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alternatively spliced extra domain A and extra domain B 
of fibronectin respectively, were also studied in combi-
nation with tumor necrosis factor (TNF)-based immu-
nocytokines. The combination treatment was superior to 
the action of the individual immunocytokines and was 
able to eradicate neoplastic lesions after a single intratu-
moral injection, a procedure that is being clinically used 
for the treatment of Stage IIIC melanoma. Collectively, 
these data reinforce the rationale for the use of IL2-
based immunocytokines in combination with cytotoxic 
agents or TNF-based immunotherapy for the treatment 
of melanoma patients.
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Abstract A ntibody-cytokine fusion proteins (“immu-
nocytokines”) represent a promising class of armed 
antibody products, which allow the selective delivery 
of potent pro-inflammatory payloads at the tumor site. 
The antibody-based selective delivery of interleukin-2 
(IL2) is particularly attractive for the treatment of meta-
static melanoma, an indication for which this cytokine 
received marketing approval from the US Food and 
drug administration. We used the K1735M2 immuno-
competent syngeneic model of murine melanoma to 
study the therapeutic activity of F8–IL2, an immuno-
cytokine based on the F8 antibody in diabody format, 
fused to human IL2. F8–IL2 was shown to selectively 
localize at the tumor site in vivo, following intravenous 
administration, and to mediate tumor growth retarda-
tion, which was potentiated by the combination with 
paclitaxel or dacarbazine. Combination treatment led to 
a substantially more effective tumor growth inhibition, 
compared to the cytotoxic drugs used as single agents, 
without additional toxicity. Analysis of the immune 
infiltrate revealed a significant accumulation of CD4+ T 
cells 24  h after the administration of the combination. 
The fusion proteins F8–IL2 and L19–IL2, specific to the 
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Introduction

The approval by FDA of interleukin-2 (IL2) for metastatic 
melanoma patients dates back to 1998. The use of very 
high doses of IL2 (e.g., 600.000–720.000  IU/kg up to 14 
doses in 1 week of treatment) can yield objective responses 
in approximately 15  % of patients. Notably, complete 
responses are typically durable, with >10  % of patients 
alive after 10 years [1]. This treatment regimen is, however, 
very toxic and is normally reserved to young and physi-
cally fit patients only, because of side effects that include 
fever and chills, together with hypotension, gastrointestinal 
toxicities and vascular leak syndrome. Increased vascular 
permeability results in peripheral edema, fluid retention 
and increased body weight in patients. In extreme cases, 
vascular leak syndrome can lead to organ failure, especially 
at pulmonary and cardiovascular sites [2, 3]. Certain pre-
medication strategies, such as the intravenous administra-
tion of fluids, the use of antipyretics and antiemetics, facili-
tate the clinical implementation of IL2-based therapies [4].

One avenue to increase the selectivity of IL2 therapy 
consists in the targeted delivery of this cytokine at the 
tumor site by means of suitable antibody “vehicles” [5, 6]. 
Two decades of research in this field have now shown that 
such pharmacodelivery strategies may rely either on the use 
of antibodies in IgG format (carrying the IL2 moiety at the 
C-terminal extremity of the heavy chains; [7]), or on fusion 
proteins featuring antibody fragments such as scFv’s [8] or 
diabodies as delivery vehicles [9]. Six immunocytokines 
based on human IL2 are currently being investigated in 
clinical trials for the therapy of cancer: DI-Leu 16-IL2, 
EMD 273066, EMD 521873, EMD 273063, L19-IL2 and 
F16-IL2 [10–15].

Our group has focused on the development of IL2-
based immunocytokines, using non-covalent homodi-
meric scFv fragments as preferred delivery vehicles, 
because they clear rapidly from circulation and do not 
display Fc-associated activities. We have mainly concen-
trated on antibodies that recognize the sub-endothelial 
extracellular matrix at tumor neovascular sites, as deliv-
ery vehicles with the potential to achieve an efficient and 
stable localization on neoplastic lesions. The F8 and L19 
human antibodies recognize the alternatively spliced extra 
domain A (EDA) and extra domain B (EDB) of fibronec-
tin with identical affinity in mouse and man [16, 17]. F8–
IL2 and L19–IL2 have shown activity in various mouse 
models of cancer. Combination with chemotherapy [18, 
19] or with other biologics [20, 21] was shown to potenti-
ate the therapeutic action of IL2-based immunocytokines 
in mice. In collaboration with the Giavazzi group, we 
have recently reported that F8–IL2 potently synergizes 
with paclitaxel for the therapy of mouse models of human 
melanoma and ovarian cancer, with a strong dependence 

on the schedule used [18]. In that study, the administra-
tion of PTX was able to increase tumor perfusion and ves-
sel permeability ultimately improving the selective accu-
mulation of the immunocytokine at the tumor site. Thus, 
F8–IL2 plus PTX led to cures in the majority of treated 
animals if PTX was administered before or together with 
F8–IL2, while a reversal of the schedule did not lead even 
to an additive effect [18]. Surprisingly, in the WM1552/5 
model of melanoma, the use of dacarbazine (DTIC) plus 
F8–IL2 did not exhibit a substantial therapeutic effect. 
In addition, we have fused the L19 and F8 antibodies to 
murine Tumor necrosis factor (TNF). The resulting immu-
nocytokines have exhibited a potent therapeutic activity in 
mouse models of cancer [20, 22].

The EDA and EDB domains of fibronectin display a 
restricted pattern of expression in healthy tissue, mainly 
confined to placenta and to the endometrium in the pro-
liferative phase [23, 24]. However, these domains are 
typically included in “oncofetal” fibronectin, which is 
abundantly found in most cancer lesions, at vascular and/
or stromal sites. L19–IL2 (also known as Darleukin) has 
been studied as monotherapy in a Phase I/II clinical trial 
in patients with various types of malignancies, mediat-
ing a disease stabilization of 51  % of treated patients 
[25]. When used in combination with DTIC in patients 
with metastatic melanoma, Darleukin induced objective 
responses in 8 of the 29 advanced melanoma patients 
enrolled in a Phase II a trial [26]. Similarly, the L19 anti-
body fused to human TNF (also known as Fibromun) has 
been investigated in a monotherapy dose escalation study 
in patients with cancer [27], as well as in an isolated limb-
perfusion procedure in melanoma patients in combination 
with melphalan [28].

In addition to the systemic administration of immunocy-
tokines for the treatment of metastatic melanoma, there is 
a potential to use these products for the intralesional treat-
ment of patients with Stage IIIC melanoma, since intratu-
moral administration of IL2 has been shown to be active in 
this indication [29, 30]. In collaboration with clinical cent-
ers, we have recently reported a first clinical experience on 
the intralesional use of L19–IL2 in patients with Stage IIIC 
melanoma [31]. Furthermore, we have observed that the 
combined use of L19–IL2 with L19–TNF was more potent 
than either immunocytokine used alone, in a mouse model 
of teratocarcinoma [20]. In this same study, we could also 
observe a synergistic effect of L19–IL2 in combination 
with antibodies directed against murine CTLA-4 (ipili-
mumab analogs) [20].

In this study, we have investigated the therapeutic 
action of F8–IL2 in combination with PTX or DTIC in the 
K1735M2 immunocompetent syngeneic model of murine 
melanoma. This melanoma had previously been obtained 
by UV irradiation and croton oil treatment in the C3H/
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HeN immunocompetent mouse strain [32]. The M2 vari-
ant, which had been derived from a spontaneous metastasis, 
displays an aggressive phenotype [33]. This murine model 
allowed the study of F8–IL2 in a fully immunocompetent 
setting, while previous studies in nude mice with human 
melanoma relied solely on the mitogenic activity of IL2 on 
NK cells. In the K1735M2 model, F8–IL2 led to a potent 
tumor growth inhibition when used in combination with 
PTX or DTIC. In addition, the therapeutic activity of L19–
IL2 and F8–IL2 was found to be potentiated by the com-
bination with TNF-based immunocytokines in an intral-
esional administration protocol, which mimics the one used 
for the treatment of Stage IIIC melanoma patients.

The experiments described in this article provide support 
for the use of IL2-based therapeutics in combination with 
chemotherapy or TNF-based immunotherapy for the treat-
ment of patients with advanced melanoma. Clinical trials 
with L19–IL2 in combination with DTIC (Stage IV mela-
noma), or with L19–IL2 in combination with L19–TNF 
(Stage IIIC melanoma) are currently ongoing.

Methods

Cell lines and mice

The murine melanoma cell line K1735M2 was a kind gift 
of Prof. Silvio Hemmi (University of Zürich) and was 
maintained in culture in Dulbecco Modified Eagle Medium 
(DMEM, Lonza Vervier, Switzerland) supplemented with 
10 % fetal calf serum (FCS, Invitrogen, Switzerland). The 
murine sarcoma cell line Wehi-164 was purchased from 
Cell Line Service (CLS, Eppelheim, Germany) and main-
tained in RPMI medium supplemented with 10  % FCS. 
Female C3H/HeN mice (age 10–12  weeks) and female 
Balb/c mice (age 7–9 weeks) were obtained from Elevage 
Janvier, France. Experiments were performed under a 
project license granted by the Veterinäramt des Kantons 
Zürich, Switzerland (42/2012).

Drugs and dosages for therapy studies

F8–IL2 was produced from a stably transfected cell line 
as previously described [34]. Briefly, the clone was main-
tained in Power CHO-2CD protein-free medium (Lonza 
Vervier, Switzerland) and the protein was purified from 
the supernatant by protein A affinity chromatography. The 
quality of the protein was analyzed by SDS-PAGE and 
fast protein liquid chromatography gel filtration using a 
Superdex™ 200 10/300 GL size exclusion column (GE 
Healthcare, Little Chalfont, UK). Binding to the antigen 
was confirmed by surface plasmon resonance (Biacore, GE 
Healthcare) on an antigen-coated chip.

L19–IL2 and KSF–IL2 were produced using similar 
procedures, as previously described [14, 34].

KSF–IL2 was included in in vivo studies as negative 
control. The immunocytokine KSF–IL2 comprises of the 
KSF antibody portion, specific to hen egg lysozyme, and 
the IL2 cytokine portion [34].

Paclitaxel was purchased in the commercially available 
form of 30  mg/5  ml solution for infusion (Bristol-Myers 
Squibb, Switzerland), DTIC as lyophilized powder for 
infusion Dacin® (Lipomed, Switzerland), dexametha-
sone (DEXA) as 4  mg/ml solution for infusion (Mepha, 
Switzerland), metamizol (NOVA) as 1  mg/2  ml solution 
for infusion (Sanofi-Aventis, France) and paracetamol 
(PARA) as 10  mg/ml solution for infusion (Fresenius 
Kabi, Germany).

F8–IL2 was administered i.v. at the dose of 30  μg/
mouse, (equivalent to ~1.5 mg/kg assuming a mouse body 
weight of 20 g, first systemic experiment and intralesional 
experiment) or 50  μg/mouse (equivalent to ~2.5  mg/kg 
assuming a mouse body weight of 20 g, following experi-
ments). L19–IL2 was administered i.t. at the dose of 30 μg/
mouse. PTX was administered i.v. at 20 mg/kg and DTIC 
i.p. either at 100  mg/kg (first experiment) or 200  mg/kg 
(following experiments). Antipyretics were administered 
i.v. with the following dosages: DEXA at 2 mg/kg, NOVA 
at 200 mg/kg and PARA at 100 mg/kg.

F8–TNF and L19–TNF were produced using simi-
lar procedures [22, 35] and were administered i.t. at the 
dose of 7 μg/mouse (equivalent to ~0.35 mg/kg assuming 
a mouse body weight of 20 g). Proleukin (human recom-
binant IL2, Novartis) was purchased in the commercially 
available form of 18 Mio IU solution for infusion and 
administered i.t. at the dose of 10  μg/mouse, (equivalent 
to  ~  0.5  mg/kg assuming a mouse body weight of 20  g). 
Mouse recombinant TNFα was purchased from eBiosci-
ence and administered i.t. at the dose of 2.5  μg/mouse, 
(equivalent to ~0.13 mg/kg assuming a mouse body weight 
of 20 g).

Syngeneic mouse models

K1735M2 or Wehi-164 exponentially growing cells 
were harvested, repeatedly washed and re-suspended in 
serum-free medium prior to injection. Tumor cells were 
injected subcutaneously (1×106-first therapy experi-
ment- or 5×106-subsequent experiments- for the K1735M2 
model, 5×106 for the Wehi-164 model) in the right flank 
of C3H/HeN or Balb/c mice. Tumor growth was meas-
ured at least twice a week with the aid of a digital caliper. 
Tumor weights (mg = mm3) calculated as follows: (length 
[mm] × width2 [mm2])/2. Treatment started when tumors 
reached approximately 100  mg. Toxicity was monitored 
recording mice body weight with the aid of a digital scale. 
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Body weight was plotted as percentage (%) over body 
weight on the first day of therapy.

Treatment schedules

In the first chemo-immunotherapy experiment, mice were 
treated every third day for three cycles. In the combination 
groups, chemotherapy (PTX and DTIC) was administered 
first, immunotherapy 24 h later.

In the second therapy experiment, treatments followed 
the clinical schedule with the immunocytokine adminis-
tered every second day for three cycles. When adminis-
tered in combination, PTX was administered first, on the 
same day of the immunocytokine. When administered in 
combination, DTIC was administered after the immunocy-
tokine and only on the first cycle. When antipyretics were 
administered, they were administered first, 1 h prior to the 
immunocytokine.

For the intratumoral therapy experiments, proteins were 
resuspended in a final volume of 90 μl and injected on the 
first day of treatment within each tumor lesion. A second 
injection was performed 7  days later, unless impeded by 
the presence of necrotic tissue following TNF treatment.

Biodistribution studies with radioiodinated protein 
preparations

The in vivo tumor-targeting ability of F8–IL2, L19–IL2 
and of KSF–IL2 was evaluated as previously described 
[36]. Briefly, 20  μg of each radiolabeled protein were 
injected into the lateral tail vein of C3H/HeN mice  bear-
ing K1735M2 tumors subcutaneously. Twenty-four hours 
later, mice were killed, organs excised and radioactivity 
measured using a Packard Cobra gamma counter. Values 
are shown as percentage of the injected dose (ID) per gram 
of tissue (%ID/g) and variability shown as standard error 
(SE).

Immunofluorescence on frozen tumor samples

Immunofluorescence staining on 10 μm cryostat section of 
optimal cutting temperature compound (OCT) embedded 
K1735M2 tumors was performed as previously described 
[37]. Briefly, acetone-fixed sections were stained for EDA- 
and EDB-containing fibronectin using the corresponding 
F8 and L19 antibodies in biotinylated small immunopro-
tein (SIP) format, using rat anti-CD31 antibodies as coun-
terstain (endothelial cells; BD Biosciences). For the detec-
tion of the biotinylated SIPs, Streptavidin Alexa Fluor 488 
(Invitrogen, Basel, Switzerland) was used, and anti-rat 
IgG-AlexaFluor594 was used to detect endothelial cells. As 
negative control, the stainings were repeated in the absence 
of primary antibodies.

The immune infiltrate was analyzed on tumors harvested 
24 h after one dose of F8–IL2, DTIC or the combination 
of the two treatments. As primary antibodies rat anti-CD4 
(CD4+ T cells, GK1.5; BioXcell), rat anti-CD8 (CD8+ 
T cells, 2.43; Bio ×  cell), rat anti-FOXP3 (Foxp3+ cells, 
eBioscience), rat anti-CD45 (leukocytes; BD Biosciences) 
and rabbit anti-Asialo/GM1 (NK cells; Wako Pure Chemi-
cal Industries) were used and anti-rat IgG-AlexaFluor488 
or anti-rabbit IgG-AlexaFluor594 was used as secondary 
reagent for microscopic detection.

For the evaluation of IL2 residence time in the tumor 
tissue after intratumoral administration, mice (N  =  4 per 
group) were treated with Proleukin (10 μg/mouse), F8–IL2 
(30 μg/mouse) or saline. Mice were killed 3 or 5 days after 
the injection and tumor embedded in optimal cutting com-
pound and frozen in liquid nitrogen. Detection of IL2 was 
performed with anti-human IL2 antibody (eBioscience), 
followed by anti-rat IgG-AlexaFluor488 (Invitrogen) as 
secondary reagent.

All slides were mounted with fluorescent mounting 
medium (Dako) and analyzed with an Axioskop2 mot plus 
microscope (Zeiss).

For semiquantitative evaluation of infiltrating cells and 
IL2 residence time, pictures of 3–5 randomly selected 
tumor areas were taken using a 20× objective (0.14 mm2). 
The percentage of the stained area to the total image area 
was assessed by computer aided image analysis (Image J 
software).

Statistical analysis

Statistical analyses were performed with the aid of Prism 
software. Therapy efficacy was evaluated with the two-way 
ANOVA followed by Bonferroni as post-test. Differences 
in the stained area of frozen sections were evaluated with 
the one-way ANOVA followed by Dunn’s post-test. P val-
ues lower than 0.05 were considered significant.

Results

Comparison of L19 and F8 in the K1735M2 model 
of melanoma

In order to test the ability of L19 and F8 to stain freshly 
frozen sections of K1735M2, we performed an immuno-
fluorescence experiment with the two antibodies in SIP 
format, which revealed a stronger staining when the F8 rea-
gent was used (Fig. 1a–c). The two immunocytokines F8–
IL2 and L19–IL2 were then labeled with iodine-125 and 
studied in a biodistribution analysis, following intravenous 
administration to K1735M2-bearing mice. The results were 
in keeping with the immunohistochemical data, revealing a 
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higher tumor uptake for F8–IL2, as compared to L19–IL2 
(Fig. 1d). The %ID/g values in the tumor observed for F8–
IL2 were not as high as for other tumor models recently 
reported by us [34], but the fusion protein was clearly 
superior to L19–IL2 and KSF–IL2 in terms of tumor/blood 
ratios. KSF–IL2 was used as control untargeted immu-
nocytokine, the KSF antibody being specific for the hen 
egg lysozyme, an antigen of irrelevant specificity in the 
mouse [34]. For these reasons, F8–IL2 was chosen as our 

reference immunocytokine for all subsequent studies in the 
K1735M2 model.

Combination therapy studies with chemotherapy

In a first set of therapy experiments, we aimed at assess-
ing the therapeutic activity of F8–IL2 in combination with 
PTX or with DTIC, in comparison to the activity of the 
single agents. Based on the experience gained in our pre-
vious combination studies, we administered the cytotoxic 
agent 24  h before the intravenous injection of the immu-
nocytokine (30  µg/mouse, three injections). Figure  2a, 
b reveals that the combination of F8–IL2 with DTIC or 
with PTX was always superior to the use of F8–IL2 or the 
cytotoxic drugs as single agents (T/C = 25 % for F8–IL2 
and PTX, 29  % for DTIC, 11  % for both combination 
therapies). However, in contrast to other mouse models 
of melanoma, we did not observe complete cures in the 
K1735M2 model, but only tumor growth retardations com-
pared to saline phosphate buffered saline (PBS), which 
lasted ~15 days following the last injection. The therapeu-
tic performance of F8–IL2 + DTIC or of F8–IL2 + PTX 
appeared to be comparable. No significant weight loss 
was observed in any of the treatment groups (Supplemen-
tary Figure  1), which motivated us to investigate higher 
therapeutic doses. Figure  2c, d shows the results of ther-
apy experiments performed with F8–IL2 at a 50 µg/dose (3 
injections), in a more aggressive melanoma setting, estab-
lished by the injection of a higher number of tumor cells 
(5×106 per mouse). A statistically significant superiority of 
F8–IL2 + DTIC over DTIC alone could be observed. The 
combined treatment gave the best therapeutic results both 
in the DTIC and PTX combination groups (P < 0.05 from 
day 18 vs. PBS, P < 0.05 from day 22 or 26 vs. DTIC or 
PTX, respectively). In spite of the higher doses used, no 
cures could be observed. A microscopic analysis of the 
leukocyte infiltration in tumors 24  h after treatment with 
F8–IL2 + DTIC revealed a statistically significant increase 
in CD4 (+) T cell infiltration in the neoplastic mass as 
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compared to the control groups, whereas no substantial dif-
ferences could be observed when staining for CD8, Foxp3, 
asialo GM1 and CD45 (Supplementary Figure 2).

In the ongoing Phase II clinical studies with L19–IL2 in 
combination with DTIC [26], patients are frequently treated 
with DEXA, NOVA and PARA following immunocytokine 
infusion, to counteract flue-like symptoms such as the tem-
perature increase associated with high IL2 values in blood. 
We performed a therapy experiment, administering DEXA 
(2  mg/kg), NOVA (200  mg/kg), PARA (100  mg/kg) in 
combination with F8–IL2 + DTIC, in order to mimic clini-
cal procedures and learn about a possible inhibition of the 
anticancer effect. Supplementary, Figure  3 shows that no 
statistically significant reduction of therapeutic effect could 
be seen with any of the three anti-inflammatory drugs.

Combination therapy studies with TNF‑based 
immunocytokines

In order to mimic the intralesional treatment of patients 
with Stage IIIC melanoma, we compared the therapeu-
tic activity of IL2 and TNF, used alone, in combination 
or fused to the L19 and F8 antibodies, by performing 

intratumoral injections. F8-based immunocytokines were 
tested in the K1735M2 melanoma model (Fig. 3a, b), while 
L19 products were tested in the Wehi-164 sarcoma model, 
which is strongly positive for the EDB domain of fibronec-
tin [38] (Fig. 3c, d). In the melanoma model, the targeted 
immunocytokines F8–IL2 and F8–TNF used as single 
agents resulted to be more effective than an equimolar dose 
of the corresponding nontargeted cytokines (Fig.  3a, b). 
The combination of F8–IL2 with F8–TNF yielded the best 
therapeutic results, curing 2/4 mice with a single intratu-
moral injection (Fig. 3b).

In the sarcoma model, recombinant murine TNF 
exhibited a potent antitumoral activity, which was clearly 
superior to the one of intralesional IL2 (Fig.  3c), in 
keeping with the fact that soft tissue sarcomas are the 
tumors with the highest sensitivity to TNF action [39]. 
The combination of L19–IL2 with L19–TNF could cure 
5/5 mice with a single intratumoral injection (Fig.  3d). 
Upon rechallenge with a subcutaneous injection of Wehi-
164 cancer cells, all cured mice did not develop tumor 
lesions, indicating that they had acquired a protective 
immunity. The immunocytokine combination therapies 
were well tolerated, as evidenced by the profiles of body 
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Fig. 2   Therapeutic activity of F8–IL2 in combination with dacar-
bazine or paclitaxel chemotherapy. K1735M2 melanoma-bearing 
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ceded three cycles of chemotherapy with dacarbazine on the first day 
of treatment. d Immunotherapy followed paclitaxel chemotherapy by 
1 h during every cycle of therapy, a total of three cycles, every second 
day was administered. Results are plotted as tumor mean weight over 
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roni post-test). Gray down arrow  =  F8–IL2 treatment, black down 
arrow = DTIC or PTX treatment, N = 4–5 mice per group
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weight during the course of therapy (Supplementary 
Figure 4).

In both tumor models, the administration of targeted 
TNF induced the formation of a necrotic mass, which con-
verted into a black scar prior to the complete disappearance 
of the neoplastic lesion (Supplementary Figure 5).

To gain more insights about the superior performance of 
targeted IL2, compared with recombinant IL2, an immu-
nofluorescence analysis of tumor sections was performed. 
In the K1735M2 melanoma model, F8-IL2 exhibited a 
persistent localization at the tumor site following intral-
esional administration, whereas recombinant IL2 injected 
at equimolar doses could not be detected after 3 and 5 days 
(Fig. 4a, b). A similar analysis could not be performed for 
TNF-based immunocytokines, because of the scar forma-
tion induced by these agents.

Discussion

Dacarbazine and PTX are frequently used for the treat-
ment of patients with metastatic melanoma, but these 
agents rarely induce objective responses in patients [40]. In 
this study, we have shown that the combination of F8–IL2 
with either of the two drugs led to improved tumor growth 

retardation, compared to the drugs used as single agent, 
without additional loss of body weight or any other sign of 
toxicity. In contrast to our previous study [18], DTIC did 
not appear to be inferior to PTX as chemotherapeutic agent 
for immunocytokine combination in the K1735M2 synge-
neic immunocompetent model of melanoma. This observa-
tion is of interest, since L19–IL2 has been investigated in 
the clinic in combination with DTIC in patients with meta-
static melanoma and a Phase IIb clinical trial is currently 
ongoing [26].

Cures were not observed in the systemic therapy study 
with the K1735M2 model, but the fully human F8–IL2 
fusion protein could be administered only three times, as it 
is immunogenic in the mouse. In the mouse setting, tumors 
did not grow as long as F8–IL2 was administered. In the 
clinic, the fully human L19–IL2 and F16–IL2 are routinely 
given to patients with cancer for over 6  months, without 
evidence of immunogenicity for the majority of the treated 
patients [26].

The biodistribution results obtained with F8–IL2 in the 
murine K1735M2 melanoma model indicate tumor/blood 
ratios of 8.6 twenty-four hours after intravenous administra-
tion, but only 1.2 %ID/g in the tumor. This value is lower 
compared to the ones observed with F8–IL2 and other 
F8-based products in other models [34, 36, 41]. Additional 
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Fig. 3   Therapeutic efficacy of the combination of IL2- and TNF-
based immunocytokines. Mice-bearing K1735M2 melanoma (a, b) 
or Wehi-164 sarcoma tumors (c, d) were treated with recombinant 
human IL2 (10  μg/mouse), murine recombinant TNFα (2.5  μg/
mouse) or a combination of the two (a, c). Further therapy groups 
were treated with the corresponding immunocytokines F8–IL2 
(30 μg/mouse), F8–TNF (7 μg/mouse) or a combination of the two 

(b), L19–IL2 (30 μg/mouse), L19–TNF (7 μg/mouse) or a combina-
tion of the two (d). Treatment consisted of a single injection when 
tumor reached an approximate volume of 100  mg (black arrow). 
Gray arrows represent a second injection, performed only in therapy 
groups not receiving TNF. Therapy results are plotted as tumor mean 
weight over time ±SE. *=P < 0.05 (two-way ANOVA test followed 
by Bonferroni post-test, N = 4–5 mice per group
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parameters, such as tumor blood vessel permeability and 
interstitial pressure, may influence the antibody uptake in 
the tumor, which cannot be completely predicted even if the 
antigen is strongly expressed, as evidenced by immunohis-
tochemical analysis. It is important to compare biodistribu-
tion studies in mice with dosimetries obtained in patients. A 
variability, from lesion to lesion and from patient to patient, 
has been reported in imaging studies performed with can-
cer patients using the L19 and F16 antibodies, developed by 
our laboratory [42, 43]. The tumor-targeting performance of 
the L19 antibody has been studied in over 200 patients with 
cancer using Nuclear Medicine Techniques, including >10 
melanoma patients [42, 44, 45]. Nuclear Medicine studies 
for F8 are still missing, but immunofluorescence studies 
suggest that F8 may be superior to L19 for the staining of 
certain types of melanoma lesions [46].

The judicious use of antipyretic drugs and the hydration 
of patients promises to reduce side effects associated with 
IL2 serum peak concentrations in immunocytokine treat-
ment, thus potentially allowing the administration of higher 
doses. In the case of pro-inflammatory immunocytokines, 
there is a clear dose dependence for the therapeutic effi-
cacy, as evidenced not only by dose escalation studies in 
mice [14, 47], but also by the effect of locoregional treat-
ment modalities [28, 30]. It may be possible to increase 
therapeutic doses by slowing down infusions, thus reducing 

cytokine peak concentrations and, consequently, side 
effects. Importantly, it appears that the tumor/organ ratios 
(i.e., the targeting selectivity) achieved in vivo with anti-
bodies specific to oncofetal fibronectin do not depend on 
the absolute amount of injected antibodies [17], thus pro-
viding a strong basis for slowing down infusions.

Microscopic analysis of the leukocyte infiltrate in 
tumors after F8–IL2 + DTIC treatment seems to point to 
an increased CD4 (+) T cell population in the neoplastic 
mass. In a number of previous depletion studies featuring 
use of immunocytokines which lead to cancer cures, CD8+ 
T cells and NK cells were found to play a crucial role, 
whereas the contribution of CD4+ T cells was always neg-
ligible [18, 36, 48, 49]. These observed differences deserve 
further investigation (we limited our analysis to the 24-h 
time point) but, if confirmed, seem to imply that differences 
in tumor type, animal strain and cytokine might lead to the 
activation of different mechanisms of tumor rejection.

While the systemic administration of drugs appears to 
be the method of choice for the treatment of disseminated 
disease, the control of melanoma with inoperable skin-only 
manifestations could potentially be achieved using locore-
gional procedures. A number of interventional strategies, 
including immune-, electrochemo- and radiotherapy, have 
been considered [50]. The group of Claus Garbe has pio-
neered the intralesional administration of recombinant IL2 

Fig. 4   IL2 residence time 
and distribution in the tumor 
tissue. K1735M2 melanoma-
bearing mice were intralesion-
ally treated once with F8-IL2 
(30 μg/mouse), rIL2 (10 μg/
mouse) or saline. Two mice 
per group were killed 3 or 
5 days after the injection. 
10 μm cryostat sections of 
OCT embedded tumors were 
stained for human IL2 (green) 
and counterstained with DAPI 
(blue). Representative pictures 
(a) and the relative quantifica-
tion (b) are shown
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for the treatment of Stage IIIB and Stage IIIC patients. While 
the majority of injected lesions respond to treatment [30, 51], 
a time-to-Stage IV and a survival benefit has so far only been 
shown for patients with Stage IIIB melanoma disease [52] 
suggesting a beneficial systemic effect induced by the local 
treatment in the earlier stages of the disease. For this reason, 
there is a need for a more efficacious treatment of Stage IIIC 
melanoma patients. Indeed, the use of a targeted form of IL-2 
(L19–IL2) has recently been shown to prompt a sustained 
systemic immune response and to delay the progression rate 
to distant metastases for Stage IIIB/IIIC patients [31].

In the pre-clinical setup, we observed that the combined 
use of L19–IL2 with L19–TNF in F9 teratocarcinoma was 
more potent than either immunocytokine used alone [20]. 
In this same study, we could also observe a synergistic 
effect of L19–IL2 in combination with antibodies directed 
against murine CTLA-4 (ipilimumab analogs) [20]. These 
data and the data presented in this study provide a strong 
rationale for the combination of IL2- and TNF-based 
immunocytokines, which can persist at the tumor site 
for a longer period of time compared to the nontargeted 
cytokines and may thus be efficacious with a limited num-
ber of intralesional injections. A Phase II trial featuring the 
intralesional administration of L19–IL2 plus L19–TNF 
in patients with Stage IIIC melanoma (EudraCT 2012-
001991-13) is currently ongoing.

In summary, we have shown that the therapeutic activity 
of IL2-based immunocytokines can be potentiated by com-
bination with chemotherapeutic agents and with TNF-based 
immunocytokines. These data provide support to clinical 
trials, featuring the use of IL2-based immunocytokines spe-
cific to alternatively spliced extra domain of fibronectin. This 
marker of tumor angiogenesis is conserved from mouse to 
man, which greatly facilitates translational clinical activities.
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