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Introduction

Glucocorticoid (GC) hormones are commonly used in the 
treatment for hemopoietic malignancies, due to their ability 
to induce apoptosis of malignant lymphoid cells. However, 
a major obstacle to GC-based therapy is the emergence of 
resistant cells that no longer respond to GC with apoptotic 
death. Even though GCs have been used in the treatment 
for leukemias and lymphomas for more than half a cen-
tury, the mechanisms underlying their apoptogenic activity 
remain obscure.

So far, most studies on cellular responses to GCs have 
focused on their genomic effects. The reason for that lies in 
the documented ability of GC to translocate the GC recep-
tor (GR) to the nucleus, where it modulates transcription 
of some 300 genes through transactivation or transrepres-
sion [1–3]. However, only few of the GC-affected genes, 
e.g., GR and BIM, have been ascribed to apoptosis, and the 
mere expression of these gene products is insufficient to 
induce apoptotic death [4]. It is thus conceivable that addi-
tional postgenomic effects operating in lymphoid cells that 
are sensitive to GC-induced apoptosis might be account-
able for the apoptogenic activities of these hormones. In the 
present article, we shall review some of the non-genomic 
functions of GC that are associated with the progression of 
the death response and their relevance in the context of GC-
based therapy.

Abstract  Glucocorticoid (GC) hormones have been 
introduced as therapeutic agents in blood cancers six 
decades ago. The effectiveness of GC treatment stems 
from its ability to induce apoptotic death of hemopoietic 
cells. A major impediment in GC therapy is the acquisi-
tion of resistance to the drug upon repeated treatment. In 
addition, some blood cancers are a priori resistant to GC 
therapy. Usually, resistance to GC correlates with poor 
prognosis. Albeit the wide use of GC in clinical practice, 
their mode of action is not fully understood. The cellular 
response to GC is initiated by its binding to the cytosolic 
GC receptor (GR) that translocates to the nucleus and 
modulates gene expression. However, nuclear activities of 
GR occur in both apoptosis-sensitive and apoptosis-resist-
ant cells. These apparent controversies can be resolved by 
deciphering non-genomic effects of GCs and the mode by 
which they modulate the apoptotic response. We suggest 
that non-genomic consequences of GC stimulation deter-
mine the cell fate toward survival or death. Understand-
ing the cellular mechanisms of GC apoptotic sensitivity 
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GC‑induced apoptosis in lymphoid cells: role of the 
mitochondria

Almost all cells of our body express GR and are therefore 
affected by GC in various ways. However, GC-induced 
apoptosis is restricted to lymphoid cells, whether normal 
or malignant. What is the molecular basis for this selectiv-
ity? The answer begins to unfold by understanding the con-
sequences of GC binding to its receptor. Normally, the GR 
is sequestered in the cytosol by a multi-subunit complex 
of heat shock proteins [5]. Upon GC binding the complex 
dissociates, setting the GR free to undergo dimerization 
and phosphorylation before its translocation to the nucleus. 
These molecular events occur in both apoptosis-sensitive 
and apoptosis-resistant cells and, thus, cannot be the sole 
basis for GC-induced apoptosis. We therefore hypothe-
sized that non-genomic effects restricted to lymphoid cells 
are involved in determining the selectivity of the apoptotic 
response to GCs. The first validation of our hypothesis 
emerged when we followed the intracellular trafficking of 
the GR following stimulation by the synthetic GC dexa-
methasone (DEX). We detected a mitochondrial localization 
signal (MLS) within the ligand-binding domain of the GR, 
which enables its trafficking to the mitochondria in sensi-
tive lymphoid cells only [6, 7]. Mitochondrial translocation 
of the GR reduces the outer membrane potential, thereby 
allowing release of cytochrome c and Smac/DIABLO [7]. 
This is a crucial step in activating the intrinsic mitochon-
drial apoptosis pathway, which occurs in lymphoid cells 
only, making them sensitive to GC-induced apoptosis.

In this regard, it should be stressed that translocation of 
GR to the mitochondria is necessary but not sufficient for 
GC-induced apoptosis. The reason for this is the expression 
of mitochondrial anti-apoptotic proteins, such as the BCL2 
family proteins and the voltage-dependent anion chan-
nel (VDAC), that stabilize the outer membrane and offset 
the pro-apoptotic activity of GR [8]. These proteins have 
to be deactivated before the GR can advance the intrinsic 
apoptotic pathway. This step of apoptotic sensitization is 
regulated through phosphorylation enabled by the cellular 
kinome as outlined below.

GC‑induced apoptosis in lymphoid cells: role of the 
kinome

Studies in our laboratory have indicated that glycogen syn-
thase kinase 3 (GSK3) and the pro-apoptotic BH3‐only 
BCL2-like protein (BIM) are key protein kinases involved 
in the GC-induced apoptotic pathway. The role of GSK3 
has been demonstrated using specific inhibitors of GSK3, 
which blocked DEX-mediated apoptosis in sensitive cells 
[9]. Likewise, a kinase-inactive, dominant negative GSK3 

inhibited DEX-induced apoptosis [9]. GSK3 is active in 
GC-sensitive cells but not in GC-resistant ones as its phos-
phorylation level is low in the former and high in the latter 
(unpublished data). GSK3 is further activated upon treat-
ment with DEX. Our investigation indicated that GSK3α 
is part of the cytosolic multi-subunit complex of GR in 
unstimulated cells [9]. Once GC binds to the GR, GSK3α 
dissociates from the complex and exerts its kinase activity 
alongside GSK3β [9].

The other protein kinase involved is BIM, whose expres-
sion is upregulated by GR translocation to the nucleus 
[10, 11]. Albeit BIM does not pose GC response elements 
(GREs) in the promoter [10, 12], its expression is upregu-
lated by FOXO3a transcription factor (TF) [13, 14] that 
responds to GC with upregulated synthesis [15, 16]. Upreg-
ulation of BIM is crucial for conferring GC-induced apopto-
sis in cells that display low basal levels of this protein [17, 
18]. However, some GC-sensitive cells express a sufficient 
amount of BIM that is not further upregulated by DEX [8, 
19, 20]. Moreover, upregulation of BIM per se is insufficient 
to trigger apoptosis as it has to be posttranslationally acti-
vated [20]. Indeed, shortly after exposure to DEX, GSK3α 
and β transiently interact with BIM and trigger its apoptotic 
activity [9]. BIM mediates BAX and BAK oligomeriza-
tion, either directly by interaction with BAK and BAX or 
indirectly by neutralization of BCL2 family proteins that 
inhibit oligomerization of BAK and BAX [21]. In unstimu-
lated cells, the inactive pro-apoptotic BAK is located in the 
outer mitochondrial membrane, forming complexes with 
anti-apoptotic proteins (such as BCL2 and BCL-XL), while 
BAX is detected in the cytosol [21]. BAX and BAK are cru-
cial pro-apoptotic proteins involved in the formation of the 
mitochondrial permeability transition pore that initiates the 
irreversible step of the apoptotic process by enabling release 
of cytochrome c and other pro-apoptotic proteins [22–24]. 
Hence, activation of BIM by GSK3 relieves the anti-apop-
totic effect of BCL2 on GC-induced apoptosis. Furthermore, 
GSK3β directly phosphorylates BAX at Ser163 and pro-
motes its mitochondrial localization [25], thereby advancing 
the apoptotic response. In addition, GSK3β phosphorylates 
VDAC, which prevents its binding to hexokinase II (HKII) 
[26]. HKII is abundantly expressed in tumor cells since they 
are highly glycolytic. Avoiding HKII from binding to VDAC 
potentiates chemotherapy-induced cytotoxicity [26]. Indeed, 
overexpression of HKII inhibits DEX-induced apopto-
sis [27] and interferes with the ability of BAX to bind to 
mitochondria and induce the release of cytochrome c [28]. 
Thus, GC-induced phosphorylation of VDAC and BAX by 
GSK3 and its interaction with BIM fine-tunes the apoptotic 
threshold. GSK3 contributes to the activation of the intrinsic 
apoptotic pathway by deactivating BCL2, VDAC, and HKII 
while activating BIM, BAX, and BAK, thus allowing mito-
chondrial GR to advance cellular death.
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The model

Based on these studies, we propose the following model: In 
unstimulated cells, GSK3α associates with the GR multi-
subunit complex [9] (Fig. 1). When a ligand is bound to the 
GR, GSK3α dissociates and GR dimers are trafficking to 
the nucleus and mitochondria (Fig.  1). At the same time, 
the two isoforms of GSK3 interact with BIM [9], which is 
upregulated by nuclear GR through FOXO3a TF [13–16] 
(Fig. 1). BIM inhibits BCL2 and activates BAX and BAK 
[21]. Furthermore, GSK3 directly activates BAX by pro-
moting its mitochondrial localization [25] and inhibits 
VDAC association with HKII [26]. These interactions ena-
ble mitochondrial GR to reduce the outer membrane poten-
tial followed by the release of cytochrome c and Smac/
DIABLO which initiates the apoptotic process [7] (Fig. 1).

Relevance to therapy

Given this knowledge, we could ask several questions 
related to therapy of leukemias and lymphomas by GC 
hormones, such as prednisone and DEX. Why some of 
these cancers are resistant a priori to hormonal treatment? 

And why sensitive leukemias and lymphomas gradually 
develop resistance to the GC treatment? The reason can be 
attributed to the dysfunction of GSK3 and BIM. Activity 
of GSK3 is regulated by the PI3K–AKT axis, which inac-
tivates GSK3 by phosphorylation at Ser21 and Ser9 on 
GSK3α and GSK3β, respectively [29, 30]. One mode by 
which a resistant phenotype is attained is through hyper-
activity of AKT. GC-resistant cells display highly acti-
vated AKT that leads to GSK3 inactivation [9]. In these 
cells, the GR does not translocate to the mitochondria [6]. 
AKT antagonizes GC-induced apoptosis in follicular lym-
phoma [31], multiple myeloma [32], peripheral T cells 
[33], thymoma [9], T-acute lymphoblastic leukemia [9], 
and Burkitt’s lymphoma (unpublished data). Therefore, GC 
resistance may be reversed by specific AKT inhibitors, such 
as wortmanin and staurosporine [8, 9]. These drugs, when 
given together with DEX, retain the sensitivity of leukemia 
cells to apoptosis and prolong the response of the cells to 
GC [8, 9]. Indeed, apoptosis conferred by wortmanin or 
staurosporine, when combined with DEX, is prevented 
by inhibition of GSK3 [9] (unpublished data). In addition 
to their effect on GSK3, PI3K/AKT inhibitors also medi-
ate BIM upregulation through activation of FOXO3a [13, 
34]. AKT phosphorylates FOXO3a on Thr32, Ser253, and 

Fig. 1   The consequences of GC stimulation in GC-sensitive cells. 
In the absence of GC, GR and GSK3α associate in a large hetero-
meric complex. Upon GC binding, GR dissociates from the complex 
and undergoes dimerization and phosphorylation (1). Dimerized GR 
translocates to both nucleus (2) and mitochondria (3). In the nucleus, 
GR transactivates and transrepresses multiple genes. Of special note 
is FOXO3a TF (4) which upregulates BIM expression (5). In addi-
tion to GR, GSK3α also dissociates from the heteromeric complex 
(6) and, following immediate interaction with GSK3β, binds BIM to 

promote its pro-apoptotic activity (7). Upregulated and activated BIM 
induces BAX and BAK oligomerization (8) and inhibits BCL2 (9). 
GSK3 phosphorylates BAX and promotes its mitochondrial translo-
cation (10). Concomitantly, it phosphorylates VDAC and inhibits its 
subsequent association with HKII, thus enabling reduction in mito-
chondrial membrane potential (11) by GR (12). Reduction in mito-
chondrial membrane potential along with oligomerization of BAX 
and BAX results with release of cytochrome c and Smac/DIABLO 
that initiates the apoptotic process
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Ser315, a process that causes its binding to the 14-3-3 pro-
teins. This interaction leads to their immediate export from 
the nucleus followed by inhibition of FOXO3a-dependent 
transcription [34]. Indeed, FOXO family proteins regulate 
cell survival by transcriptionally modulating the expression 
of death receptor ligands and BIM [13]. Hence, inhibition 
of PI3K/AKT signaling relieves the inhibitory phosphoryl-
ation from FOXO3a, which upregulates expression of BIM.

We have also found that inhibition of PI3K/AKT medi-
ates Nur77 activation [8, 35] through inhibition of its pro-
teasomal degradation [8]. Nur77 is a transcription factor 
controlled by external stimuli, but it is not expressed in 
resting cells. Nur77 mRNA is upregulated in both B [36] 
and T [37, 38] lymphocytes following activation by anti-
gen–receptor ligation. It has been implicated in negative 
selection of T cells [39], whose pro-apoptotic action can-
not be offset by BCL2 [40, 41]. Nuclear Nur77 may cause 
apoptosis by upregulating pro-apoptotic proteins, such as 
FasL and TRAIL [41, 42]. Nur77 also acts at the mitochon-
dria by binding to BCL2 and converting it into a pro-apop-
totic protein [40, 41]. AKT directly phosphorylates Nur77 
in its DNA-binding domain, resulting in reduced Nur77 
DNA binding and transcriptional activity [35]. In addition, 
AKT stimulates Nur77 association with 14-3-3 protein 
by phosphorylating Nur77, a process that inhibits Nur77 
activity [43]. Furthermore, AKT phosphorylation of Nur77 
blocks its mitochondrial targeting and association with 
BCL2 [44]. Indeed, AKT mediates reduction in activation-
induced cell death of T cell hybridomas by inhibition of 
Nur77 [43]. We demonstrated that in low-BCL2-expressing 
cells, inhibition of PI3K/AKT causes Nur77 to act mainly 
at the nucleus as a promoter of GC-induced apoptosis. 
However, in high-BCL2-expressing cells, when PI3K/AKT 
is inhibited, Nur77 acts at both the nucleus and mitochon-
dria, since BCL2 entraps some Nur77 particles and avoids 
them from translocating to the nucleus (unpublished data). 
Inhibition of Nur77 in BCL2-positive or BCL2-negative 
GC-resistant cells avoids PI3K/AKT inhibitors from sensi-
tizing these cells to GC-induced apoptosis [8] (unpublished 
data). Nur77 is not affected by DEX treatment in both GC-
sensitive and GC-resistant cells; thus, Nur77 upregulation 
is not directly involved in advancing GC-induced apoptosis 
but acts to overcome GC resistance. Finally, the PI3K/AKT 
inhibitor staurosporine slightly induces GR translocation to 
the mitochondria upon DEX treatment of GC-resistant cells 
[8]. However, the level of mitochondrial GR in such cells is 
far below that observed in GC-sensitive ones. Hence, it is 
unlikely that this is the major mode by which staurosporine 
sensitizes cells to GC-induced apoptosis.

In summary, GC-resistant cells are distinguished from 
sensitive ones by three parameters as follows: (1) GSK3α 
is not bound to their cytosolic unstimulated GR, (2) upon 
stimulation with GC, their GR does not translocate to the 

mitochondria, and (3) their PI3K/AKT signaling path-
way is highly activated. They express high level of anti-
apoptotic proteins belonging to the BCL2 superfamily 
(Fig. 2). AKT inactivates FOXO3a by phosphorylation on 
Thr32, Ser253, and Ser315 [34], and as a consequence, 
BIM upregulation is inhibited (Fig.  2). AKT also inacti-
vates GSK3 and Nur77 by inhibitory phosphorylation on 
Ser21/9 and Ser350, respectively [30, 35] (Fig.  2). BIM 
and GSK3 are essential for GC-induced apoptosis, and 
therefore, their inhibition by AKT confers GC resistance. 
In addition, resistant cells usually express high levels of 
BCL2 superfamily proteins. Such proteins further antago-
nize GC-induced apoptosis by inactivating BAX and BAK, 
a process that can be overcome by hyperexpression of 
BIM [45] (Fig. 2). Forced inhibition of PI3K/AKT signal-
ing relieves the inhibitory phosphorylation from FOXO3a, 
GSK3, and Nur77 but rarely induces mitochondrial GR 
translocation (Fig.  2). As a consequence, GC-mediated 
FOXO3a upregulation is not inhibited by AKT, and there-
fore, it is free to induce BIM transcription. Active GSK3 
further activates BIM and BAX and inhibits many survival 
signaling pathways, such as β-catenin, VDAC, and HKII. 
Finally, activated Nur77 translocates either to the nucleus, 
where it upregulates transcription of pro-apoptotic genes 
such as FasL and TRAIL [41, 42], or to the mitochondria, 
where it converts anti-apoptotic BCL2 to a pro-apoptotic 
protein [40]. Upregulated and activated BIM, along with 
inhibition of BCL2 and VDAC, positively regulates BAK 
and BAX, thereby enabling the advancement of the apop-
totic pathway.

Conclusions

We have defined two levels at which GC-induced apopto-
sis of leukemia and lymphoma cells is regulated. Receptor 
translocation to the mitochondria distinguishes between 
sensitive lymphoid cells and other cells expressing GR but 
inherently resistant to GC-induced apoptosis. Mitochon-
drial GR is mandatory but not sufficient to induce apopto-
sis. Concomitantly, the cell kinome is playing a crucial role 
in advancing the intrinsic apoptotic pathway initiated by 
mitochondrial GR. In this regard, activation of the protein 
kinases GSK3 and BIM is essential for the GC-mediated 
apoptotic death response.

Each level can become a subject for intervention to pro-
long the sensitivity of hemopoietic malignant cells to GC 
therapy or even resensitize fully resistant cells to respond. 
We have shown earlier that staurosporine induces GSK3 
activation, as well as upregulation of Nur77 and BIM. By 
these virtues, staurosporine can turn resistant cells into 
sensitive ones. Specific inhibitors of PI3K and AKT, such 
as wortmanin, help in keeping GSK3 active and defer 



41Cancer Immunol Immunother (2014) 63:37–43	

1 3

the emergence of cells that become apoptotic resistant in 
response to GCs, thus adding a new opportunity for retain-
ing the apoptotic response to CG hormones. Further studies 
may identify additional protein kinase-specific inhibitors 
that can effectively sensitize hematopoietic cancer cells to 
GC-induced apoptosis.

Glucocorticoid-based therapy has been practiced for 
more than half a century and seems to remain as a prin-
cipal tool in the management of blood malignancies. It is 
thus highly desirable to search for treatment modalities that 
maintain and prolong the apoptotic response to the hor-
monal treatment. To this end, combining GC therapy with 
protein kinase inhibitors that offset GC resistance may be a 
promising approach.
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