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Abbreviations
CTLA-4	� Cytotoxic T-lymphocyte-associated protein 4
FDA	� Food and Drug Administration
iNOS	� Inducible nitric oxide synthases
IRF-1	� IFN regulatory factor-1
MM	� Metastatic melanoma
TADC	� Tumor-associated dendritic cells
TAP	� Transporter associated with antigen processing
TDO	� Tryptophan 2,3-dioxygenase
Tregs	� Regulatory T cells

Introduction

Antigen presentation on the cell surface, which is mediated 
by HLA molecules, is not sufficient to initiate an efficient 
T cell response. Accordingly, TCR co-stimulatory path-
ways are crucial for maintaining immune system homeo-
stasis by regulating T cell activation. After recognition of 
an antigen presented in the context of an HLA molecule, 
cellular components rearrange to form distinctive immuno-
logical synapses upon immune cell polarization. The CD28 
family of receptors, which includes CD28, CTLA-4, ICOS, 
and PD-1, comprises key elements of the immunologi-
cal synapse. When these receptors interact with their cor-
responding ligands, they generate potent co-stimulatory or 
inhibitory signals [1]. Notably, the receptors that generate 
inhibitory signals prevent T cell-mediated damage to self-
tissue by inhibiting the T cell response.

Importantly, tumor cells can engage these T cell path-
ways by expressing ligands for the inhibitory receptors 
on the cell surface. The first of these receptors to be suc-
cessfully targeted by therapeutic monoclonal antibodies 
was CTLA-4 or (CD152). CTLA-4 is upregulated after T 
cell stimulation via the TCR. CTLA-4 binds to B7 with a 
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higher affinity than CD28, inhibiting T cell priming. Work 
in animal models shows that blocking CTLA-4 can shift the 
immune system balance toward T cell activation and, con-
sequently, exert anticancer effects. These effects have been 
confirmed in human clinical trials, and, in 2011, the anti-
CTLA-4 antibody ipilimumab was the first-in-class thera-
peutic monoclonal antibody to be approved by the FDA for 
the treatment of metastatic melanoma (MM) on the basis of 
a phase III trial showing improved survival [2].

PD-1 is a central regulatory surface protein that deliv-
ers inhibitory signals to maintain the functional silence of T 
cells against their cognate antigens. The PD-1 receptor was 
identified in 1992 as a protein that was upregulated during 
apoptosis in lymphocytes [3]. PD-1 is expressed on mono-
cytes, DCs, T cells, B cells, and NK cells. Persistent expres-
sion of PD-1 is a marker for T cell exhaustion, as recently 
reviewed by Wherry [4]. The PD-1 ligand PD-L1 (B7-H1) 
was discovered in 1999 and is a 290 amino acid transmem-
brane protein encoded by the CD274 gene [5]. The extra-
cellular portion of PD-L1 comprises IgV- and IgC-like 
domains, while the intracellular part comprises a 30 amino 
acid tail. PD-L1 is expressed on non-hematopoietic cells as 
well as on antigen-presenting cells and on placental cells 
that are located in an inflammatory microenvironment [6]. 
PD-L1 is upregulated in a JAK-/STAT-dependent manner 
by type I and type II IFNs via IFN regulatory factor-1 (IRF-
1) [6, 7].

In general, interactions between PD-L1 and PD-1 reg-
ulate the induction and maintenance of peripheral T cell 
tolerance throughout regular immune responses [5]. The 
interactions between PD-1 and PD-L1 negatively regulate 
T cell proliferation and cytokine production. Thus, PD-L1 
is a critical negative regulator of self-reactive T cells dur-
ing both the induction and effector phases of the immune 
response. PD-L1 acts as an inhibitor in multiple ways. For 
example, in addition to being a ligand for PD-1, PD-L1 
binds B7-1 (CD80) preventing B7-1 co-stimulation [8]. 
Ligation of PD-L1 results in IL-10 production and may 
augment the apoptosis of activated T cells [9]. In addition, 
PD-L1 plays a critical role in the conversion of naïve T 
cells to regulatory T cells (Tregs) [7].

PD‑L1 and cancer

It is clear that the immune system can recognize and kill 
malignant cells in patients with cancer. However, the 
immunosuppressive tumor microenvironment results in vast 
immune dysregulation, eventually leading to an insufficient 
immune response and the out-of-control growth of cancer 
cells. Notably, cancer cells can directly suppress antican-
cer immune mechanisms. In addition, cancer cells attract 
and/or convert immune cells to generate and maintain an 

immune-suppressive microenvironment. PD-1 and its 
ligands play central roles in the creation of an immune 
inhibitory tumor microenvironment that protects cancer 
cells from immune cell-mediated cell death [10–13]. Thus, 
PD-L1 helps protect malignant cells from immune destruc-
tion and, notably, is expressed by cancer cells in many dif-
ferent malignancies [14–22]. PD-L1 was first depicted as 
a marker of tumor aggressiveness in renal cell carcinoma 
[23]. PD-L1 expression on tumor cells correlates with 
increased tumor aggressiveness and with a poor prognosis 
in a number of solid cancers, including pancreatic cancer 
and ovarian cancer [24–26]. Additionally, PD-1 expression 
by TILs is a negative prognostic factor in several cancers 
[27–30].

Surface expression of PD-L1 has been described not 
only in solid tumors but also in several hematological can-
cers [17, 19, 21, 22]. PD-L1 is expressed both on malignant 
cells and on infiltrating immune cells in subsets of aggres-
sive B cell lymphomas [31]. In myeloma, PD-L1 upregu-
lation on malignant cells induces T cell apoptosis and 
tumor-specific T cell anergy, and it enhances the aggressive 
characteristics of myeloma cells [21]. In multiple mye-
loma, myeloma cells that overexpress PD-L1 inhibit the 
generation of CTLs in vitro [32, 33]. In addition, co-culture 
of CD4+ T cells with myeloma cells results in the genera-
tion of Tregs in a contact-dependent manner. These Tregs 
have a suppressive phenotype and show increased PD-1 
expression compared with naturally occurring Tregs. Fur-
thermore, the PD-1/PD-L1 pathway not only promotes the 
progression of myeloma indirectly by leading to immune 
control failure; in addition, bone marrow stromal cells 
induce myeloma cells to express PD-L1, which results in 
increased tumor cell proliferation and reduced susceptibil-
ity to anti-myeloma chemotherapy. Accordingly, clinical 
progression is observed in patients that have myeloma cells 
that express high levels of PD-L1.

Multiple studies of anti-PD-1 and anti-PD-L1 blockade 
report the subsequent restoration of T cell effector function 
and proliferation as well as increased infiltration of tumors 
by CTLs. This alters the CTL/Treg ratio and ultimately 
results in the death of tumor cells [25, 34]. The blockade 
of either PD-1 or PD-L1 by monoclonal antibodies has pro-
duced outstanding clinical responses [35, 36], and the Food 
and Drug Administration (FDA) recently approved the anti-
PD-1 antibodies pembrolizumab and nivolumab in Septem-
ber and December of 2014, respectively. Blocking the PD-1 
pathway shows great clinical promise, and there is high 
commercial interest and intense competition among drug 
companies to develop agents that target PD-1 or PD-L1. 
Anti-PD-1 antibodies block PD-1:PD-L1 and PD-1:PD-
L2 interactions, whereas anti-PD-L1 antibodies block PD-
1:PD-L1 and PD-L1:CD80 interactions. This distinction 
results in slightly different modes of action and in different 
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adverse events and response patterns. Another example in 
which the PD-1 pathway is targeted is the use of a recom-
binant B7-DC-Fc fusion protein that has a unique mode of 
action. Specifically, this fusion protein depletes T cells that 
express high levels of PD-1, thus allowing a more vigorous 
anticancer response [37]. Interestingly, it was also shown 
recently that the immune system itself has an anticancer 
mechanism that works via PD-L1-specific effector T cells 
(Fig. 1) [38, 39].

PD‑L1‑specific T cells

Our group was the first to describe spontaneous CD8+ and 
CD4+ T cell reactivity against PD-L1 in the peripheral 
blood of both patients with various cancers and healthy 
donors. These PD-L1-specific CD8+ T cells release IFN-γ 
and TNF-α. Notably, a few individuals in whom we were 
able to measure specific T cell responses directly ex vivo 

had a relatively high number of PD-L1-specific T cells. 
With very few exceptions, it is not feasible to evaluate 
tumor-associated antigen-specific T cells either by tetramer 
staining or by ELISPOT in PBMCs ex vivo without in vitro 
peptide stimulation [40]. We verified that the PD-L1-spe-
cific T cells in PBMCs were cytolytic effector cells using 
the Granzyme B ELISPOT assay. In addition, we generated 
PD-L1-specific T cell cultures by re-stimulating PBMCs 
with the PD-L1 peptide in vitro and showed that the sub-
sequent T cell lines were PD-L1 specific. We further estab-
lished that the PD-L1-specific CD8+ T cells were cytolytic 
effector cells that recognize and kill PD-L1-expressing 
melanoma cells as well as cutaneous T cell lymphoma 
cells. Recently, Minami et al. [41] described HLA-A24-re-
stricted PD-L1-specific T cells that could lyse PD-L1+ 
HLA-A24+ renal cell carcinoma cells. In addition to recog-
nizing tumor cells, PD-L1-specific CTLs can recognize and 
kill normal immune cells in a PD-L1-dependent manner. 
Thus, using siRNA transfection to knockdown PD-L1 pro-
tects DCs from death due to PD-L1-specific T cells [38].

Cross-presentation is defined as the processing of exog-
enous antigens into the HLA class I pathway [42]. We 
showed that long peptides (20 amino acids) derived from 
PD-L1 are readily cross-presented by B cells and T2 cells 
in the absence of antigen-presenting cells such as DCs 
or macrophages. This result is interesting in light of the 
observation that patients with renal cell carcinoma produce 
soluble PD-L1 that retains its immune-suppressive activity 
[43]. The ability of T2 cells to process the long PD-L1 pep-
tide and, to some extent, to process the full-length recom-
binant PD-L1 protein demonstrates the transporter associ-
ated with antigen processing (TAP)-independent nature of 
the cross-presentation. Non-professional APCs were shown 
previously to cross-present HLA class I-restricted epitopes 
in a similar TAP-independent way, e.g., from exogenous 
NY-ESO polypeptides [44].

We additionally described that by reacting to PD-
L1-expressing cells, PD-L1-specific T cells directly and 
indirectly augment other T cell responses [45, 46]. First, 
since the PD-L1/PD-1 pathway is important for the reg-
ulation of both viral and anticancer CTL responses, we 
considered using PD-L1-specific CTLs to influence anti-
viral immunity. Indeed, in culture the addition of PD-
L1-specific CTLs 1  week after virus epitope stimulation 
resulted in an vast increase in the number of virus-specific 
CD8+ T cells [45]. A similar increase in virus-specific T 
cells was observed in cultures after co-stimulation with 
the PD-L1 peptide epitope compared to cultures that were 
co-stimulated with an irrelevant epitope from HIV-1 [46]. 
Hence, PD-L1-specific CTLs may efficiently augment the 
effector phase of the immune response by suppressing 
PD-L1-expressing regulatory cells that restrain PD-1-ex-
pressing effector T cells. Second, we began investigating 

Fig. 1   PD-L1-specific T cells target immune regulatory cells as 
well as cancer cells. Cancer cells (purple) as well as other regula-
tory immune cells [e.g., tumor-associated dendritic cells (TADC) 
(dark red) and MDSC (light red)] express checkpoint inhibitors 
(e.g., PD-L1), inhibitory cytokines as well as metabolic enzymes that 
restrain the antitumor activity of anti-tumor-specific T cells (green) 
in the tumor microenvironment. Specific T cells recognizing HLA-
restricted PD-L1-derived epitopes (yellow), which are generated 
from intracellular degraded PD-L1, are able to eliminate (red arrows) 
regulatory immune cells as well as cancer cells. Hence, the activa-
tion of PD-L1-specific T cells by vaccination may directly target 
immune inhibitory pathways in the tumor microenvironment, modu-
late immune regulation, and potentially alter tolerance to tumor anti-
gens. The addition of PD-L1 epitopes to therapeutic cancer vaccines 
would thus be a simple and highly synergistic means to increase the 
outcome
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the possibility of influencing the immunogenicity of a 
DC-based vaccine using co-stimulation with two PD-
L1-derived epitopes. We stimulated PBMCs from DC-
vaccinated MM patients with the DC-based vaccine used 
in the clinical study either with or without the PD-L1-de-
rived peptide epitopes. We observed a significant increase 
in the number of vaccine-reactive T cells in cultures that 
were co-stimulated with the PD-L1 peptide epitope com-
pared to cultures co-stimulated with an irrelevant HIV 
epitope (unpublished observation). Thus, boosting PD-
L1-specific T cells may directly modulate the immuno-
genicity of a DC-based vaccine (Fig. 2). If these findings 
translate to the clinic, co-vaccination with PD-L1 epitopes 
may be useful for boosting the immunogenicity of the 
vaccine. Thus, adding PD-L1 epitopes to cancer vaccines 
may be an easy and attractive way to increase vaccine 
efficiency.

It should be noted that the function and effects of PD-
L1-specific CTLs may vary according to the microenviron-
ment and the condition of the immune response. The major 
role of the PD-1 pathway is thought to be its involvement in 
regulating effector T cell responses to control tissue dam-
age rather than its actions at the initial T cell activation 
stage [9]. Hence, the occurrence of PD-L1-specific CTLs 

during the activation phase of an immune response may not 
enlarge this response. In fact, adding PD-L1-specific CTLs 
simultaneously with virus antigen stimulation somewhat 
decreases the number of virus-specific T cells [45], possi-
bly due to the expression of PD-L1 on APCs or on resting 
T cells.

Owing to the vital functions of PD-L1 in immune regu-
lation, it may seem surprising that there is a natural specific 
T cell response against PD-L1. However, Yu and colleagues 
recently described that clonal deletion in the thymus prunes 
the T cell repertoire, but it does not eliminate self-reactive 
T cell clones [47]. The authors proposed that a complete 
deletion of self-reacting T cells would create holes in the 
immune repertoire that could be exploited by infectious 
pathogens. Hence, self-peptide-specific CD8+ T cells are 
present at levels similar to those specific for non-self-anti-
gens in the blood of healthy humans. These self-reactive T 
cells are substantially anergic compared to non-self-spe-
cific T cells; however, they can be activated by strong acti-
vation signals. PD-L1 is highly expressed during inflamma-
tion and/or stress in professional antigen-presenting cells. 
Self-reactive T cells that recognize PD-L1 may therefore be 
activated by the strong activation signals of their cognate 
targets.

Fig. 2   Co-stimulation with 
PD-L1 epitopes boosts the 
immunogenicity of a DC-based 
vaccine. PBMC (numerous 
colors) was stimulated with an 
autologous DC-based vaccine 
(blue) in the presence of IL-2. 
Subsequently, DC-reactive T 
cells (green) expand, and this is 
augmented when PD-L1-spe-
cific T cells are activated by co-
stimulation with PD-L1-derived 
epitopes (yellow) assessed in 
cultures co-stimulated with an 
HIV control epitope (red)
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Conclusions and perspectives

Regulatory feedback mechanisms are essential for lim-
iting the strength and magnitude of immune responses 
that might otherwise harm their host [48, 49]. However, 
immune evasion is detrimental in the framework of cancer 
immunotherapy. Thus, it may be very beneficial to target 
one or more immunosuppressive pathways in combination 
with anticancer immunotherapy. Immune regulatory cells 
suppress anticancer immunity in many different ways: by 
checkpoint inhibitors like PD-L1 and PD-L2, expressing 
cytokines like TGF-β and IL-10, via metabolic enzymes 
like tryptophan 2,3-dioxygenase (TDO) and IDO [50] and 
via arginase, as well as by inducible nitric oxide synthases 
(iNOS) and adenosine [51, 52]. In addition, regulatory 
cells release chemokines like CCL22 that attract additional 
immune regulatory cells. Several different therapeutic strat-
egies are being utilized to target immunosuppression in 
cancer, including blocking inhibitory pathways such as the 
PD-1/PD-L1 pathway. In practice, antibodies that target the 
PD-L1 checkpoint have been shown to elicit impressive, 
dynamic, and durable tumor regression. We suggest the use 
of specific T cells as yet another approach to target immune 
suppression. This review describes naturally occurring spe-
cific T cells that recognize PD-L1 in immune-suppressive 
cells and in malignant cells. A major difference between 
targeting PD-L1 with monoclonal antibodies versus utiliz-
ing PD-L1-specific T cells is that in addition to decreasing 
the immunoregulatory effects of PD-L1, the PD-L1-spe-
cific T cells also inhibit other routes of immune suppres-
sion that are mediated by PD-L1+ target cells. Accordingly, 
a vaccine targeting PD-L1 should attract PD-L1-specific 
pro-inflammatory T cells to the tumor microenvironment. 
PD-L1-specific T cells may directly support anticancer 
immunity by killing target cells and indirectly support it 
by releasing pro-inflammatory cytokines in the microenvi-
ronment to boost additional anticancer immunity. Thus, a 
PD-L1-based vaccine should be viewed as complementing 
rather than competing with other forms of immunotherapy. 
Vaccine-activated PD-L1-specific T cells may, for example, 
be further boosted by PD-L1 blockade, since PD-L1 mAbs 
target the same cells as vaccine-induced T cells; this thera-
peutic strategy will therefore make cells more vulnerable 
targets (Fig. 3).

Cancer vaccines represent a promising way to eliminate 
minimal residual disease without inducing significant toxic-
ity and secondary malignancies. However, so far they have 
been largely failed to demonstrate a significant improvement 
in patient outcome [53]. This probably reflects the ability 
of malignant cells to suppress the function of the induced 

Fig. 3   A PD-L1 vaccine and checkpoint inhibitors are complimen-
tary. a PD-L1-expressing regulatory immune cells (red) degrade 
intracellular PD-L1 into peptides (yellow) that are subsequently pro-
cessed into peptides and presented on the cell surface by HLA mol-
ecules, where they are recognized by PD-L1-specific T cells (green). 
Hence, PD-L1-specific T cells can promote local immune suppression 
by the secretion of effector cytokines or by killing regulatory immune 
cells directly (red arrow), thereby influencing general immune reac-
tions. Similarly, they can eliminate PD-L1-expressing malignant 
cells, b PD-1-positive, PD-L1-specific T cells are themselves ham-
pered by the suppressive effects of PD-L1 expression on their targets 
and c PD-L1-specific T cells may thus be further boosted by PD-L1 
blockade, since PD-L1 mAbs target the same cells as vaccine-induced 
T cells; this therapeutic strategy will therefore make cells more vul-
nerable targets. Thus, a PD-L1-based vaccine should be viewed as 
complementing rather than competing with checkpoint inhibitors
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immune cells. The addition of PD-L1 epitope-based therapy 
to current cancer vaccine strategies would be easy to imple-
ment and is likely to be highly beneficial. It should be noted 
that the loss of PD-L1 expression in cells during vaccination 
therapy might result in immune escape, i.e., it might pro-
tect target cells from immune-mediated killing by vaccine-
activated T cells. However, this should reduce local immune 
suppression, thereby permitting circulating effector T cells 
to function or to become activated. PD-L1 may thus serve as 
a widely accessible target for immunotherapeutic strategies 
that has an entirely different function and expression pattern 
than previously described antigens.

In conclusion, these findings justify clinical testing to 
evaluate the efficacy of PD-L1-based vaccination. We plan 
to conduct the first PD-L1 vaccine study in humans at Her-
lev Hospital (Denmark) in which PD-L1 epitopes will be 
administered to patients with MM. The vaccine will con-
sist of two PD-L1-derived peptides [54]. Long-peptide 
vaccines that combine MHC class I and II TAA epitopes 
can efficiently potentiate broad T cell effector function and 
long-term immunity [55]. The phase I/II trial will explore 
the safety and toxicity (primary objective) of vaccinat-
ing MM patients with two PD-L1 epitopes. The secondary 
objectives include (a) induction of PD-L1-specific immune 
responses and (b) obtaining clinical response. To summa-
rize, a PD-L1-based cancer vaccine represents a completely 
novel immuno-oncological therapeutic approach. PD-
L1-specific T cells is a fascinating example of the immune 
system’s ability to effect adaptive immune reactions by 
directly acting on the immune-suppressive mechanisms of 
cancerous cells.
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