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or aberrantly induced in CSCs allowed the develop-
ment of small agents for specifically targeting of CSCs. 
A general low immunogenic profile has been reported 
for CSCs with, in some cases, the identification of the 
mechanisms responsible of the impairment of cell-medi-
ated immune responses. These concepts are discussed in 
the context of this review. Although CSCs still need to 
be fully characterized, potential candidate markers and/
or signaling pathways, to be exploited for the design of 
novel CSC-targeting therapeutic strategies, are described 
in this review.

Keywords  Cancer stem cells · Cancer stem cells-
associated signaling pathways · Immunological profile · 
Immune modulation · CSC-targeted therapies ·  
NIBIT 2013

Abbreviations
ALDH	� Aldehyde dehydrogenase
BMP4	� Bone morphogenetic protein 4
COA-1	� Colon antigen-1
CRC	� Colorectal cancer
CSCs	� Cancer stem cells
DLL4	� Delta-like ligand 4
GDF-15	� Growth differentiation factor-15
GBM	� Glioblastoma multiforme
IFN	� Interferon
mAb	� Monoclonal antibody
MDR1	� Multi-drug resistance 1 gene
PD-1	� Programmed death 1
PGE2	� Prostaglandin E2
PI3K	� Phosphatidylinositide 3-kinase
PTEN	� Phosphatase and tensin homolog
TGFB-1	� Transforming growth factor beta 1
XIAP	� X-linked inhibitor of apoptosis

Abstract  Cells with “stemness” and tumor-initiating 
properties have been isolated from both hematological 
and solid tumors. These cells denominated as cancer 
stem cells (CSCs), representing rare populations within 
tumors, have the ability to metastasize and are resistant 
to standard therapies and immunotherapy. Heterogene-
ity and plasticity in the phenotype of CSCs have been 
described in relation to their tissue origin. Few defini-
tive markers have been isolated for CSCs from human 
solid tumors, limiting their usage for in vivo identifica-
tion of these cells. Nevertheless, progress in the emerg-
ing CSCs concept has been achieved gaining, at least 
for some type of tumors, their biological and immuno-
logical characterization. The recent identification of 
molecules and signaling pathways that are up-regulated 
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Introduction

Tumor tissues comprise heterogeneous populations of cells 
with a minority of them displaying stemness/tumor-ini-
tiating properties, defined as cancer stem cells (CSCs) or 
cancer-initiating cells (CICs). These cells have been char-
acterized by self-renewal, multipotency, and tumorigenic 
properties [1–4]. Tumor cells with stemness/tumor-initiat-
ing properties have been isolated from both hematological 
and solid tumors [2–4].

A variety of markers have been used for ex vivo isola-
tion of CSCs [5], though recent evidences have revealed 
that most of them are limited to the enrichment in these 
cell populations and are widely expressed in many organs 
as well. These markers have been chosen on the evidences 
that they can discriminate cell subpopulations enriched or 
negative for their expression. However, the heterogeneity 
of tumors, the interaction with the microenvironment, the 
origin of CSCs, and the genetic background can influence 
the phenotype, the biological properties, and the plasticity 
of these rare cells [4–6]. Few definitive CSC markers have 
been identified based on the biological characteristics and 
tissue origin of these cells, such as Lgr5 and CD44v6 in 
colorectal cancer (CRC), which are both target molecules 
of Wnt pathway, and are required for clonogenic and meta-
static properties of CSCs [7, 8]. The identification of func-
tional markers that are related to the “stemness properties” 
represents more precise tools for the ex vivo isolation of 
CSCs. The increasing efforts in understanding the signal-
ing pathways up-regulated or aberrantly activated in CSCs 
allowed better biological and functional characterization of 
these cells [7, 8].

CSCs are resistant to chemotherapy, radiotherapy and 
possibly to immunotherapy [9–11] although studies in the 
sensitivity of CSCs to immunotherapeutic approaches are 
somewhat limited. CSC-targeted therapeutic interventions 
are desirable to achieve complete tumor eradication. A 
comprehensive identification of biological and immuno-
logical properties of CSCs in relation to their origin and 
tumor microenvironment is needed to develop novel and 
more effective therapeutic interventions for cancer patients. 
A number of small molecules targeting signaling pathways 
associated with CSCs or monoclonal antibodies (mAb) 
specifically directed to these cells have been pre-clinically 
developed, and it can be envisaged that they will be the 
object of future clinical studies. Notably, the introduction 
in clinical practice of agents that target the blockade of 
immune checkpoints has improved the survival of patients 
with different solid tumors [12, 13]. The combination of 
these therapies with other interventions, such as chemo-
therapy, radiotherapy, targeted therapies, and vaccination 
with tumor antigens, opens a window of opportunity for the 
cure of solid tumors. Thus, next generation therapies based 

on increased knowledge of CSC characteristics and possi-
bly, on the combination of therapeutic interventions, such 
as immunotherapy and CSC-specific-targeted therapies, 
need to be developed to achieve complete eradications of 
tumors.

Cancer stem cells: phenotype and signaling pathway

Initial phenotypic characterization of CSCs has been 
achieved through the prospective identification of tumori-
genic or clonogenic cells isolated from the bulk tumor mass 
by flow cytometry or immunomagnetic selection. Using 
these assays, the presence or the absence of some surface 
molecules have been proposed as stem cell markers, such 
as CD34+/CD38− [3], CD44+/CD24−/low [14], CD133 
[15], CD44 alone or in combinations with other antigens 
[16], and ephrin receptors [17, 18]. In other instances, 
the use of fluorescent dyes has allowed a similar enrich-
ment of CSCs. While the property of excluding a Hoechst 
dye originally developed for normal stem cells has been 
attempted with limited success, the high enzymatic activ-
ity of ALDH has been more convincingly demonstrated to 
characterize the tumor-initiating cells in breast and thyroid 
cancer [19, 20]. More recently, the efforts have been con-
centrated on detection of functional markers that promote 
survival and migration of CSCs, such as integrin alpha 6 in 
glioblastoma [21] or CD44v6 in colorectal cancer [8]. The 
search for phenotypic similarities between normal and can-
cer stem cells has been primarily investigated based on key 
genes involved in embryonic stem cell maintenance and 
cell reprogramming. Sox2, Nanog, and Oct4 are expressed 
in CSCs from different tumors and have been extensively 
proposed as prognostic biomarkers [22].

The peculiar signaling pathways active in CSCs results 
from the combination of genomic aberrations relative to 
the oncogenic transformation and the epigenetic status of 
immature stem-like cells. Some of the so-called stem cell 
genes have a direct impact on the signal transduction. For 
instance, Nanog can complex with Stat-3 and promote the 
activation of genes that contribute to increase survival and 
therapy resistance in CSCs, such as MDR1/ABCB1 [23]. 
The PI3K/AKT seems one of the most critical pathways 
in CSCs [8]. PTEN is epigenetically silenced in colorectal 
CSCs. Its expression is absent in the more immature com-
partment and gradually acquired during differentiation [24, 
25]. Although it is still unclear how PTEN silencing occurs, 
recent evidence clarified the pivotal role played of PI3K in 
maintaining the tumorigenic activity of colorectal CSCs 
and the ability of PI3K activation to reprogram non-tum-
origenic progenitors into tumorigenic CSCs [8]. Proteins 
of the extracellular matrix deliver other critical signals in 
CSCs. The interaction between hyaluronic acid and CD44 
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as well as between integrins and laminin or fibronectin trig-
gers a series of biochemical events leading to increase sur-
vival and invasion, which are two key properties of CSCs, 
essential for tumor growth and progression [8, 9]. Although 
the ability of CSCs to generate metastasis has been pos-
tulated for years, only recently the mechanisms responsi-
ble for increase in invasiveness and metastatic activity of 
CSCs are beginning to become clear [26, 27]. In carcino-
mas, CSCs show traits of EMT that contribute to enhance 
the metastatic potential conferred by cMET and CD44 iso-
forms [8, 28]. The activity of such receptors is not confined 
to CSCs from carcinomas, but it is shared by tumorigenic 
cells in glioblastoma and melanoma [28]. Thus, intense 
efforts are directed on the targeting of relevant receptor–
ligand interaction or their signaling pathways.

Therapeutic targeting of cancer stem cells

Targeting of CSCs carries the hope of curing cancer by hit-
ting the source that feeds the tumor cell mass. However, 
this task appears extremely challenging. CSCs have been 
shown to be resistant to chemotherapy and radiotherapy 
[10, 11, 29, 30]. In vitro drug screenings have shown that 
only a limited number of compounds are able to kill CSCs 
at nanomolar concentrations [31, 32]. Likewise, targeting 
of death receptors may not be an easy task, at least in the 
systems explored so far, such as glioblastoma multiforme 
(GBM) and breast cancer. Neural stem cells do not express 
caspase-8, which is required for generation of death recep-
tor signals [23]. Caspase-8 promoter methylation occurs in 
GBM stem cells and their progeny [33]. Thus, the possible 
use of death receptor agonists needs to be combined with 
drugs or molecules that are able to up-regulate caspase-8. 
As for breast cancer, although some CSCs from established 
cell lines have been proposed to be sensitive to TRAIL 
receptor agonists [34, 35], suppression of the caspase-8 
inhibitory partner c-Flip may be required to enhance the 
efficacy of TRAIL receptor targeting [36].

CSC resistance to radiotherapy may be overcome by 
the use of small molecules that sensitize resistant cells 
to apoptosis. This may be the case of XIAP inhibition in 
GBM stem cells [37]. The radioresistance of glioma stem 
cell seems mostly to be mediated by the activity of check-
points that allow the irradiated stem cell to undergo cell 
cycle arrest and repair the DNA breaks without undergo-
ing mitotic catastrophe [29]. This mechanism has been pro-
posed for chemotherapy resistance in CSCs of NSCLC and 
colorectal cancer [38], raising the possibility to develop 
effective combined therapies using chemotherapy and cell 
cycle checkpoint inhibitors [30].

Upon terminal differentiation, CSCs lose the clono-
genic and tumorigenic activity [16, 39, 40]. Thus, another 

possible therapeutic strategy for effective CSC targeting 
may involve differentiation therapy. The use of retinoic 
acid in combination with either chemotherapy or arsenic 
trioxide in promyelocytic leukemia has completely turned 
deadly disease in one of the most curable malignancies, 
thus creating a paradigm for the beneficial therapeutic 
effect of enhancing cancer stem cell differentiation [41]. 
Although similar attempts in solid tumors have had limited 
success, the technologies to purify and expand CSC from 
solid tumors allow for the discovery of new molecules and 
mechanisms that promote the differentiation therapy in 
preclinical models of solid tumors. The first evidence has 
come in GBM, where BMP4 has been shown to promote 
terminal differentiation of CSCs. Moreover, in vivo deliv-
ery of bead-conjugated BMP4 showed a therapeutic effect 
in CSC-based orthotopic tumor xenografts [39]. Again in 
GBM, similar data were obtained with a modified version 
of BMP7 that does not require delivery attached to beads 
[42]. As for other tumors, BMP4 has proven to induce CSC 
differentiation and sensitization to chemotherapy in colo-
rectal cancer [25], suggesting that such potential therapeu-
tic effect is not confined into glioblastoma, but may be rel-
evant in some carcinomas.

Another promising field involves the development of 
Abs targeting CSC-related pathways, such as Notch, whose 
prototype appears to be an anti-DLL4 [43] that is cur-
rently in clinical trials. Other CSC-related pathways that 
are targeted successfully in preclinical studies are Indian 
and Sonic Hedgehog, for which there is a human-specific 
mAb targeting the interaction between CSCs and stroma 
[44]. Finally, there are mAbs targeting CSC surface mark-
ers that have been shown effective in preclinical studies. 
These include anti-CD44 [45], anti-CD133 [46], and integ-
rin alpha 6 [21]. Although these are not clinically approved 
therapeutic agents specifically targeting CSCs as yet, there 
is considerable expectation among the scientific commu-
nity that a number of new preclinical molecules targeting 
CSCs will enter clinical trials in the near future.

Immunological profile of CSCs

The improvements of methods to isolate and to expand 
in vitro CSCs have allowed a few groups to analyze the 
immunological properties of these cells. A comprehensive 
immune profile was gained for CSCs isolated from GBM. 
A comparison of the expression MHC and the antigen pro-
cessing machinery molecules between GBM and CSCs and 
their autologous non-CSC counterparts have been carried 
out, highlighting a defective expression of these molecules 
by CSCs and low sensibility to the modulation by IFN 
(both α and γ) as well as de-methylating (5-Aza CdR) treat-
ments [47]. Thus, a general down-modulation of antigen 
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processing and presentation may affect the ability of CSCs 
to elicit a T cell-mediated immune responses. Along these 
lines, ligands of NKG2D (MICA/B and ULBPs) that 
engage directly or by co-stimulation the NKG2D receptor 
on NK or T lymphocytes, respectively [48], were also found 
to be down-modulated on GBM-CSCs, leading to impair-
ment of cell-mediated immune responses. Differential gene 
expression, which was confirmed at the protein levels for 
some immunological-related molecules, was detected in 
GBM-CSCs as compared to differentiated autologous non-
CSCs, corroborating the hypothesis that CSCs from GBM 
display peculiar biological and immunological profiles 
that differ from that of cells lacking “stemness” functions 
within the same tumor [47, 49]. The evidence that GBM-
CSCs can play negative regulatory functions on lympho-
cytes was provided by the observation that impairment of 
the proliferation of T cells and that a preferential differen-
tiation toward a TH2 type subset occurred by the co-culture 
in vitro of CSCs with autologous or allogeneic lympho-
cytes [47]. The immunosuppressive activity of CSCs has 
been described both in GBM and melanoma, showing that 
these cells can release soluble suppressive factors, such as 
Galectin-3, TGF-β2, IL-10, IL-13, PGE2, PD-1, B7-H1, 
B7-H3, and GDF-15 and can then induce the differentia-
tion of T cell regulatory functions [50–53]. The variability 
in the quality and quantity of immune-suppressive factors 
associated with CSCs can be detected in relation to their 
tissue of origin; nonetheless, common immunosuppressive 
features are found despite the levels of heterogeneity of 
these cells.

In line with these observations, scant immunogenic 
properties were found also in CRC-derived CSCs, indi-
cating that this feature is not merely affected by the his-
tological origin of these cells, but is determined by the 
“stemness” functions of these cells [54]. CRC–CSCs have 
been found to express IL-4 and IL-4R, at elevated levels 
compared with the autologous non-CSCs [54, 55].

The IL-4 signaling in epithelial tumor is linked to unre-
sponsiveness to standard therapies such as chemotherapy 
by inducing resistance to apoptosis [55, 56]. Recently, an 
immune-suppressive role of CSC-associated IL-4 was 
documented [54]. Notably, this phenomenon was depend-
ent on in vitro cell-to-cell contact between CSCs and T 
cells and was not mediated by the autocrine engagement 
of IL-4. The evidence that the negative cross talk between 
CSCs and T lymphocytes needs a joint cellular interaction 
was demonstrated by the fact that soluble IL-4 released by 
CRC–CSCs, only partially affected T cell functions. The 
neutralization of IL-4, e.g., by specific monoclonal anti-
bodies, can restore the immunogenicity of CRC–CSCs, 
leading to the efficient T cell proliferation and induction 
in vitro of anti-CSC TH1 type responses. Interestingly, fol-
lowing the neutralization of IL-4 signaling an enrichment 

of CD8+ T effector memory cells was also observed, indi-
cating that the blocking of IL-4 can prevent at least one 
of the immunosuppressive mechanisms associated with 
CRC–CSCs and can modify the tumor–lymphocyte inter-
action, supporting activation and proliferation of T rather 
than NK cells. Indeed, CRC–CSCs have been described to 
be highly susceptible to NK cell recognition due to the effi-
cient expression by these cells of NK-receptor ligands and 
the lack or low expression of MHC class I molecules [57]. 
The expression of NK-receptor ligands by CRC–CSCs 
was in disagreement with previous data by our and other 
groups in the context of GBM model, where an immune-
suppressive phenotype prevented anti-tumor activity by 
NK cells [47, 58]. However, the activation of NK cell func-
tions was shown following their culture in vitro with pri-
mary oral squamous carcinoma or ovarian CSCs [59, 60], 
representing further evidences of the high heterogeneity of 
CSCs deriving from different tumors. Multiple mechanisms 
of immunoregulatory activity are exploited by CSCs to 
escape from cell-mediated immune surveillance, indicating 
the complexity of the immunological profile of these cells 
(Fig.  1). Moreover, none of this negative immunoregula-
tory signaling is CSC-specific, being shared with normal 
stem cells [61, 62] and thus associated with “stemness” 
functions.

Further efforts are needed to dissect the relationship 
between CSCs and anti-tumor immunity; however, thus 
far, the available data provide clues for the identification of 
strategies that can revert CSC-based immunosuppression, 
for the design of new immunotherapeutic approaches for 
patients with solid tumors (Fig. 1).

What type of tumor‑associated antigens is expressed 
by CSCs?

An exhaustive antigenic profile of CSCs still needs to be 
assessed. Several groups have reported the expression of 
human tumor antigens shared with the non-CSC counter-
parts of the tumors and the isolation of T cell responses 
targeting these molecules [5]. Nevertheless, besides scant 
antigen processing and presentation (as discussed below), 
low levels of expression of these molecules were found to 
be associated with CSCs [47], preventing from an efficient 
induction of tumor-specific T cell responses. Of interest, T 
cell responses elicited by CSCs and directed to the COA-1 
antigen have been detected in CRC patients. These results 
highlighted that COA-1 may represent a relevant target 
molecule for T cell responses against CRC–CSCs. Moreo-
ver, highly efficient antigen-specific anti-tumor immune 
responses could be achieved when CSCs with neutralized 
IL-4 signaling where used as stimulators [54]. In future 
studies, it would be worthy to investigate the mechanisms 
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that can lead to differential antigen processing and pres-
entation between CSCs and the non-CSC tumor cells. The 
determination of comprehensive genomic and immunologi-
cal profiles of CSCs is desirable to identify new CSC-spe-
cific antigens that can represent novel target molecules for 
immunotherapy.

Conclusions and perspectives

The biological and immunological features of CSCs iso-
lated from solid tumors have been summarized as discussed 
in the context of the XIth NIBIT meeting.

Progress in the development and in understanding the 
CSCs concept has allowed for a better biological character-
ization of these cells. Indeed, aberrantly up-regulated and/
or activated CSC-associated signaling pathways have been 
identified that are related with “stemness” and the ability 
to metastasize. Moreover, this information has allowed for 
the isolation of CSC-associated markers that are relevant 

tools for ex vivo characterization of cells with tumor initia-
tion and propagation properties. Thus, small molecules and 
mAbs that target these structures have been developed and 
will enter soon clinical studies.

Despite some possible differences depending on the 
protocols for the isolation in vitro of CSCs and on their 
genomic background and/or histological origin, these cells 
can display immune-modulatory activities. The informa-
tion provided by the analysis of the immunological profile 
of CSCs from GBM and CRC are important in enabling 
appropriate targeting of the negative immune-modulatory 
molecules expressed by these cells (Fig. 1). Further efforts 
are needed to achieve a comprehensive biological and anti-
genic characterization of CSCs. This information will have 
relevant implications for the design of novel CSC-targeting 
agents including immunotherapy and/or of combinatorial 
therapies based on targeted therapies and immune-modula-
tory agents.

Conflict of interest  The authors have no conflict of interest.

Fig. 1   Escape from cell-mediated immune surveillance by CSCs. 
CSCs have impairment of antigen processing and presentation 
machinery. In the presence of efficient expression of ligands of NK 
receptors, they can be susceptible to NK but not to T cell recogni-
tion (a). Cell-mediated immune reactivity is totally impaired whether 

both antigen processing and presentation machinery and ligands of 
NK receptors are down-modulated on CSCs (b). In addition, CSCs 
can either express on the membrane or secrete a variety of negative 
immune-modulatory molecules that can affect cell-mediated immune 
surveillance
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