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of primary human immune cells. In contrast, human glio-
blastoma cells do not harbor active CatG and might have 
lost the ability to proteolytically degrade MHC I during 
tumorigenesis to avoid NK-mediated killing. Overexpres-
sion of CatG in glioblastoma cells resulted in a rapid and 
efficient MHC I degradation. In conclusion, CatG is an 
essential protease for regulating MHC I molecules and thus 
modulation of CatG activity might present a new avenue 
for therapeutic intervention.
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eGFP	� Enhanced green fluorescent protein
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HLA	� Human leukocyte antigen
IGEPAL CA-630	� Octylphenoxy-poly(ethyleneoxy)
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Abstract  To mount an adaptive immune response, MHC 
I molecules present antigenic peptides to CTLs. Tran-
scriptional reduction of MHC I molecules is a strategy of 
immune evasion, which impairs the detection of infected or 
tumorous cells by CTLs. Natural killer (NK) cells, on the 
other hand, eliminate target cells specifically in the absence 
of MHC I. Consequently, infected or tumorous cells partly 
retain their MHC I at the cell surface to avoid NK recogni-
tion. However, it remains unclear which protease degrades 
MHC I molecules and how these cells maintain a limited 
set of MHC I at the cell surface. Here, we demonstrate that 
cathepsin G (CatG), a serine protease, found in the endo-
cytic compartment of APCs and, to a lesser extent, CatD 
and CatS proteolytically degrade MHC I molecules. Inhibi-
tion of CatG boosted MHC I expression at the cell surface 
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LHVS	� Morpholinurea-leucine-homophenyla-
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MARS116	� Marcin Sienczyk 116
NCBI	� National Center for Biotechnology 

Information
NK cells	� Natural killer cells
PC	� FBS-differentiated SC
PepA	� Pepstatin A
PVDF	� Polyvinylidene fluoride
SC	� Sphere-cultured stem cell-enriched 

glioblastoma cell population

Introduction

Cell surface MHC molecules display the intracellular status 
of the respective cell. Before MHC molecules traffic to the 
cell surface, they are loaded with processed antigens from 
different sources. Cytosolic antigens are mainly shredded 
by the proteasome and the resulting antigenic peptides are 
directed to the endoplasmic reticulum (ER) to be further 
trimmed by exopeptidases. After peptide delivery onto the 
MHC I molecule, the MHC I-peptide complex is presented 
on the cell surface to CTLs [1]. Additionally, within the 
classical MHC I antigen processing and presentation path-
way, cross talk between exogenous antigens and MHC I 
loading exists in dendritic cells, B cells, and macrophages. 
Cell surface MHC I molecules can be endocytosed (recy-
cling pathway), ER-resident MHC I molecules can traffic 
via the trans-Golgi network to the endocytic compartment 
(vacuolar pathway), or reach the phagosome, where MHC 
I are loaded with a new set of exogenous/endocytic-derived 
antigenic peptides and reach the cell surface for inspection 
by patrolling CTLs or are degraded by a yet to be identified 
protease [2–5].

Tumor cells downregulate MHC I molecules to avoid 
elimination by CTLs which is pivotal for immune evasion 
[6]. Glioblastoma, for instance, is one of the most aggres-
sive tumors, and one reason for treatment failure is the 
ability of glioblastoma cells to infiltrate the surrounding 
healthy tissue [7, 8]. Indeed, it has been demonstrated that 
invading/migrating glioblastoma cells partly downregulate 
MHC I as a strategy to evade CTL activation [9] by reduc-
ing levels of newly synthesized MHC I. On the other hand, 
glioblastoma cells still maintain a limited set of MHC I 
presumably to avoid recognition by natural killer (NK) 
cells [10].

It is not known which protease is responsible for the 
proteolytic regulation of MHC I molecules in the endocytic 
compartment (endosome/lysosome). We found that cath-
epsin G (CatG), a serine protease exhibited by distinct cell 
types including monocytes, degraded MHC I molecules. 
Consequently, inhibition of CatG boosted cell surface 

MHC I in PBMCs. Contrarily, HEK293T (proof of prin-
ciple), glioblastoma cell lines, and a sphere-cultured stem 
cell-enriched glioblastoma cell population (SC), which 
do not express CatG, degraded and downregulated MHC 
I upon reconstitution of CatG expression. This highlights 
the pivotal role of CatG in orchestrating the MHC I antigen 
presentation machinery.

Materials and methods

In vitro processing of soluble MHC I

The heavy chain of HLA-A*02:01 and HLA-B*15:01 (Ste-
fan Stevanovic, University of Tübingen, Germany) without 
transmembrane region and with a biotinylation site was 
expressed in E. coli and purified as previously described 
[11]. 0.1 μg/μl recombinant HLA-A*02:01, HLA-B*15:01, 
or HLA-C (Stratech Scientific Ltd, UK) was incubated with 
4  ng/μl CatG from human sputum (Sigma-Aldrich, St. 
Louis, MO, USA) in the presence of 10 µM pepstatin A and 
10  µM trans-epoxysuccinyl-L-leucylamido(4-guanidino)
butane, L-trans-3-carboxyoxiran-2-carbonyl-L-leucylag-
matine, N-(trans-epoxysuccinyl)-L-leucine 4-guanidin-
obutylamide (E64, Enzo Life Sciences GmbH, Lörrach, 
Germany), CatD (4 ng/μl, Enzo Life Sciences GmbH), or 
recombinant CatS (0.1 ng/μl, Enzo Life Sciences) for 2 h 
at 37  °C in reaction buffer (0.1  M citrate, pH 4.5–6.5). 
Some samples were preincubated with the CatG inhibitor 
I (10 µM, Calbiochem, Merck Chemicals GmbH, Schwal-
bach, Germany), pepstatin A (PepA, 10  µM, Enzo Life 
Sciences), or morpholinurea-leucine-homophenylalanine-
vinylsulfone phenyl (LHVS, 10  nM, Michael Reich, Ulm 
University Medical Centre, Ulm, Germany) for 10 min at 
room temperature. The digestion patterns were resolved by 
SDS-PAGE and visualized by Coomassie blue staining.

In vitro processing and Western blot

B-lymphoblastoid cells (BLC) were cultured in medium 
(RPMI 1640, Life Technologies, Darmstadt, Germany) 
supplemented with 10  % FBS and antibiotics. Cells were 
lysed with 0.5  % octylphenoxy-poly(ethyleneoxy)ethanol 
(IGEPAL CA-630), 10 mM Tris pH 7.5, and 150 mM NaCl 
and 20 µg of BLC-derived cell lysate were incubated with 
4  ng/μl human sputum CatG (Sigma-Aldrich) in 0.1  M 
citrate buffer (pH 4.5–6.5) for 2 h at 37 °C. Samples were 
boiled after addition of sample buffer including dithiothrei-
tol (DTT), resolved with a 12 % SDS-PAGE, and proteins 
were transferred to a polyvinylidene fluoride (PVDF) 
membrane (GE Healthcare, Freiburg, Germany). After-
wards, membranes were blocked for 1 h in blocking buffer 
(1× PBS, 0.05 % Tween 20, milk powder) and incubated 
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for 1  h with HLA-DR-specific antibody (CHAMP, Larry 
Stern, University of Massachusetts, MA, USA), anti-HLA-
A (MyBioSource, San Diego, CA, USA), which detects 
HLA-A, HLA-B, and HLA-C, or anti-HLA-B (HC-10, 
Stefan Stevanovic, University of Tübingen, Germany). 
After washing (PBS with 0.05 % Tween 20), HRP-conju-
gated secondary antibody (GE Healthcare) was added for 
1 h. Following additional washing steps, HRP activity was 
determined by enhanced chemiluminescence (ECL) detec-
tion kit (GE Healthcare). Bands were visualized using 
Hyperfilm ECL (GE Healthcare).

Assessment of MHC I surface expression

Freshly Ficoll-isolated human PBMCs (HLA-A*02:01/x) 
from heparinized blood or from cryo-preserved liquid 
nitrogen were incubated with CatG inhibitor I (10 µM, Cal-
biochem, Merck, Darmstadt, Germany) [12], (2S,3S)-trans-
epoxysuccinyl-L-leucylamido-3-methylbutane ethyl ester 
(E64d, 10  µM, Enzo Life Sciences), or DMSO in RPMI 
1640 medium supplemented with 10 % FBS and antibiot-
ics for 24 h at 37 °C. Subsequently, cells were washed in 
PBS containing 1 % FBS and stained with anti-HLA-A/B/
C-APC (clone W6/32; eBioscience, San Diego, CA, USA) 
diluted in blocking buffer (1  % FBS in PBS) for 30  min 
at 4  °C. Afterwards, cells were washed several times and 
measured by FACSCalibur (BD Biosciences, Franklin 
Lakes, NJ, USA) flow cytometer. Data were analyzed by 
using FlowJo software (Tree Star Inc., Ashland, OR, USA). 
Use of PBMCs for in vitro studies is in accordance with the 
local ethics committee (approved proposal # 327/14).

Glioblastoma cell lines

Human glioblastoma cell lines, U87-MG (U87) or A172 
(American Type Culture Collection, Manassas, VA, USA), 
were cultured in DMEM supplemented with 10 % FBS and 
1 % penicillin (120 mg/ml)/streptomycin (120 mg/ml) (Life 
Technologies). Cells were incubated with CatG inhibitor I 
(10 µM), E64d (10 µM), pepstatin A (10 µM), lactacystin 
(10 µM), or DMSO for 24 h at 37 °C. Cell surface MHC I 
was determined by flow cytometry as described above.

Active‑site label and Western blot

Cells were lysed (PBS pH 7.4 and 0.5  % IGEPAL 
CA-630), adjusted for equal protein content, and 10  µg 
of cell lysate was incubated with the activity-based probe 
Marcin Sienczyk 116 (MARS116, 2  µM) in PBS pH 7.4 
for 1 h at room temperature [13]. In order to detect cysteine 
proteases, 10 µg of cell lysate was incubated with 50 mM 
citrate pH 5.0, 50 mM DTT, and Doron C. Greenbaum 04 
(DCG-04, 10 µM, probe kindly donated by Steven Verhelst, 

Technische Universität München) [14]. Samples were 
resolved (12 % SDS-PAGE), blotted and visualized using 
HRP (Vectastain, Burlingame, CA, USA). For CatD detec-
tion, 20 µg of the respective cell extracts was resolved by 
SDS-PAGE. Immunoblotting was performed using a spe-
cific CatD antibody (Calbiochem, Schwalbach, Germany), 
while anti-β-actin antibody and secondary HRP-conju-
gated antibodies were obtained from Sigma-Aldrich or GE 
Healthcare (Little Chalfont, UK).

Expression vectors

The bi-cistronic CMV promoter-based pCGCG expression 
vector coexpressing HIV-1 NL4-3 nef and the enhanced 
green fluorescent protein (eGFP) under the translational 
control of the encephalomyocarditis virus internal ribo-
some entry site element has been described previously [15]. 
The pCGCG control vector expressing only eGFP (empty 
vector) contains a nef gene with a mutation in the initia-
tion codon and two premature stop codons at positions 3 
and 40 of the open reading frame. A pCGCG vector co-
expressing eGFP and human cathepsin G from bicistronic 
RNAs was generated by retrieving the sequences from the 
National Center for Biotechnology Information (NCBI) 
Protein database (NCBI reference sequence: NP_001902.1) 
and synthesizing the genes by GenScript (Piscataway, NJ, 
USA). Standard cloning techniques were used to clone the 
synthesized sequences with flanking XbaI and MluI site 
into the pCGCG vector. Sequencing of the insert confirmed 
that no undesired nucleotide changes were present.

Cell culture and transfections

HEK293T (plasmid: 0.25  μg/ml) and U87 (plasmid: 
1.50 μg/ml) were transfected by using Lipofectamine LTX 
reagent (Life Technologies) or TransIT-LT1 (Mirus Bio 
LLC, Madison, WI, USA), respectively, according to the 
manufacturer’s instructions. Cells were stained for flow 
cytometry, collected by FACSCalibur or FACSCanto II 
(BD Biosciences, Franklin Lakes, NJ, USA) and analyzed 
by FlowJo software (Tree Star Inc.).

Determination of CatG activity via colorimetric 
substrate

Kinetic measurement of CatG activity was accomplished 
by adding 0.5  mg/ml of HEK293T- or U87 (1  mg/ml)-
derived cell lysate to the colorimetric substrate Suc-Val-
Pro-Phe-pNA (200  μM) in PBS (pH 7.4) as previously 
described [16]. The enzyme assay was performed in dupli-
cates at 37  °C and absorption was determined at 405  nm 
(absorbance microplate reader, Bio-Rad, Model 550, Her-
cules, USA).
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Sphere‑cultured stem cell‑enriched glioblastoma cell 
populations (SCs)

After patient’s consent was obtained, astrocytoma grade IV 
tissues (glioblastoma) were minced, washed in PBS, and 
incubated with TrypLE Express (Gibco, Life Technologies) 
for 5 min. Cells were filtered (pore size 70 μm) and cultured 
in DMEM/F-12 medium (Gibco, Life Technologies,) con-
taining l-glutamine, epidermal growth factor (EGF, Biomol 
GmbH, Hamburg, Germany), fibroblast growth factor (FGF, 
Miltenyi Biotec, Bergisch Gladbach, Germany), B27 (Gibco, 
Life Technologies), 1 % penicillin (120 mg/ml)/streptomycin 
(120 mg/ml) (Life Technologies) [17]. These cells are herein 
determined as a sphere-cultured stem cell-enriched glioblas-
toma cell populations (SCs). In order to differentiate SCs to 
adherent cells (PCs), PCs were cultured in DMEM supple-
mented with 10 % FBS plus 2 mM glutamine, 1 % penicillin 
(120 mg/ml)/streptomycin (120 mg/ml) (Life Technologies). 
SC (plasmid: 1.5 μg/ml) were transfected by using TransIT-
LT1 (Mirus Bio LLC). Cells were stained for flow cytometry 
as described before and analyzed by FACSCalibur (BD Bio-
sciences). Use of SC is in accordance with the local ethics 
committee (approved proposal # 162/10).

Statistical analysis

Data were depicted as mean ± standard error of the mean 
(S.E.M.), and statistical analysis was performed using the 

unpaired, two-tailed Student’s t test (Prism 4, GraphPad 
Software, La Jolla, CA, USA).

Results and Discussion

CatG, CatS, and CatD proteolytically degrade MHC I 
molecules in vitro

In antigen presenting cells, cell surface MHC I molecules 
are either recycled to present a new set of endocytic-derived 
antigenic peptides or directed to lysosomes for degrada-
tion [3, 18–20]. However, proteases mediating this MHC 
I turnover need to be identified. Therefore, recombinant 
MHC I molecules were incubated with a panel of different 
human proteases (cathepsins). Cathepsin G (CatG) progres-
sively processed three different human MHC I loci (HLA-
A*02:01, HLA-B*15:01, and HLA-C) under various pH 
conditions (pH 4.5–6.5) with its highest processing rate at 
pH 6.5 (Fig. 1a–c). To analyze whether cell-derived MHC 
molecules are a natural substrate for CatG, cell lysate from a 
non CatG-expressing B cell line was incubated with CatG at 
a pH ranging from 4.5 to 6.5. MHC I and MHC II-specific 
immunoblot analysis showed that MHC I was digested at 
all indicated pH conditions (Fig. 1d, e, and Supplementary 
Figure  1, left panel), while MHC II molecules were only 
cleaved at a higher pH as we previously published [21]. In 
a further set of experiments, we investigated whether the 
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Fig. 1   MHC I molecules are a substrate for CatG. a, b, and c 
Recombinant soluble HLA-A*02:01, HLA-B*15:01, or HLA-C mol-
ecules were incubated with CatG for 2 h at 37 °C. The degradation 
products were separated by SDS-PAGE and visualized by Coomas-
sie staining. A representative result of three independent experi-
ments is shown. d and e A B-lymphoblastoid cell line (BLC) was 

lysed in 0.5  % IGEPAL CA-630, and cell lysate was degraded by 
CatG for 2 h 37 °C. Matched amounts of total protein were resolved 
by SDS-PAGE and immunoblotted for MHC I (HC-10) or HLA-DR 
(CHAMP). Of note, upper panel shorter X-ray film exposure. One of 
three independent experiments is shown
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cysteine protease CatS or the aspartic protease CatD hydro-
lyzes HLA-A*02:01. Both CatS (pH 4.5–6.5) and CatD 
(pH 4.5–5.5) degraded HLA-A*02:01, HLA-B*15:01, and 
HLA-C molecules in a pH-dependent manner (Fig. 2a–c). 

Next, we assessed whether membrane embedded MHC 
I molecules are accessible for degradation by CatG. To 
this end, a B cell line was incubated with purified CatG 
and the resulting peptide degradation pattern in the B cell 
line supernatant was analyzed by mass spectrometry. We 
found several MHC I-, but no MHC II-derived fragments 

(Supplementary Figure 1, right panel). Our results confirm 
that MHC II molecules are protected from proteolytic deg-
radation if tethered to the membrane [21]. This is in stark 
contrast to MHC I molecules which are efficiently pro-
cessed by CatG even when associated with membranes.

MHC I molecules are increased by CatG inhibition

Further experiments were performed to address the ques-
tion whether the density of cell surface MHC I molecules is 
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regulated by CatG in situ. Peripheral blood mononuclear cells 
(PBMCs) were treated with either the cell permeable CatG 
inhibitor or cysteine protease inhibitor E64d. While PBMCs 
treated with the CatG inhibitor showed an increase of cell 
surface MHC I (Fig. 3 and Supplementary Figure 2). In cells 
treated with E64d, levels of MHC I were not significantly 
changed. Taken together, these results show that it is feasible 
to indirectly manipulate MHC I surface expression by apply-
ing a CatG inhibitor but not by blocking cysteine proteases.

Overexpression of CatG in HEK293T and U87 reduces 
cell surface MHC I

To survive recognition by CTLs, tumor cells reduce MHC 
I transcription to avoid newly synthesized MHC I mol-
ecules presenting tumor-associated antigens (peptides) on 
the cell surface [6]. Nevertheless, some cell surface MHC 
I molecules are necessary to preserve tumor cells from 
elimination by NK cells, since these cells are activated 

by the absence of MHC I [22]. To elucidate the involve-
ment of proteases in regulating MHC I in non-immune 
cells, two human glioblastoma cell lines (U87 and A172), 
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lyzed by flow cytometry (left panel). A representative set out of three 
independent experiments is shown. b In order to determine cysteine 
or serine protease activity, cell lysate was incubated with the activ-

ity-based probe MARS116 (left panel) or DCG-04 (middle panel). 
Both activity-based probes form a covalent bond to the active center 
of protease which can be resolved by SDS-PAGE and visualized via 
streptavidin-HRP blot. The same samples were pre-incubated with 
the CatG inhibitor (100 μM). Cell lysate from U87 or PBMCs was 
resolved by SDS-PAGE, and immunoblot was performed with anti-
CatD (right panel). β-actin served as a loading control. Two inde-
pendent experiments were performed (for CatG activity n = 3)

Fig. 5   Overexpression of CatG in HEK293T and U87 cells. a Trans-
fection of HEK293T or b U87 with CatG or Nef was controlled by 
green fluorescence and levels of cell surface MHC I were quantified 
by flow cytometry. Empty vector served as a negative control. One 
representative set out of at least four independent experiments is 
shown (HEK293T, n =  4; U87, n =  5) independent experiments is 
shown, left panel and the summary, right panel. c In a similar set-
ting to above, intracellular staining was performed to detect levels 
of MHC I by flow cytometry in HEK293T cells. One representative 
experiment is shown (left panel) and the summary of n =  4 (right 
panel). d Intracellular staining of MHC I for U87 cells. One repre-
sentative experiment is shown, left panel and the summary of n = 3, 
right panel. e Detection of total MHC I molecules in HEK293T 
cells by HLA-A, HLA-B, and HLA-C immunoblot. One representa-
tive experiment is shown, left panel and the summary of n = 3, right 
panel. f CatG-transfected HEK293T (left panel) or U87 cells (right 
panel) were analyzed for CatG activity by using the activity-based 
probe MARS116 or the colorimetric substrate Suc-VPF-pNA. Two 
independent experiments were performed

▸



289Cancer Immunol Immunother (2016) 65:283–291	

1 3

sphere-cultured stem cell-enriched cell populations (SCs), 
and FBS-differentiated SCs (PCs) from three different 
glioblastoma patients were incubated with the indicated 

cell permeable inhibitors and levels of cell surface MHC 
I molecules were analyzed. No differences in MHC I cell 
surface expression were observed when applying the 
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CatG inhibitor (Fig.  4a, Supplementary Figures  3 and 4), 
since CatG activity was absent in all glioblastoma cell 
populations tested (Fig.  4b, left panel and Supplementary 
Figure 5). Although we did not find any differences in cell 
surface expression of MHC I when glioblastoma cell lines 
were treated with cysteine or aspartic protease inhibitors, 
U87 cells did feature active CatB and, to a lesser extent, 
CatS-activity, which was detected by the activity-based 
probe DCG-04 (Fig.  4b, middle panel). Furthermore, a 
CatD-specific immunoblot revealed that U87 expressed a 
robust level of this protease (Fig. 4b, right panel). A sum-
mary of CatB, CatD, CatS, and CatX expression in A172, 
T98, U87, PC35, PC38, PC40, SC35, SC38, and SC40 is 
shown in the Supplementary Figure 6. These data expand 
on previous literature which showed CatB, CatD, and CatS 
expression in glioblastoma cell lines (summarized in [23]) 
but did not analyze PCs and SCs.

The finding that CatG was absent in glioblastoma 
cells raised the question whether ectopic expression of 
CatG might downregulate MHC I in these cells. Thus, we 
transfected CatG-negative HEK293T and U87 cells with 
a plasmid containing the CatG gene and a reporter gene, 
enhanced green fluorescence protein (eGFP). Transfec-
tion (eGFP) and levels of MHC I (allophycocyanin) were 
simultaneously quantified by flow cytometry. Expression of 
CatG drastically reduced MHC I cell surface levels in both 
HEK293T and U87 (Fig. 5a, b) compared to the empty vec-
tor control. Furthermore, HEK293T and U87 were trans-
fected with the human immunodeficiency virus (HIV) nef 
protein, since a previous publication demonstrated reduced 
levels of cell surface MHC I upon Nef expression in U937 
and T cells [24]. Total amounts of MHC I molecules were 
detected by intracellular staining or immunoblot show-
ing a reduction of MHC I for CatG-transfected HEK293T, 

U87, A172, and three additional glioblastoma cell lines 
(Fig. 5c–e and Supplementary Figure 7), and CatG activity 
in CatG-transfected HEK293T and U87 was independently 
confirmed by active-site label and the colorimetric sub-
strate assay (Fig. 5f). This is in contrast to Nef-transfected 
HEK293T and U87 which exhibited an accumulation of 
MHC I, most likely due to the lack of CatG in these cells. 
This dataset demonstrates that CatG plays a pivotal role for 
MHC I regulation, and its overexpression is sufficient to 
degrade MHC I and thus downregulate cell surface MHC I 
in glioblastoma cells.

CatG proteolytically downregulates levels of MHC I 
in glioblastoma stem cells

Having verified CatG-mediated MHC I degradation in 
different glioblastoma cell lines, we sought to determine 
whether CatG has also immunomodulatory properties 
in downregulating MHC I in glioblastoma stem cells. 
For this purpose, sphere-cultured stem cell-enriched 
cell populations (SCs) from three different glioblas-
toma patients, either transfected with CatG, Nef, or 
empty vector, were analyzed for MHC I. We observed 
that SCs, which did not express endogenous CatG, sig-
nificantly degraded both extra- and intracellular MHC I 
upon CatG-transfection, while Nef-transfected SCs only 
demonstrated reduced extracellular MHC I compared to 
empty vector-transfected SCs (Fig. 6 and Supplementary 
Figure 8).

In conclusion, we demonstrate that CatG degrades 
MHC I molecules suggesting that CatG is an essential 
protease for post-transcriptional regulation of MHC I mol-
ecules. Strikingly, glioblastoma cells do not harbor active 
CatG. We speculate that these cells (1) lost their ability 

Fig. 6   CatG overexpression 
in a sphere-cultured stem 
cell-enriched glioblastoma cell 
populations (SCs). Transfection 
of SC35 with CatG, Nef, or 
empty vector was controlled by 
green fluorescence, and levels 
of cell surface MHC I were 
quantified by flow cytometry. 
One representative set out of 
four independent experiments is 
shown, left panel and the sum-
mary, right panel. All values 
were normalized to the sample 
transfected with the control 
eGFP plasmid
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to proteolytically degrade MHC I by CatG during tumo-
rigenesis to, (2) prevent complete reduction of cell surface 
MHC I, and thus (3) avoid NK cell activation. Therefore, 
restoration of CatG in glioblastoma presents an opportunity 
to sensitize glioblastoma cells to NK-mediated killing by 
completely removing MHC I from the cell surface.
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