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Abstract

Purpose Adult patients with relapsed high-grade glioma

are a very heterogenous group with, however, an invariably

dismal prognosis. We stratified patients with relapsed high-

grade glioma treated with re-operation and postoperative

dendritic cell (DC) vaccination according to a simple

recursive partitioning analysis (RPA) model to predict

outcome.

Patients and methods Based on age, pathology, Karnof-

sky performance score, and mental status, 117 adult

patients with relapsed malignant glioma, undergoing re-

operation, and postoperative adjuvant dendritic cell (DC)

vaccination were stratified into 4 classes. Kaplan–Meier

survival estimates were generated for each class of this

HGG-IMMUNO RPA model. Extent of resection was

documented but not included in the prognostic model.

Results Kaplan–Meier overall survival estimates revealed

significant (p \ 0.0001) differences among the 4 HGG-

IMMUNO RPA classes. Long-term survivors, surviving

more than 24 months after the re-operation and vaccina-

tion, are seen in 54.5, 26.7, 11.5, and 0 % for the classes I,

II, III, and IV respectively.

Conclusion This HGG-IMMUNO RPA classification is

able to predict overall survival in a large group of adult

patients with a relapsed malignant glioma, treated with

re-operation and postoperative adjuvant DC vaccination in

the HGG-IMMUNO-2003 cohort comparison trial. The

model appears useful for prognostic patient counseling for

patients participating in DC vaccination trials. A sub-

stantial number of long-term survivors after relapse are

seen in class I to III, but not in class IV patients.

Keywords Malignant glioma � Cancer vaccine �
Dendritic cell � RPA

Introduction

Recursive partitioning analysis (RPA) is known as a model

to define prognostic classes based on treatment and pre-

treatment prognostic variables [1, 2]. For newly diagnosed

high-grade glioma (HGG), the radiation therapy and

oncology group (RTOG) first described 6 prognostic clas-

ses in a recursive tree analysis in 1993 [3]. Thus far, the

RTOG RPA model has been validated in groups of patients

with newly diagnosed malignant gliomas treated in several

ways. Validation has been performed for external beam

radiation therapy [4], brachytherapy [5], chemotherapy [6],

and radiosurgery [7]. More recently, the European Orga-

nisation for research and treatment of cancer (EORTC)

adapted this RPA model to the current state of the art
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treatment strategy of radiotherapy and concomitant che-

motherapy with temozolomide in patients with newly

diagnosed glioblastoma (GBM), considering the impor-

tance of the dose of radiation, the concomitant, and the

adjuvant temozolomide therapy [8]. However, a compara-

ble validation in adult patients with relapsed high-grade

glioma (HGG) treated in a uniform way, other than with

chemotherapy, has not been done. Carson et al. [9] pub-

lished a RPA model, built upon data of 10 large phase I and

II chemotherapy trials in patients with relapsed GBM. As

such, within this heterogeneous group of patients, the

diverse treatment regimens pooled in this model of Carson

et al. [9] potentially further confound the outcome data.

Moreover, it is impossible to use the Carson classification

in patients treated with dendritic cell (DC) vaccination, as

administration of steroids to the patient (in up to almost 2/3

of patients in the pooled trials building the Carson classes)

is an important third-line question in the recursive tree. For

postoperative adjuvant DC-based vaccination, however,

steroids are to be avoided because of their immunosup-

pressive properties.

Nevertheless, there is a high need for patient stratifica-

tion according to validated prognostic parameters given the

high number of phase I/II trials of experimental and purely

innovative treatment strategies, of which the real or pos-

sible clinical value is often hard to estimate due to the

usually very heterogeneous nature of such patients’ popu-

lation. Especially, the importance of pre-treatment patient-

related variables should be stressed in these models, given

the wide-spread belief that in high-grade gliomas, pre-

treatment prognostic factors have more impact on outcome

than any (new) potentially active therapy or treatment

strategy [10].

We advocate the use of a prognostic model based on

simple, pre-treatment patient, and tumor-related parameters

rather than surrogate immunological endpoints to estimate

the clinical value and potentials of DC-based immuno-

therapy for many reasons. Indeed, since recently, a growing

consensus is rising on the use of overall survival as the far

most important and discriminatory endpoint in the design

of clinical trials for cancer vaccines, as expressed in the

consensus review report of the Association for Cancer

Immunotherapy (CIMT) by Bilusic et al. [11]. We [12–15]

and others [16–21] explored several immunological assays

like delayed-type hypersensitivity tests, ELISPOT, MHC-

tetramer analyses to detect tumor-specific T-cell clones, or

different cytotoxicity assays, all trying to demonstrate

tumor-specific antitumor T-cell cytotoxicity in glioma

vaccination trials: apart from one group [22], all failed to

show any correlation with clinical outcome. All these

single immunological parameters can provide proof of the

principle but are unlikely to accurately reflect a clinically

relevant, complex in vivo immune response. Moreover, the

lack of standardization in antitumor immune monitoring to

date further confounds the field, preventing a comparison

of different immune therapy approaches. On the other

hand, it is increasingly being recognized that conventional

response criteria may not adequately assess the full

potential of immunotherapeutic strategies in general and

DC vaccination in particular [23]. Therefore, immune-

related response criteria have already been defined in

melanoma patients undergoing immunotherapy [24].

However, even when immune response status trended

toward significance in the E1696 melanoma trial, a Cox

regression showed the clinical stage at time of diagnosis to

be the strongest predictor of overall survival [25]. There-

fore, we believe that to date, a RPA model based on simple,

well-established, and generally accepted prognostic pre-

treatment clinical patient parameters is much more likely to

move the field forward than today’s unstandardized

immune monitoring assays that of course are most valid to

reveal modes of immunological action. These simple

models indeed can easily be used to compare trials and to

help decide which innovative strategies are worth to be

tested in large-scale, expensive randomized controlled

trials.

We built a HGG-IMMUNO RPA model based on age,

reference pathology grade according to WHO criteria,

KPS, and mental status in 117 consecutive adult patients

included in the HGG-IMMUNO-2003 cohort comparison

trial [13]. The inherent heterogeneity in this population is

further being explicited in the variable number of relapses

that patients had before vaccination treatment varying from

1 to 4. The main objective is to define and compare sur-

vival categories within this heterogeneous patient popula-

tion by obtaining simple, homogenous subsets of patients

with comparable outcome.

Patients and methods

One hundred and seventeen adult patients ([18 years) with

relapsed HGG included in the HGG-IMMUNO-2003 trial

to undergo re-operation at time of recurrence, followed by

vaccination with autologous DC loaded with autologous

tumor lysate, were analyzed in an intent to treat analysis. In

this cohort comparison trial, which has been approved by

the local ethics committee, patients have been included in

consecutive cohorts A, B, C, or D, all treated according to

the general concept of postoperative adjuvant autologous

DC vaccination according to the previously reported

strategy [13, 14, 26]. Quality control of the cell product

(monocyte-derived early mature dendritic cells loaded with

autologous whole tumor cell lysate) being injected intra-

dermally included viability (trypan blue exclusion), purity

based on cell morphology (DC should display cytoplasmic
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veils) and flowcytometry (DC should express MHC class II

and CD86 and should not express CD14), and sterility

(bacterial and fungal cultures and mycoplasma testing in a

validated clinical microbiology laboratory). Patients could

only be included in the trial after filling out a written

informed consent.

All these patients have previously been treated with

surgery, external beam radiotherapy, and (sometimes

multiple) chemotherapy regimens. As such, the main cri-

terium for possible inclusion was the possibility of at least

a partially operable lesion, allowing a stable weaning and

stop of steroids and the harvesting of enough viable tumor

tissue for vaccine production.

The extent of resection could be partial, subtotal, or total

but is not included in the model. Extent of resection

was assessed by the neurosurgical report and an early

postoperative MRI with and without gadolinium within

72 h after the resection. Gross total resection was defined

as the absence of any nodular postoperative contrast

enhancement.

To build the model, we only used well-established and

generally accepted pre-treatment variables; age with a cut-

off at 50 years and reference pathology being classified

according to the WHO classification [27]. Performance

status was scored using Karnofsky Performance Score [28],

ranging from 0 to 100 with cut-offs at 90 and 70 depending

on the RPA class. Mental Status was assessed using the

mini mental state examination (MMSE) [29], with a cut-off

value of 27. These predefined variables, that is, age, per-

formance status, reference pathology, mental status, and

extent of resection, were tested in an univariate, log-rank

survival analysis as possible prognostic parameters and

hazard ratios (HR) with 95 % confidence intervals (CI)

were calculated. Considering the resulting sample size of

partitioning (by dichotomization or categorization) by the

respective prognostic parameters and the magnitude of the

respective statistically significant hazard ratios in univari-

ate analysis, a recursive tree was built in a stepwise matter.

At each partitioning step, univariate survival analysis

according to the remaining parameters was repeated. As the

investigated treatment consists of surgical resection fol-

lowed by postoperative, autologous DC vaccination, extent

of resection was not considered as a ‘‘pre-treatment’’ var-

iable and as such, it was not considered to contribute to the

partitioning tree. Given the limited sample size, the number

of prognostic parameters to build the RPA tree was

restricted to maximally four. The recursive tree built by

these parameters and resulting in 4 prognostic classes is

depicted in Fig. 1. All analyses were performed using SAS

software, version 9.2 of the SAS System for Windows

(Copyright � 2002 SAS Institute Inc.) SAS, and all other

SAS Institute Inc. product or service names are registered

trademarks or trademarks of SAS Institute Inc., Cary, NC,

USA. Statistical survival analysis was done by log-rank test

on Kaplan–Meier survival estimates.

Results

Distribution of variables

In Table 1, the relative distribution of the prognostic

variables is depicted for the 117 patients included in the 4

classes. Remarkably, 70.1 % of patients belong to class II

and III, reflecting the classical majority of patients in this

setting of (multi-)relapsed HGG. 20.5 % of patients belong

to class IV, reflecting the patients above 50 with a poor

mental status, a poor performance status or both. For

obvious reasons, patients in class IV are only rarely eligible

for inclusion in trials. The vast majority of patients in class

III and IV have a glioblastoma (WHO grade IV). Glio-

blastoma patients are, as by definition, absent in class I: this

class only harbors younger patients with recurrent WHO

grade III lesions. From classes I to IV, median age of

patients seems to increase. Median KPS, expressed as the

preoperative performance state before vaccination, declines

from class II to IV. Patients with an abnormal mental

status, defined as a mini mental state examination score of

less than 27, are only encountered in class IV. Although not

mandatory for this RPA classification, extent of resection

was routinely assessed using an early postoperative MRI.

The percentage of patients with a gross total resection

before vaccination seems to be fairly equal over the dif-

ferent classes, with a gradual and slight decrease over class

II to class IV, and class IV being equal to class I. Con-

sidering the presumed beneficial effect of a gross total

resection before vaccination [13, 14, 30], one might assume

that the actual percentages of gross total resections in the

different classes of this series further strengthen the impact

of this RPA classification on overall survival at least for the

differences between class II, III, and IV. The total numbers

of patients belonging to cohort A, B, C, and D were 15, 19,

32, and 51 patients respectively, all proportionally dis-

tributed over the final 4 prognostic RPA classes. A non-

significant trend toward better OS was noted in each cohort

as compared to the previous cohort, but cohort membership

did not contribute to the RPA model.

Prognostic parameters

Age, dichotomized at less than 50 years versus 50 years or

older, resulted in a HR of 0.4894 (95 % CI; 0.3420–0.8248

and p = 0.0048). Reference pathology at time of re-oper-

ation, dichotomized and recoded as non-GBM HGG (WHO

grade III) versus GBM (WHO grade IV) resulted in a HR

of 0.5923 (95 % CI; 0.3609–0.8460 and p = 0.0063).
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Extent of resection dichotomized and recoded as total

versus non-total resulted in a HR of 0.5512 (95 % CI;

0.3587–0.8022 and p = 0.0024). Mental status dichoto-

mized as normal (MMSE C27) versus abnormal (MMSE

\27) resulted in a HR of 0.2546 (95 % CI; 0.0297–0.1638

and p \ 0.0001). Only 20 patients, however, were found

to have an abnormal mental status. Finally, performance

status, categorized as KPS 90/100 versus 70/80 versus

60 or less, resulted in statistically significantly different

(p \ 0.0001) median OS of 14.1, 9.9 and 6 months

respectively with HR’s of 0.5793 (95 % CI; 0.3218–0.9217

and p = 0.024) and 0.2761 (95 % CI; 0.0802–0.2710 and

p \ 0.0001) respectively.

Internal validation

Log-rank analysis of the Kaplan–Meier survival estimates for

overall survival (OS) is depicted in Fig. 2 for each HGG-

IMMUNO RPA class. The global difference in OS between

the classes, reflecting different survival categories, is highly

statistically significant (p \ 0.0001). In Table 2, median OS

with 95 % CI, ranges of OS, 2-year survival rates with 95 %

CI calculated from the moment of the re-operation and the

numbers of patients still alive at latest follow-up (FU) are

depicted. The decreasing median OS from class I to IV,

but especially the differences in long-term survivors

([24 months after pre-vaccine re-operation), reflects clini-

cally relevant prognostic differences: in class I, median OS is

48.4 months with 54.5 % of patients surviving 24 months

and much longer. For classes II and III, these figures

are 16 months with 26.7 % and 10.6 months with 11.5 %

long-term survivors respectively. With a median FU of

25.5 months (range, 5.2–64.6 months), 24 of the 117 patients

with relapsed HGG are still alive after re-operation and

vaccination for recurrent HGG. No long-term survivors,

however, are found in class IV.

Fig. 1 HGG-IMMUNO

recursive partitioning analysis

(RPA) tree in relapsed high-

grade glioma (rHGG) patients.

\50 = age less than 50 years;

C50 = age 50 years or older;

WHO III = grade III pathology

according to the World Health

Organization criteria; WHO

IV = grade IV pathology

according to the World Health

Organization criteria; KPS
karnofsky performance score,

MMSE mini mental state

examination, nl normal, that is,

MMSE C 27; I = HGG-

IMMUNO RPA class I;

II = HGG-IMMUNO RPA

class II; III = HGG-IMMUNO

RPA class III; IV = HGG-

IMMUNO RPA class IV.

Numbers between () refer to the

number of patients allocated to

the respective arm

Table 1 Distribution of variable predictors in the RPA classes

RPA class Number Median age

(range)

Pathology

(% GBM)

Median karnofsky

(range)

Mental status

(% abnormal)

Surgery

(% total)

I 11 33.5 (19.4–49.9) 0 90 (70–100) 0 36.4

II 31 39.4 (18.6–55.4) 74.2 90 (40–100) 0 58

III 51 50.1 (19.9–68) 98 70 (40–100) 0 43.1

IV 24 61.3 (50–77.8) 92 60 (40–80) 25 37.5

RPA recursive partitioning analysis; median age in years; % GBM = percentage of patients in the corresponding class harboring WHO grade IV

tumors at reference pathology; Karnofsky = Karnofsky performance score; % abnormal = the percentage of patients in the corresponding class

having a mini mental state examination of less than 27; % total = the percentage of patients in the corresponding class having a gross total

resection before start of vaccination therapy
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Although all survival data were based on an intent to

treat analysis, the proportion of patients from the different

RPA classes who were treated per protocol (i.e. who

received at least three DC vaccines postoperatively) was

different: in class I and II, 100 % of patients were treated

per protocol, as compared to only 46 out of 51 (90.2 %)

and 18 out of 24 (75 %) patients from class III and IV

respectively.

Discussion

We built a HGG-IMMUNO RPA classification for patients

with malignant glioma and applied it to a large group of

adult patients with relapsed HGG who were re-operated

upon and vaccinated postoperatively as previously descri-

bed [13, 14, 30]. In this inherently heterogeneous group of

patients with relapsed malignant glioma, we defined 4

simple, clinically relevant prognostic classes to construct

this model. The prognostic variables considered and ana-

lyzed in this model are all commonly accepted, well-

established prognostic pre-treatment patient variables, easy

to assess, and deemed relevant for this particular group of

patients with (multi-)relapsed high-grade glioma: age (cut-

off 50 years), WHO grading of malignancy (III or IV),

Karnofsky Performance score (cut-off at 90 and 70), and

mental status (MMSE score cut-off of 27), all measured at

re-operation before inclusion. Other pre-treatment vari-

ables like the number of prior episodes of progressive

disease (ranging from 0 to 3) or the number of prior

therapies (ranging from 3 to 6) did not have a discrimi-

natory impact on the model. The extent of resection,

ranging from partial to gross total, has shown to be a

prognostic variable in our previous publications [13, 14]

and has been registered and found to be a predictor of

survival in an univariate survival analysis but not included

in the model because of three reasons: it did not add to the

discriminatory power of the classes, it further divided the

group into a larger number of classes with smaller numbers

of patients per class and most importantly, it is a parameter

that is not available at the moment of pre-treatment

counseling of the patient, who is possibly eligible for the

HGG-IMMUNO trial. Pre-treatment counseling of patients

is indeed a major reason to use this RPA classification in

the future.

Theoretically, parameters of the patients’ immune status,

preferentially measured at the glioma microenvironment

itself, could be considered as a relevant prognostic param-

eter for vaccination therapies [31]. However, several prac-

tical and theoretical considerations withheld us from its use

in this model. First, each additional possible predictor that is

being considered to contribute to the model will inevitably

reduce the number of patients in the final prognostic classes.

Secondly, we often lack large tumor samples for patho-

logical and molecular analysis as we do need a critical

volume of at least 3 cm3 to prepare the whole tumor cell

lysate, used to prepare the vaccine. The remaining tumor

volumes are used for reference pathological examination:

determining tumor-infiltrating immune cells on these small

samples would definitely be subject to a large variability

within one tumor specimen due to sampling variations

leading to non-representative results. Finally, we pointed

out that there is no correlation at all between subtypes of

immune cells in the blood as compared to the same subtypes

Fig. 2 Kaplan Meier Overall survival estimates according to the 4

HGG-IMMUNO RPA classes (class I–IV) in 117 adult patients with a

(multi-)relapsed malignant glioma, treated with re-operation and

adjuvant postoperative dendritic cell vaccination. Survival data are

calculated from the time of the pre-vaccine re-operation. Log-rank

analysis, p \ 0.0001

Table 2 Survival data according to RPA classes

RPA class Number Median OS in months (95%CI) Range of OS (months) Percentage 2-year survival (95%CI) Number still alive (%)

I 11 48.4 (23.1-ND) 8.8 till [60 54.5 (22.9–78) 5 (45.5 %)

II 31 16 (8.1–21.5) 4.7 till [64.6 26.7 (11.1–43.9) 13 (42 %)

III 51 10.6 (7.6–12.5) 2.9 till 42 11.5 (4.3–22.7) 6 (11.7 %)

IV 24 6 (4.2–7.0) 1.5 till 11.6 0 (0–17.6) 0

OS overall survival, CI confidence interval; percentage 2-year survival = percentage of patients alive 24 months or more after the pre-vaccine

re-operation; number still alive = the number and percentage () of patients still alive at latest follow-up: patients are being controlled each

3 months clinically
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in the glioma micro-environment (unpublished results): as

such, we were reluctant to introduce results of the patient’s

immune status in the blood as a relevant discriminatory

parameter in this clinical model.

This HGG-IMMUNO RPA classification resulted in 4

classes (I to IV) with a significant difference in OS in log-

rank analysis of Kaplan–Meier survival estimates. Apart

from the differences in median OS and ranges of OS, the

differences in percentage long-term survivors, defined as

adult patients with relapsed malignant glioma surviving

24 months or more after the pre-vaccine re-operation, were

strikingly distinct and especially encouraging for patients

in classes I to III; only in class IV patients, being patients

of 50 years or older with a poor global or mental perfor-

mance status at time of inclusion, no long-term survivors

have been found. For obvious reasons, however, many of

these class IV patients are not eligible for inclusion in most

classical trials of relapsed HGG patients. The long-term

survivors—even up to more than 60 months after relapse—

in class I to III are a remarkable and most relevant clinical

finding, comparing favorably to almost all other trials in

this population of (multi-) relapsed patients with HGG.

Unfortunately, no real comparisons can be made as the

classification in comparable prognostic subgroups is

missing in all studies in larger series of relapsed malignant

glioma patients. Compared to studies using the Carson

classification [9, 32], the overall long-term survival data

appear promising. Re-operation at time of recurrence,

alone or in combination with several chemotherapy regi-

mens, has been extensively studied in the past, but

invariably showed to be disappointing [33]: the additional

survival benefit was barely half the interval between the

first diagnosis and the relapse. Temozolomide in recurrent

glioblastoma did not result in any long-term survivors [34],

although in anaplastic astrocytoma, it seemed to result in

some [35]. Recently, bevacizumab (with chemotherapy) in

recurrent malignant glioma in a large single-institution trial

showed comparable results to TMZ [36]. The combination

of bevacizumab and irinotecan, however, showed promis-

ing numbers of responders with maybe some long-term

survivors in anaplastic oligodendroglioma [37]. No infor-

mation, however, was given on prognostic classes in this

trial. It should be stated that in this series, no one received

bevacizumab at any given time.

To our believe, this distinction in prognostically

homogenous subgroups creates the opportunity to better

assess the possible value of innovative strategies as such

and in comparison with other trials. This type of refined

stratification to obtain a more homogenous study popula-

tion might result in the identification of clinically mean-

ingful modifications in therapy that might map the road for

further innovation within a certain field of therapeutic

research. The efforts and financial investments for

randomized controlled trials (RCT’s) could in this way be

directed toward comparisons of therapeutic regimens that

have already shown some benefit after stratified analysis

according to validated RPA classifications.

It has to be stressed, however, that the HGG-IMMUNO

trial is only applicable to a subset of patients with recurrent

HGG who can have second surgery. This subgroup is still a

minority, even if the notion of operability is changing over

time. In a national, French GBM management report [38],

Bauchet et al. [39] included 952 consecutive patients with

newly diagnosed GBM of whom only 9.6 % underwent

reoperation at time of progression. At the other end of the

spectrum, Filippini et al., in national Italian study, reported

on 676 patients with newly diagnosed GBM and mentioned

a reoperation in 26 % of patients. Interestingly, a multi-

variate analysis in this series showed no survival benefit for

reoperation in these patients, regardless of the timing of the

reoperation before or later than 9 months after the first

diagnosis. Older studies, like those from Harsh et al. [40]

and Sipos et al. [41], already showed that reoperation could

be beneficial for patients with recurrent anaplastic astro-

cytoma, but not for those with recurrent GBM.

Finally, we deliberately built this classification based on

patients’ data from the HGG-IMMUNO trials to increase

the uniformity of the treatment applied. Several other

related and unrelated types of cancer vaccines are under

investigation for glioma patients, but given the large het-

erogeneity in the different approaches in terms of tech-

nology, patient selection and eligibility, and the relatively

small numbers of patients in most trials, a meta-analysis

approach after pooling of these data (if available) would

largely confound the results. Therefore, rather than being

used for overall counseling of patients for inclusion in any

type of immunotherapy trials, this classification could be

used to compare outcomes in comparable classes of

different trials for innovative treatments.

Conclusions

This HGG-IMMUNO RPA classification could be validated

in a large group of adult patients with relapsed malignant

glioma, treated with re-operation and postoperative adju-

vant DC vaccination in the HGG-IMMUNO-2003 cohort

comparison trial. This model is an important tool for strat-

ification of patients with relapsed malignant glioma, useful

for patient counseling and, in our opinion, mandatory for

comparing outcomes in more homogenous subgroups of

patients with relapsed malignant glioma undergoing dif-

ferent, especially non-chemotherapy-based treatment strat-

egies as a useful indicator of their possible clinical value.

This RPA classification could be used to move the field

forward, as there is no standard treatment for patients with
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relapsed high-grade glioma at the moment. Based upon the

important numbers of long-term survivors, adjuvant post-

operative DC-based vaccination can be considered in

re-operable patients with relapsed HGG.
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