normalized by JAK2/STAT3 inhibitor AG490 
[54]. As STAT3 has been shown to be involved in the 
effect of IL-6 on the differentiation and maturation of DC, 
the tumor-induced phosphorylated STAT3 in DC could be 
regarded as a promising target for cancer immunotherapy 
[60].

Macrophage colony-stimulating factor (M-CSF), also 
known as colony-stimulating factor 1 (CSF-1), a major reg-
ulator of the mononuclear phagocytic lineage, is expressed 
in human breast and renal cell carcinomas, and its increased 
expression is a predictor of a poor prognosis [61]. CSF-1 
not only modulates tumor progression and metastasis by 
recruiting and regulating macrophages, but also suppresses 
the differentiation of DC [62]. In addition, tumor-derived 
CSF-1 may inhibit the differentiation of hematopoietic 
progenitor CD34+ cells into DC and induce cord blood 
monocyte to differentiate into tolerogenic DC [63]. Modu-
lation of DC differentiation by CSF-1 is mediated by the 
PI3K-dependent pathway and delayed caspase activation in 
monocytes [64].

New data revealed receptor activator of nuclear factor 
κ-B ligand (RANKL), a TNF family member, as a DC-tar-
geting tumor-derived factor that downregulated IL-12 and 
upregulated IL-10 production by DC and polarized DC into 
regDC that induce FoxP3+ Treg cell differentiation [65].

It is well known that the recruitment of different subsets 
of myeloid cells varies according to the chemokine recep-
tor expression profile and depends on the maturation stage 
of a particular cell population [53]. Several tumor-derived 
chemokines may target DC altering their migration and 
maturation statuses. Immature DC can be recruited into 
tumor inner location by tumor-derived chemotactic factors 
including CCL2, CCL20/MIP3a, CCL25, CCL5, CXCL12, 
CXCL1 and CXCL5, while mature DC reside in the sur-
rounding areas of the tumor [66, 67]. These data suggest 
that the tumor-derived chemokines, produced by malig-
nant or stromal cells, play an important role in the loca-
tion and homing of tumor-infiltrating DC, as well as the 
maintenance of the immature status of DC. For instance, 
human ovarian epithelial tumor cells express high levels 
of CXCL12, also known as stromal cell-derived factor-1 
(SDF-1), which binds to CXCR4 expressed on precursor 
of plasmacytoid DC and induces their chemotaxis, trans-
migration and adhesion [68]. The binding of CXCL12 to 
CXCR4 induces intracellular signaling through several 
different pathways initiating signaling cascades regulating 
chemotaxis, survival and proliferation [69]. Importantly, 
new data demonstrate that melanoma-derived factors can 
change maturation and activation of tissue-resident DC 
subsets and that the extent to which DC function is changed 
by these factors correlates with the in vivo tumorigenicity 
of melanomas [70].

Tumor‑derived DC‑suppressive factors: tumor 
“antigens”

Prostate-specific antigen (PSA), a serine protease overex-
pressed in most prostate cancers, was the first tumor-asso-
ciated antigen shown to inhibit maturation, longevity and 
function of DC [71]. Addition of active PSA to DC cultures 
resulted in significant inhibition of DC generation (den-
dropoiesis) and maturation, shown by the levels of expres-
sion of CD83, CD80, CD86 and HLA-DR molecules. The 
ability of DC to induce T cell proliferation was also inhib-
ited by PSA-treated DC. Other study also showed that the 
endogenous factors presented in the serum of patients with 
prostate cancer inhibited the generation of functionally 
active DC from CD14+ monocyte in vitro. This inhibition 
of DC maturation by serum from prostate cancer patients 
has a positive relationship with the levels of serum-free 
PSA [72], suggesting that PSA may be involved in impair-
ment of resident DC in prostate cancer.

Cell surface-associated Mucin 1 (MUC1) is a glyco-
protein overexpressed in many tumor cells. In normal 
cells, MUC1 forms a protective layer against the attack of 
microbes and toxic chemicals; however, oversecretion of 
MUC1 provides cancerous cells with an increased inva-
siveness, metastasis and resistance to effective immune 
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response [73]. It has been shown that MUC1 could chem-
oattract immature DC to the tumor site and induce semima-
turation of DC subverting DC function. When cultured with 
MUC1 glycoprotein, human monocyte-derived DC dis-
played upregulated expression of D83, CD80, CD86, CD40 
and MHC class II; however, these DC also produced greater 
amounts of IL-6, TNF-α and IL-10, but fail to make IL-12. 
When these DC were cocultured with CD4 + T cells, they 
induced production of IL-13 and IL-5 and lower levels of 
IL-2, thus failing to induce a type 1 response [74]. Other 
studies also showed that tumor-derived mucin profoundly 
affected the cytokine expression in monocyte-derived DC 
and transferred them into IL-10highIL-12low regDC with a 
poor ability to induce protective Th1 responses [75]. These 
findings provide evidence that tumor-derived MUC1 may 
be responsible for the impaired DC maturation and func-
tion in certain types of cancer, identifying MUC1 as an 
additional mechanism of tumor escape from immune sur-
veillance and disclosing the existence of tolerogenic DC in 
MAC1-positive cancers.

Finally, human chorionic gonadotropin (HCG), which 
serves as an important tumor marker for trophoblastic 
disease, choriocarcinoma and testicular cancer, has been 
shown to upregulate the expression of indoleamine-2, 
3-dioxygenase (IDO) in DC [76]. IDO is the rate-limit-
ing enzyme in the degradation pathway of tryptophan, an 
essential amino acid required for cell proliferation, was 
reported to be the mechanism of T cell suppression induced 
by IDO-expressing DC [77].

Tumor‑derived DC‑suppressive factors: other molecules

Gangliosides, found predominantly in the nervous system, 
are also expressed by the neuroectodermal cell-originated 
tumors as membrane-bound or shaded glycosphingolipids 
and can be detected in the tumor microenvironment and the 
bloodstream. Gangliosides act as cell surface receptors and 
markers and also participate in intercellular communica-
tion, cell signaling, cell cycling and cell motility [78]. It is 
well documented that neuroblastoma-derived gangliosides 
regulate the development of the tumor immunity by inhibit-
ing dendropoiesis, longevity and function of DC [79]. Mel-
anoma-produced gangliosides were also reported to impair 
DC differentiation and induce their apoptosis [80, 81].

Prostanoids, a subclass of eicosanoids consisting of the 
prostaglandins, prostacyclins and thromboxanes, are known 
mediators of inflammatory, anaphylactic reactions and 
vasoconstriction. Prostanoids have been found elevated in 
many tumors and implicated in tumor-associated subver-
sion of the immune functions. For instance, prostaglandin 
PGE2 has been proposed as the principal prostanoid associ-
ated with colorectal tumors since PGE2 levels and the activ-
ity of cyclooxygenases (COX) are elevated in patients with 

colon cancer and correlate with tumor size and patient sur-
vival [82]. Furthermore, PGE2 was found to be responsible 
for the reduced differentiation of DC from CD34+ precur-
sors [83]. Furthermore, PGE2 can serve as a mediator of 
DC tolerance since it upregulates the expression of IDO1 
in DC resulting in the differentiation of Treg cells and in 
the inhibition of antigen-specific stimulatory potential of 
DC [84].

Polyamines (putrescine, spermidine and spermine) 
are naturally occurring aliphatic cations essential for cell 
growth and have been reported to be increased in pros-
tate, colon and breast cancers [85, 86]. Spermine has been 
shown to induce altered maturation and impaired func-
tion in DC in vitro, while a significant inverse correlation 
between spermine level and the percentage of IL-12-ex-
pressing DC was found in patients with breast cancer [87].

Tumor-derived lactic acid, the end product of glyco-
lysis, is known to affect cancerous cells, adjacent stroma 
and endothelial cells in the local tumor microenvironment 
reprogramming metabolism, promoting tumor inflam-
mation and stimulating tumor angiogenesis [88]. On the 
other side, lactic acid is known as an important agent 
affecting DC by inhibiting IL-12 production and antigen 
presentation in the tumor environment, which may mark-
edly support tumor escape from immune recognition [89]. 
Moreover, high lactate concentrations distress the differ-
entiation of DC from monocytes decreasing the inflam-
matory phenotype of DC and inducing the production of 
IL-10 [90].

Recently, a metabolic stress- or hypoxia-associated 
adenosine accumulation has been suggested as one of the 
important drivers for an inhibition of antitumor immune 
response. Adenosine concentrations in tumor tissue are 
in the 50–100 μM range, while in normal tissues, they 
are found to be in the range of 10–100  nM [91]. After 
adenosine is released into the extracellular areas, it exerts 
numerous immunomodulatory effects via adenosine 
receptors expressed on different immune cells, including 
DC. Adenosine could alter differentiation of DC precur-
sors into CD11c+Gr-1+ DC with a strong stimulatory 
effect on Th17 cells [92]. Adenosine-differentiated DC 
expressed a number of angiogenic, proinflammatory and 
immunosuppressive molecules, including TGF-β, IL-10, 
VEGF, IL-6, IL-8, COX-2 and IDO, and could support 
tumor growth if injected into tumors in mice [93]. Aden-
osine may also attract DC to Treg cells via Epac1–Rap1-
dependent pathways rendering them less stimulatory 
[94].

New reports began to uncover an intricate role of lipids 
and lipid accumulation in DC functioning and how the tri-
glycerides (triacylglycerol, TAG) in the context of tumors 
may alter DC activity and longevity. As DC develop and 
mature, they take on a “lacy” appearance composing an 
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amplified presence of fat and glycogen-containing lipid 
body droplets [95], and lipid production and consump-
tion play critical roles in DC biology [96]. It is therefore 
of interest that elevated levels of lipids, particularly TAG, 
were described in substantial proportion of DC in mice 
bearing lymphoma and breast and colon cancers and 
patients with cancer [97]. Lipid accumulation in DC was 
due to an increased uptake of extracellular lipids induced 
by the upregulation of scavenger receptor A, and lipid-
laden DC displayed a reduced potential to process antigens. 
This receptor is primarily responsible for the uptake of 
modified lipids, and several molecular species of oxygen-
ated lipids in tumor-bearing animals responsible for their 
uptake and accumulation in DC via scavenger receptor 
A-dependent pathway have been recently identified [98]. 
Similarly, it has been recently reported that mesothelioma 
promotes lipid acquisition by DC, which was accompanied 
by reduced antigen processing and elevated expression of 
the costimulatory molecules and production of IL-10 [99].

Elevated expression of the lipoprotein lipase (LPL) and 
the fatty acid-binding protein (FABP4), as well as increased 
serum levels of triacylglycerol in radiation-induced tumors, 
may explain the mechanisms of lipid accumulation in DC 
in tumor-bearing hosts [100]. Furthermore, tumor-associ-
ated DC have been shown to display an activation of the 
unfolded protein response (UPR) seen as the appearance 
of high levels of an endoplasmic reticulum (ER) stress 
response factor XBP1 (X-box-binding protein 1). XBP1 
activation, attributed to reactive oxygen species (ROS) in 
tumor, which induces lipid peroxidation, induced a triglyc-
eride biosynthetic program in tumor-associated DC causing 
abnormal lipid accumulation and consequent suppression 
of DC ability to maintain antitumor T cell responses [101]. 
Interestingly, XBP1 is not only an important component 
of UPR, but also an essential nuclear transcription factor. 
Many XBP1 target genes are fatty acid synthesis enzymes. 
Enriched production of fatty acids results in the formation 
of lipid droplets inside the cytoplasm and extension of the 
ER compartment due to efficient intracellular membrane 
formation [102].

Many neuropeptides are known to be synthesized and 
released by tumor cell lines and primary tumor cells and 
are detected in the tumor microenvironment [103]. Inter-
estingly, some of these regulatory peptides may also affect 
function of DC and influence the development of antitu-
mor immune responses. For instance, substance P induces 
tumor cell proliferation, migration, invasion, intratumor 
angiogenesis and metastasis development [104], and sup-
presses phagocytic activity of monocyte-derived and resi-
dent DC [105]. Neuropeptide Y may function as a growth 
and angiogenic peptide controlling the inflammatory 
and immunologic tumor responses [106]; its expression 
was found to correlate with the progression of cutaneous 

melanoma upregulating tumor invasiveness [107]. Neuro-
peptide Y was also shown to induce a Th2 polarizing pro-
file of DC through the increased expression of IL-6 and 
IL-10 [108]. Tumor-derived bombesin, neuromedin B and 
gastrin-releasing peptide were reported to inhibit matura-
tion of DC assessed as downregulation of CD40, CD80 and 
CD86 expression, decreased IL-12 production and attenu-
ated potential to stimulate T cell proliferation [109].

Interestingly, new data revealed that death receptor 6 
(DR6), a member of the TNF receptor superfamily known 
to be overexpressed on many tumor cells, may affect DC 
generation and function. It was shown that DR6, which 
is expressed on tumor cells and may be cleaved from the 
surface of tumor cells by the membrane-associated matrix 
metalloproteinase (MMP)-14, could induce apoptosis in 
>50 % of monocytes differentiating into DC and changed 
phenotype and cytokine expression in the resulting imma-
ture DC [110].

Tumor-derived microvesicles are the heterogeneous 
group of membrane-bound particles that are shed from the 
surface of tumor cells into the extracellular environment. 
Proteins, lipids, glycoproteins, glycolipids, peptides, RNA, 
microRNA and DNA are included in this complex cargo, 
which suggests that microvesicles can use multipronged 
mechanisms to regulate cell interactions in the tumor milieu 
facilitating tumor progression [111]. The growing body of 
evidence demonstrates that tumor-derived microvesicles 
or exosomes can alter myeloid cell function in the tumor 
microenvironment by impairing monocyte differentiation 
into DC and promoting the generation of a myeloid immu-
nosuppressive cell subset [112]. For instance, exosomes 
purified from the lung cancer biopsies and containing the 
epidermal growth factor receptor (EGFR) have been shown 
to induce tolerogenic DC, which stimulated the differentia-
tion of tumor antigen-specific Treg cells that could suppress 
the tumor-specific CD8 + T cells [113]. Furthermore, pan-
creatic cancer-derived exosomal miRNA has been recently 
reported to inhibit mRNA expression in DC resulting in 
decreased expression of MHC molecules and induction of 
immune tolerance [114].

Conclusions

Dendritic cells, the strongest functional antigen-presenting 
cells, essentially contribute to the induction and regulation 
of innate and adaptive immunity. By interacting with NK, 
NKT, T and B lymphocytes, macrophages, neutrophils, 
mast cells and various non-immune cells, DC play a central 
role in regulating immunologic and tolerogenic responses 
maintaining the stability of immune homeostasis. Fur-
thermore, providing a critical link between the innate and 
adaptive immunity and regulating both the humoral and 
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the cellular immune response, DC are primary involved in 
the developing and sustaining of cancer immunosurveil-
lance and may profoundly impact tumor development and 
progression in patients. Therefore, it is not surprising that 
DC are also a key target and important player in the dif-
ferent pathways evolved by tumor cells to escape immune 
recognition and elimination. New insights gained over the 
last decades have revealed multiple mechanisms of immune 
regulation during tumor growth and progression, with DC 
likely to achieve a unique role in forming an immunosup-
pressive and tolerogenic milieu that supports cancer pro-
gression and blocks antitumor immunity. Although numer-
ous studies identified and characterized various molecules 
produced in the tumor microenvironment that can sup-
press DC generation and function or polarize DC pheno-
type (Table 1), the most interesting and probably important 

question in this regard has not yet been answered—why do 
different tumors with quite diverse microenvironment uti-
lize identical mechanisms to affect DC and why these path-
ways may be rather dissimilar in tumors of the same origin 
or the same type?

In relation to this question, there is an interesting fact 
that some of tumor-derived factors may display an opposite 
effect on DC depending on their concentration, the pres-
ence of other factors and cells or the stage of tumor devel-
opment. Probably, TNF-α and prostaglandins are the most 
interesting examples from this category. 

The balance between DC-stimulating and DC-sup-
pressing factors in the tumor microenvironment at each 
particular time of tumor development and progression 
represents a unique parameter of maintaining immuno-
logic activity in the tumor milieu (Fig. 1). Knowledge of 

Table 1   DC-targeting tumor-derived inhibitory molecules and factors

Factors Effect on DC Known signaling pathways References

VEGF Inhibition of differentiation, maturation, migration; induction  
of apoptosis

NF-κB [32]

TGF-β Suppression of maturation and function SMAD, STAT3 [40, 45]

GDF-15 Inhibition of costimulatory molecule expression, IL-12 production,  
T cell stimulatory activity; increasing of TGF-β expression

[46]

RANKL Tolerogenic repolarization [65]

IL-10 Inhibition of maturation, induction of tolerogenic phenotype,  
redirection of differentiation

p38 MAPK, STAT3 [52, 54, 55]

IL-8 Impaired migration PI3K, AKT, PKC, MAPK [115]

IL-6 Effect on growth, longevity, differentiation, migration MAPK, STAT3, NF-κB [56, 60]

CSF-1 Suppression of differentiation PI3K [64]

CCL2 Regulation of migration and maturation PI3K [67]

MIP3a NF-κB, MAPK, JAK/STAT [68]

SDF-1 [69]

MUC1 Regulation of chemotaxis, induction of semimaturation [74]

PSA Inhibition of maturation, longevity and function MAPK, STAT3, NF-κB [71]

HCG Induction of tolerogenic phenotype [76]

Gangliosides Inhibition of dendropoiesis, longevity and function IRAK-M [79, 80]

Prostaglandins Regulation of differentiation RAS-MAPK, PI3K/AKT, PKA [116]

Lactic acid Inhibition of differentiation NF-κB [89, 90]

Adenosine Alteration of differentiation and function and attraction to Treg cells Epac1–Rap1-dependent pathways [91] [94] [93]

Neuropeptides Regulation of generation, function and longevity Multiple pathways [3, 109]

HLA-G Induce tolerance [117]

Microvesicles Impair differentiation Multiple pathways [112, 113]
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intercellular and intracellular circuits that shape immu-
nogenic and tolerogenic phenotype of DC in cancer 
will provide necessary insights for developing adjuvant 
treatments to alleviate immunosuppression in the tumor 
microenvironment and improving the clinical efficacy 
of cancer vaccines and alternative immunotherapies for 
cancer.
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