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they underwent liver resection. We found that MAIT cells, 
defined as CD3ε+Vα7.2+CD161++ or CD3ε+MR1  tetramer+ 
cells, were present within both healthy and tumor-afflicted 
hepatic tissues. Paired and grouped analyses of samples 
revealed the physical proximity of MAIT cells to metastatic 
lesions to drastically influence their functional competence. 
Accordingly, unlike those residing in the healthy liver com-
partment, tumor-infiltrating MAIT cells failed to produce 
IFN-γ in response to a panel of TCR and cytokine recep-
tor ligands, and tumor-margin MAIT cells were only par-
tially active. Furthermore, chemotherapy did not account 
for intratumoral MAIT cell insufficiencies. Our findings 
demonstrate for the first time that CRLM-penetrating MAIT 
cells exhibit wide-ranging functional impairments, which are 
dictated by their physical location but not by preoperative 
chemotherapy. Therefore, we propose that MAIT cells may 
provide an attractive therapeutic target in CRC and that their 
ligands may be combined with chemotherapeutic agents to 
treat CRLM.

Abstract Mucosa-associated invariant T (MAIT) cells are 
innate-like T lymphocytes that are unusually abundant in the 
human liver, a common site of colorectal carcinoma (CRC) 
metastasis. However, whether they contribute to immune 
surveillance against colorectal liver metastasis (CRLM) is 
essentially unexplored. In addition, whether MAIT cell func-
tions can be impacted by chemotherapy is unclear. These are 
important questions given MAIT cells’ potent immunomod-
ulatory and inflammatory properties. Herein, we examined 
the frequencies and functions of peripheral blood, healthy 
liver tissue, tumor-margin and tumor-infiltrating MAIT 
cells in 21 CRLM patients who received no chemotherapy, 
FOLFOX, or a combination of FOLFOX and Avastin before 
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Abbreviations
ABCB1  ATP-binding cassette subfamily B member 1
ASA  American Society of Anesthesiologists
CRC  Colorectal carcinoma
CRLM  Colorectal liver metastasis
ECOG  Eastern cooperative oncology group
FOLFOX  Leucovorin calcium (folinic 

acid)/5-fluorouracil/oxaliplatin
6-FP  6-formylpterin
GZM B  Granzyme B
HMNCs  Hepatic [non-parenchymal] mononuclear cells
MAIT  Mucosa-associated invariant T [cell]
MDR1  Multi-drug resistance protein 1
MNCs  [non-parenchymal] mononuclear cells
MR1  MHC-related protein 1
NKG2D  Natural-killer group 2, member D
NKT  Natural killer T [cell]
5-OP-RU  5-(2-oxopropylideneamino)-6-D-ribitylamin-

ouracil
rIL  Recombinant [human] interleukin
SEB  Staphylococcal enterotoxin B
TH1  T helper 1
TH17  T helper 17

Introduction

Colorectal carcinoma (CRC) is a major cause of morbidity 
and mortality worldwide. In the United States, CRC is con-
sidered the third leading cause of death from cancer among 
men and women and was also estimated to constitute the 
third most common type of cancer to occur in 2016 [1]. 
Although advances in screening and systemic therapeutic 
approaches over the past few decades have improved the 
5-year overall survival rate for CRC, approximately one-
third of patients still succumb to this malignancy within 
5 years of diagnosis [2].

One of the most devastating clinical complications of 
CRC is metastasis to various organs, frequently to the liver, 
which may be present at diagnosis or detected subsequently. 
In fact, over 50% of CRC patients develop hepatic metastases 
during their lifetime [3, 4]. Surgical resection is currently the 
only curative option for colorectal liver metastasis (CRLM). 
Although preoperative chemotherapy may reduce the tumor 
burden to ‘downstage’ a fraction of otherwise ‘unresectable’ 
patients, only a small minority of CRLM patients meets the 
eligibility criteria for hepatic resection [4]. Therefore, immu-
notherapy, which is typically more tumor-specific and less 
toxic than chemotherapy, has brought renewed hope to many 

cancer patients, including those with CRC. Once optimized 
and successfully implemented, immunotherapeutic modali-
ties may shrink a tumor mass and prepare the host for other 
treatments (e.g., surgery) or even prevent postoperative 
relapse.

The general goal of CRC immunotherapy is twofold, 
namely to augment antitumor responses of innate and adap-
tive nature, for instance via administration of tumor vac-
cines, adjuvants and cytokines and through enhancement of 
pro-inflammatory cytokine-producing cells, and to relieve 
tumor-mediated immunosuppression [5]. Several cell types 
belonging to innate and adaptive arms of immunity have 
been implicated in anti-CRC immune surveillance. These 
include intratumoral NK cells [6, 7], invariant natural killer 
T (NKT) cells [8], macrophages [9] and memory, T helper 
1  (TH1)-polarized and cytotoxic  CD8+ T cells [10, 11]. It 
is noteworthy, however, that markers used in many stud-
ies to identify T, NK and NKT cells or to distinguish them 
from each other (e.g., CD3, CD8, CD56, CD57, NKG2D) 
are shared by certain unconventional T cell types, includ-
ing mucosa-associated invariant T (MAIT) cells that are the 
main subject of this work.

Many studies to date have focused on immunophenotyp-
ing of TILs as opposed to their functional attributes. Moreo-
ver, it is not well understood whether and/or how chemo-
therapy may alter the composition and functions of TILs 
within the CRC tumor landscape. Finally, TILs present in or 
extracted from the primary site of neoplastic transformation 
(i.e., the colorectal tissue) have been commonly investigated, 
whereas their functions within the metastatic lesions, espe-
cially in the liver (i.e., in CRLM), are far from clear. This is 
particularly important in light of the facts that: (i) the liver 
receives a large volume of blood from the gastrointestinal 
tract where CRC originates; (ii) the liver is a unique immu-
nological site with tolerogenic characteristics [12]; and (iii) 
it also paradoxically accommodates many innate-like T cells 
with anticancer potentials. Most notably, MAIT cells, which 
can express cytotoxic effector molecules (e.g., granzymes) 
and exhibit a T helper  (TH)1- or  TH17-type inflammatory 
cytokine profile depending on their local environmental 
imprinting [13, 14] are highly enriched in the human liver. 
They comprise 30–50% of the total hepatic lymphocyte pool 
in humans [15, 16]; yet, their ability to penetrate hepatic 
metastases of CRC and to produce inflammatory cytokines 
in situ remains unexplored.

MAIT cells are best known for their antimicrobial proper-
ties [14]. They express a semi-invariant TCR that is typically 
composed of a TRAV1-2/TRAJ12/20/33 α chain [17, 18], 
which can pair with one of several β chains to recognize 
riboflavin-based antigens of bacterial origin [19] or other 
bacterial products [20]. Antigen recognition by MAIT cells 
occurs in an MHC-related protein 1 (MR1)-dependent 
fashion [19–21]. MR1 is a monomorphic MHC class I-like 
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molecule that is remarkably conserved among mammalian 
species [22]. Of note, MAIT cell TCR ligands may not be 
limited to bacterial products, and MAIT cell activation can 
also be achieved in a TCR-independent fashion, for instance 
by a combination of IL-12 and IL-18 [23], potent cytokines 
known for their antitumor activities.

MAIT cell TCR transcripts have been previously detected 
and correlated with pro-inflammatory cytokine expression 
in kidney and brain cancer biopsies [24]. In addition, human 
MAIT cells express NKG2D [15], a C-type lectin-like recep-
tor that plays an important role in tumor immune surveil-
lance [25]. NKG2D ligands are highly expressed by CRC 
tumors, especially in their early stages, but are progres-
sively lost, and their expression levels correlate with patient 
survival [26]. Nonetheless, direct evidence for MAIT cell-
mediated responses to cancer in general and to CRC and its 
metastases in particular is either scarce or completely absent.

In this work, we have assessed both the frequencies and 
the functional competence, or lack thereof, of MAIT cells in 
peripheral blood, healthy liver tissue and hepatic metastases 
of patients with CRC. We have also explored whether pre-
operative chemotherapy with FOLFOX [leucovorin calcium 
(folinic acid)/5-fluorouracil/oxaliplatin] alone or in combina-
tion with the anti-angiogenic agent Avastin (bevacizumab) 
has any influence on the above parameters. The potential 
benefits of MAIT cell-based tumor immunotherapy will be 
discussed.

Materials and methods

Human subjects

Twenty-one consenting patients with CRC, 11 males and 
10 females ranging in age from 40 to 80, were prospectively 
enrolled in this study at the London Health Sciences Cen-
tre following informed consent (Table 1). Inclusion crite-
ria included an established diagnosis of CRLM, a curative 
intent for major liver resection, and technical feasibility of 
R0 resection. Patients younger than 18 were excluded. Addi-
tional exclusion criteria consisted of pregnancy, concomitant 
immunosuppressive therapy, immunodeficiency, a Do-Not-
Resuscitate order, a poor performance status [an Eastern 
Cooperative Oncology Group (ECOG) grade of ≥2] [27], 
American Society of Anesthesiologists (ASA) fitness cat-
egory of ≥4, disease progression despite chemotherapy, and 
extrahepatic (e.g., peritoneal, pulmonary, brain, bone mar-
row) metastasis detected prior to surgery or intraoperatively.

As part of standard of care, a multidisciplinary ‘tumor 
board’ discussed each case and reached a consensus on 
the most suitable (i.e., surgical and/or chemotherapeutic) 
course of action. Eligible patients received no chemotherapy 
or at least one cycle of FOLFOX alone or in combination 

with Avastin (Table 1) before they underwent surgical liver 
resection between August 2015 and May 2017. All surgeries 
were performed at London Health Sciences Centre Univer-
sity Hospital or Victoria Hospital, both located in London, 
Ontario, Canada.

All work involving human samples was performed in con-
formity with standard ethical guidelines and using a proto-
col that was approved by the Western University Research 
Ethics Board for Health Sciences Research Involving 
Human Subjects (approval number: HSREB 106937) and 
by the Lawson Health Research Institute (approval number: 
R-15-360).

Whole blood and tissue sample collection 
and processing

Peripheral blood was collected into heparin-coated BD 
 Vacutainers® (BD Biosciences, Mississauga, ON) from 
patients via a surgically placed central line.

After extrahepatic disease was ruled out during laparot-
omy and technical resectability was confirmed through intra-
operative ultrasonography, tissue samples were harvested. 
The extent of liver resection, ≥3 segments according to the 
Brisbane 2000 nomenclature [28], was at the discretion of 
the operating surgeon aiming to achieve negative surgical 
margins as well as a liver remnant of sufficient volume to 
allow for normal hepatic function. Tumor-containing and 
healthy liver tissue specimens were placed in 15 mL of ice-
cold RPMI 1640 medium supplemented with 10% heat-inac-
tivated FBS, GlutaMAX™-I, 0.1 mM MEM nonessential 
amino acids, 1 mM sodium pyruvate, 100 U/mL penicillin, 
100 µg/mL streptomycin and 10 mM HEPES, which will 
hereafter be referred to as complete medium. Samples were 
immediately transported on ice for further processing.

PBMCs were isolated by density gradient centrifugation 
after transferring diluted cells into SepMate™-50 tubes 
(Stemcell Technologies, Vancouver, BC) containing low-
endotoxin (<0.12 EU/mL) Ficoll-Paque PLUS (GE Health-
care Life Sciences, Mississauga, ON).

Hepatic [non-parenchymal] mononuclear cells (HMNCs) 
and tumor-infiltrating MNCs were extracted from respective 
tissue specimens shortly after liver resection. Briefly, the 
specimens were cut into small pieces, pushed through a wire 
mesh filter and washed with 2% FBS in cold, sterile PBS. 
After discarding the supernatant, cell pellets were washed 
again, resuspended, laid over 33.75% low-endotoxin Percoll 
PLUS (GE Healthcare), and spun at 700×g with no brake 
for 12 min at room temperature. The pelleted MNCs were 
treated with ACK lysis buffer for 2 min to eliminate con-
taminating erythrocytes, washed with 2% FBS in cold PBS, 
and passed through 70-µm pores of a nylon mesh strainer to 
remove clumped cells and debris.
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Ex vivo MNC stimulation

Isolated PBMCs, HMNCs and tumor-infiltrating MNCs were 
resuspended in complete medium and seeded at a density of 
1 × 106 cells/250 μL/well of U-bottom microplates. Cells 
were left untreated or stimulated for 24 h with a combination 
of recombinant [human] interleukin (rIL)-12 (PeproTech, 
Rocky Hill, NJ) and rIL-18 (R&D Systems, Minneapolis, 
MN), both used at 5 ng/mL. Parallel cultures were stimu-
lated with staphylococcal enterotoxin B (SEB) (100 ng/mL) 

or crude Klebsiella pneumoniae lysate, which were prepared 
as described below. In several experiments, we used 0.5 µg/
mL of a mouse anti-human CD3ε (clone OKT3) from Bio 
X Cell (West Lebanon, NH) plus 5 ng/mL of rIL-12. During 
the final 5 h of cultures, 1 µM brefeldin A (Sigma-Aldrich, 
Oakville, ON) and 2 µM monensin (eBioscience, San Diego, 
CA) were present to retain IFN-γ and IL-17A among other 
soluble molecules inside the activated cells.

Recombinant SEB was provided by Dr. John McCormick 
(Western University). It was generated using an approved 

Table 1  Demographic and 
clinical characteristics of CRC 
patients participating in this 
study

CEA carcinoembryonic antigen, N/A not applicable
a  According to American Society of Anesthesiologists (ASA) physical status classification (https://www.
asahq.org/resources/clinical-information/asa-physical-status-classification-system)
b  According to the Clavien–Dindo classification
c  Zero for five patients and data not available yet for the remaining three patients
d  Local, regional and/or distal recurrence

Variable Chemotherapy (n = 13) No chemo-
therapy 
(n = 8)

Demographic attributes
 Female gender, n (%) 6 (46) 4 (50)
  Mean age, years (±SD) 54 ± 9 74 ± 5
  Median age, years (range) 55 (40–64) 73 (71–80)

 Male gender, n (%) 7 (54) 4 (50)
  Mean age, years (±SD) 59 ± 10 62 ± 13
  Median age, years (range) 63 (46–70) 62 (47–77)

 Body mass index, Mean ± SD 25 ± 5 27 ± 4
Oncological attributes
 Type of primary cancer, n (%)
  Colon 10 (77) 6 (75)
  Rectum 3 (23) 2 (25)

 CEA, median level in ng/mL (range) 28.3 (1–4220) 10 (8–49)
 Synchronous metastases, n (%) 12 (92) 4 (50)
 Median number of lesions, n (range) 3 (2–9) 2 (1–3)

Chemotherapy
 FOLFOX, n (%) 8 (62) N/A
 FOLFOX + Avastin, n (%) 5 (38) N/A

Surgical attributes
 ASAa fitness category, n (%)

  <3 6 (46) 1 (12)
  3 7 (54) 7 (82)
  ≥4 0 (0) 0 (0)
 Simultaneous resection, n (%) 1 (8) 2 (25)
 Complicationsb, n (%)
  Minor (≤grade III) 4 (31) 2 (25)
  Major (grade IIIa) 2 (15) 0 (0)
  Severe (≥grade IIIb) 2 (15) 0 (0)

Clinical outcomes
 Median length of hospital stay (days) 7 9
 90-day mortality, n (%) 0 (0) 0 (0)c

 Recurrenced, n (%) 1 (8) 1 (20)

https://www.asahq.org/resources/clinical-information/asa-physical-status-classification-system
https://www.asahq.org/resources/clinical-information/asa-physical-status-classification-system


1567Cancer Immunol Immunother (2017) 66:1563–1575 

1 3

institutional biosafety protocol. In brief, SEB, from Staphy-
lococcus aureus strain COL, was cloned, expressed in BL21 
(DE3) competent Escherichia coli, and purified by nickel 
column chromatography [29].

A stock of Klebsiella pneumoniae lysate was prepared 
from a clinical isolate, Parkwood-18, which was a gift from 
Dr. Miguel Valvano (Queen’s University Belfast). After 
overnight culture at 37 °C in Luria broth, bacterial cells were 
washed in cold PBS before adjusting the  OD600 to 6.5. Cell 
membrane rupture was achieved by exposing the bacteria to 
30,000 PSI of pressure for 5 min. The resulting lysate was 
kept at −80°C until use.

Cytofluorimetric analyses

Freshly isolated or cultured cells were washed and stained 
for 30 min at 4°C with fluorochrome-labeled, mouse anti-
human mAbs against CD3ε (clone HIT3a, eBioscience, 
San Diego, CA), CD161 (HP-3G10, eBioscience), CD212 
(IL-12Rβ1) (2.4E6, BD Biosciences, San Jose, CA), 
CD218a (IL-18Rα)(H44, eBioscience) and/or TCR Vα7.2 
(3C10, BioLegend, San Diego, CA) as indicated.

MAIT cells were defined as  CD3+Vα7.2+CD161++ cells. 
In several experiments, MAIT cells were identified through 
cell surface staining with MR1 tetramer reagents [30, 31]. 
Biotinylated human MR1 monomers, which were loaded 
with 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil 
(5-OP-RU), were tetramerized using PE streptavidin (BD 
biosciences) and added to the cells along with a FITC-conju-
gated anti-CD3ε mAb (HIT3a, eBioscience). PE-conjugated, 
6-formylpterin (6-FP)-loaded MR1 tetramers were used as 
a negative staining control. MR1 tetramer staining was per-
formed at room temperature for 30 min.

To quantify the intracellular IFN-γ, IL-17A or granzyme 
B (GZM B) content of MAIT cells after their surface stain-
ing, cells were washed, resuspended in intracellular fixa-
tion and permeabilization buffer (eBioscience) and stored 
at room temperature, in dark, for 20 min. Cells were then 
washed and stained with eBioscience mouse anti-human 
mAbs against IFN-γ (clone 4S.B3), IL-17A (clone eBio-
64DEC17) and/or GZM B (clone GB11), or with appropriate 
isotype controls.

A BD FACSCanto II cytometer and FlowJo software 
(Tree Star, Ashland, OR) were used to acquire and analyze 
data, respectively.

Statistical analysis

Statistical analyses were conducted using GraphPad Prism 
6 software. Student’s t test, the Wilcoxon matched-pairs 
signed rank test and ANOVA were employed to compare 
grouped and paired data sets as appropriate. Differences 
with a p ≤ 0.05 were considered significant. *, **, *** and 

**** denote p ≤ 0.05, p ≤ 0.01, p ≤ 0.001 and p ≤ 0.0001, 
respectively.

Results

MAIT cells are readily detectable within the peripheral 
blood and liver of patients with CRLM

Normal human liver accommodates many MAIT cells [15, 
16]. Whether these cells retain their predominant presence 
in the liver of CRLM patients and whether they penetrate 
the metastatic lesions are unknown. In our cohort, the mean 
frequency (±SEM) of total  CD3+ cells among PBMCs 
(n  =  21), tumor-free healthy tissue HMNCs (n  =  21), 
tumor-margin MNCs (n = 18) and tumor-infiltrating MNCs 
(n = 21) were 44.0 (±4.2)%, 54.3 (±3.3)%, 56.9 (±4.3)% and 
63.1 (±5.6)%, respectively. We found  CD3+Vα7.2+CD161++ 
MAIT cells to be easily detectable among PBMCs and also 
within and outside hepatic tumor masses in the vast majority 
of our patients (Figs. 1a–c, 2).

Although human MAIT cells are often defined by virtue 
of their CD3, Vα7.2 TCRα chain and CD161 co-expression, 
the relatively recent invention of MR1 tetramer reagents has 
provided powerful tools with which to validate MAIT cell 
identification [30, 31]. Having large enough samples from 
several patients (PBMCs and tumor-free HMNCs from 4 
patients and tumor-infiltrating MNCs from 3 patients) 
enabled us to determine MAIT cell frequencies by MR1 
tetramer staining as well. Using 5-OP-RU-loaded MR1 
tetramers, MAIT cells could be detected in all samples with 
similar frequencies to those calculated after co-staining 
with a cocktail of anti-CD3ε, -Vα7.2 and -CD161 mAbs. 
As expected, there was no staining with 6-FP-loaded control 
MR1 tetramers. Figure 1a–c illustrate representative histo-
grams and dot plots as well as the results of our head-to-head 
comparisons between the two staining protocols.

Together, these results indicate that hepatic metastasis 
of CRC does not compromise the presence of MAIT cells 
in the liver. Also importantly, MAIT cells can infiltrate the 
metastatic lesions in the liver of CRC patients.

MAIT cells are less abundant in CRLM tumor lesions 
than within healthy liver tissue

Since MAIT cells were found both within and outside the 
hepatic metastases of CRC, we determined their frequencies 
in paired sample sets harvested from each liver in an effort to 
avoid variations associated with inter-patient heterogeneity. 
To this end, we isolated tumor-free and tumor-infiltrating 
MNCs from each of the 21 liver samples and determined 
their MAIT cell content. Figure 2 demonstrates the outcome 
of our statistical comparison revealing a modest but still 
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significant reduction in the MAIT cell compartment of the 
CRLM tumor microenvironment.

Hepatic tumor‑infiltrating MAIT cells are functionally 
impaired in CRLM patients

While slightly depressed, the frequencies of MAIT cells 
in CRLM ranged between 0.2 and 15.3% in peripheral 
blood and between 6.2 and 75.7% in healthy liver tissue. 
The calculated MAIT cell averages in these compartments 
(Figs. 1, 2) are not markedly different from the expected 
values, and the noted variation is not unusual either [15, 
16]. However, given that MAIT cells constituted a sub-
stantial fraction of TILs in CRLM, the more important 

question was whether they retain their effector functions 
and/or contribute to the inflammatory cytokine milieu 
within the local tumor microenvironment. To address this 
question, we obtained PBMCs, TILs, HMNCs in the tumor 
margin (within 1-cm distance from tumors) and HMNCs 
residing in the healthy liver tissue distal to the metastatic 
lesions (>10 cm away from tumors). Isolated cells were 
then exposed to a panel of non-specific and cognate MAIT 
cell stimuli followed by surface staining for several mark-
ers and intracellular staining for IFN-γ, a prototypic pro-
inflammatory cytokine whose levels are associated with 
a better prognosis in CRC [32]. Using a limited number 
of samples, we were also able to assess the expression of 
IL-17A and GZM B, a potent cytotoxic effector molecule 

Fig. 1  Peripheral blood and hepatic MAIT cells can be readily 
detected in CRC patients with liver metastasis. The frequency of 
MAIT cells was determined by flow cytometry among PBMCs (a), 
tumor-free, non-parenchymal hepatic mononuclear cells (b) and 
hepatic tumor-infiltrating mononuclear cells (c) isolated from patients 
with CRLM. MAIT cells were defined as CD3ε+Vα7.2+CD161++ 

or CD3ε+5-OP-RU-MR1  tetramer+ cells as indicated. 6-FP-MR1 
tetramer was used as a staining control. Representative dot plots for 
each sample type are depicted (left panels). MAIT cell frequencies 
were calculated using both staining strategies for 3–4 patients (right 
panels). Values for matched samples (scatter plots with each patient 
being represented by a distinct symbol) are shown for comparison
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that mediates target cell destruction by activated MAIT 
cells [33].

The stimuli we employed to either directly or indirectly 
activate MAIT cells included rIL-12 plus rIL-18 (TCR-
independent) [23], SEB (TCR/cytokine-dependent but MR1-
independent) [34] and Klebsiella pneumoniae lystate (TCR- 
and MR1-dependent) [35, 36]. It is noteworthy that we also 
attempted to activate MAIT cells using an anti-CD3 mAb 
(OKT3) as a source of signal 1 in conjunction with rIL-12 
that can replace CD28-mediated costimulation, thus supply-
ing signal 2 for T cell activation [37]. However, this stimula-
tion mode proved to be too strong and made MAIT cells in 
all 12 PBMC samples, all 12 healthy HMNC samples, all 10 
tumor-margin HMNC samples, and in 11 out of 12 tumor-
infiltrating HMNC samples undetectable (data not shown) 
due, perhaps, to TCR downregulation or cell death. Interest-
ingly and in partial contrast, conventional  CD3+Vα7.2− T 
cells showed various degrees of detectability, from none 
to complete, in the same cohort. Supplementary Figure 1 
depicts dot plots from 3 representative patients displaying 
no detectable MAIT cells along with absent, partially pre-
sent or fully detectable  CD3+Vα7.2− cells. Therefore, OKT3 
plus rIL-12 could not be used as an optimal stimulus in our 
functional studies on MAIT cells.

We examined whether and to what extent tumor-infil-
trating MAIT cells and those residing in the surrounding 
liver tissue, near to or far from the tumor(s), react to TCR/
MR1-dependent and -independent stimuli. We found that in 
stark contrast with their healthy hepatic tissue counterparts, 
tumor-infiltrating MAIT cells had a complete or near-com-
plete failure to produce IFN-γ in response to rIL-12/rIL-
18, SEB or Klebsiella lysate (Fig. 3a). This was evident not 

only by grouped data set assessments but also through paired 
t tests comparing samples obtained from each individual 
patient. Of note, the IFN-γ response magnitude of tumor-
margin MAIT cells was at an intermediate level, lower than 
that of their healthy tissue counterparts but higher than that 
of tumor-infiltrating MAIT cells. This was especially evi-
dent after stimulation with rIL-12 plus rIL-18 or with SEB 
(Fig. 3a). Next, we sought to ascertain whether intratumoral 
MAIT cell hyporesponsiveness to rIL-12 and rIL-18 could 
be due to weak cytokine receptor expression. We found the 
frequencies of MAIT cells expressing CD212 (IL-12Rβ1) 
or CD218a (IL-18Rα) to be comparable across all the three 
hepatic compartments (Fig. 3b). In addition, CD212 and 
CD218a expression on a per cell basis, as judged by their 
MFI, were equivalent (Fig. 3c). Therefore, the drastic func-
tional impairment of tumor-infiltrating MAIT cells is not due 
to a loss of IL-12 and/or IL-18 receptors.

Other than IFN-γ production that was used as the main 
readout in our functional assays, we also determined the 
frequencies of GZM  B+ cells among healthy liver, tumor-
margin and tumor-infiltrating MAIT cells. We found that on 
average, GZM  B+ cells constituted a relatively high propor-
tion of hepatic MAIT cells in their steady state (Supple-
mentary Figure 2). Healthy tissue MAIT cells responded 
rigorously to rIL-12/r-IL-18, SEB or Klebsiella lysate. By 
contrast, there were fewer GZM  B+ MAIT cells within the 
CRLM lesions although the noted difference did not reach 
statistical significance due, likely, to the small number of 
samples examined.

Finally, we evaluated samples obtained from 3 patients 
for IL-17A expression and found only a negligible percent-
age of both healthy liver and tumor-infiltrating MAIT cells 
to be positive for this cytokine (Supplementary Table 1).

MAIT cell functional abnormalities of CRLM patients 
are not caused by preoperative chemotherapy

Many chemotherapeutic agents interfere with normal bio-
logical functions of various cell types. Since 13 out of the 
21 patients enrolled in this study received FOLFOX, either 
alone or in combination with Avastin, before liver resec-
tion (Table 1), it was important to investigate the effect(s) 
of these agents, if any, on MAIT cells. We found similar 
circulating MAIT cell frequencies in patients with and with-
out preoperative chemotherapy (Supplementary Figure 3). 
Therefore, the chemotherapeutic regimens used in approxi-
mately 62% of our patients appear not to have a negative 
impact on their peripheral blood MAIT cell proportion. In 
subsequent analyses, we determined both the frequency 
(Fig. 4) and the IFN-γ production capacity (Fig. 5) of MAIT 
cells among PBMCs, tumor-free, healthy tissue HMNCs 
and tumor-infiltrating MNCs isolated from three patient 
subgroups, namely those receiving no chemotherapy, those 

Fig. 2  MAIT cell frequencies are diminished within liver metastases 
of CRC. Tumor-free and tumor-infiltrating non-parenchymal mono-
nuclear cells were isolated from the liver of each CRLM patient. 
MAIT cells were then enumerated for each patient’s sample set, and 
the Wilcoxon matched-pairs signed rank test was used to analyze data 
statistically. Error bars represent standard error of the mean (SEM)
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treated with FOLFOX and those given FOLFOX plus Avas-
tin. These analyses revealed no differences between the three 
subgroups with the sole exception of moderately heightened, 
rather than depressed, IFN-γ production in response to rIL-
12/rIL-18 by tumor-infiltrating MAIT cells in the ‘FOLFOX 
only’ subgroup (Fig. 5c). Collectively, these results dem-
onstrate that preoperative chemotherapy is not responsible 
for MAIT cell dysfunction in CRLM patients. The above 
experiments enabled us to also assess IFN-γ production 
by  CD3+Vα7.2− conventional T cells in response to the 
same stimuli (Fig. 5, right panels). Although unfractionated 
conventional T cells were less potent in this capacity, their 

ability to produce IFN-γ followed a similar pattern in the 
three patient subgroups.

Discussion

In this work, we have investigated for the first time, to our 
knowledge, the frequencies and several important func-
tional parameters of MAIT cells in the liver of patients with 
CRLM. Two relatively recent studies have demonstrated the 
presence of MAIT cells within primary colon adenocarcino-
mas [38, 39]. However, the role of MAIT cells in metastatic 

Fig. 3  The physical location of MAIT cells within CRLM-afflicted 
livers dictates their functional capacity. Non-parenchymal mono-
nuclear cells harvested from healthy liver tissue, tumor margin and 
metastatic tumors of CRLM patients were left untreated or exposed to 
rIL-12+rIL-18, SEB or Klebsiella lysate. Twenty-four hours later, the 
frequencies of IFN-γ+ MAIT cells were determined by flow cytom-

etry. Representative dot plots are illustrated, and statistical analyses of 
grouped and paired data sets were performed using two-way ANOVA 
and paired t tests, respectively (a). Baseline frequencies of  CD212+ 
and  CD218a+ hepatic MAIT cells (b) and the MFI of CD212 and 
CD218a staining (c) are also shown
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disease, especially in locations where these cells are highly 
enriched (e.g., human liver) has not been explored before.

We found that MAIT cells heavily infiltrate the hepatic 
metastases of CRC. However, MAIT cells extracted from the 
tumors, and to a lesser extent those adjacent to the lesions, 
were hampered in their ability to make IFN-γ and also 
showed a tendency for failure to upregulate GZM B. MAIT 
cell stimuli we used were carefully chosen to either mimic 
therapeutic scenarios or to shed mechanistic light on poten-
tial MAIT cell defects. A combination of IL-12 and IL-18 
was used because: (i) these cytokines are potent inducers 
of IFN-γ and  TH1-type inflammatory responses [40]; (ii) 
they are implicated in immune surveillance against CRC 
and considered attractive candidates in cytokine-based or 
combination immunotherapy of CRC [41]; and (iii) they 
are known to activate MAIT cells [23]. SEB and Klebsiella 
lysate were utilized to enable examination of TCR- and/or 
MR1-dependent MAIT cell activation.

We found that unlike healthy liver tissue MAIT cells, 
tumor-infiltrating MAIT cells were incapable of producing 
IFN-γ in response to rIL-12/rIL-18 despite amply expressing 
the receptors for these cytokines. In addition, SEB that acti-
vates MAIT cells in a TCR- and IL-12/IL-18-dependent but 
MR1-independent manner [34] failed to elicit an appreciable 
IFN-γ response by tumor-infiltrating MAIT cells neither did 
Klebsiella crude lysate as a source of MR1-restricted, TCR-
binding MAIT cell antigens [35, 36]. Therefore, MAIT cell 
defects within the metastatic lesions are wide-ranging and 
involve TCR and cytokine receptor signaling. Consequently, 
targeting each pathway alone may not be adequate to over-
come MAIT cell dysfunctions.

MAIT cells residing in certain tissues express IL-
17A [15, 42], a cytokine that has been linked to tumo-
rigenesis and suppressor cell accumulation in tumor 

microenvironments [43–46]. Therefore, it is important to 
determine whether tumor-infiltrating MAIT cells’ failure 
to produce IFN-γ represented a global defect or simply 
results from a shift from an IFN-γ- to an IL-17A-pro-
ducing phenotype. We favor the former scenario because 
we found only a negligible proportion of MAIT cells to 
be IL-17A+ within the hepatic metastases of 3 CRLM 
patients. This finding needs to be validated in a larger 
cohort.

At least three lines of evidence suggest that MAIT cell 
insufficiencies of CRLM patients are not caused by pre-
operative chemotherapy. First and foremost, we found no 
marked reduction in peripheral blood and hepatic MAIT 
cell frequencies and IFN-γ synthesis in patients who had 
been treated with FOLFOX (±Avastin) (Figs. 4, 5). Sec-
ond, even in patients receiving systemic chemotherapy, 
healthy liver tissue MAIT cells were still able to produce 
copious amounts of IFN-γ and GZM B (Fig. 5b, Supple-
mentary Figure 2). Third, hepatic MAIT cells residing 
in close proximity to CRLM masses were only partially 
effective in producing IFN-γ and GZM B, suggesting that 
it is indeed the tumor microenvironment, and not chemo-
therapy, that incapacitates MAIT cells in CRLM patients.

MAIT cells’ chemoresistance is not surprising since 
they express high levels of multi-drug resistance protein 1 
(MDR1) [aka. ATP-binding cassette subfamily B member 
1 (ABCB1)], which confers upon the cells the ability to 
pump out certain toxins and drugs including chemothera-
peutics [15, 47]. Therefore, it is possible that the chemo-
therapeutic agent(s) administered before liver resection 
for CRLM (i.e., FOLFOX in this study) may be actively 
expelled by MAIT cells. From a therapeutic standpoint, 
our findings suggest that MAIT cell stimuli, including 
select cytokines and MR1-restricted TCR agonists, can 

Fig. 4  Preoperative chemotherapy with FOLFOX or with FOLFOX 
plus Avastin does not lower blood and hepatic MAIT cell frequencies. 
PBMCs (a), tumor-free, non-parenchymal hepatic mononuclear cells 
(b) and hepatic tumor-infiltrating mononuclear cells (c) were iso-
lated from CRLM patients who had received no chemotherapy (filled 

triangles), FOLFOX (filled circles) or FOLFOX plus Avastin (open 
squares) before they underwent liver resection surgery. The percent-
age of MAIT cells in each cell population was determined by flow 
cytometry. Error bars represent SEM



1572 Cancer Immunol Immunother (2017) 66:1563–1575

1 3

be potentially combined with chemotherapy to form novel 
and more efficacious treatments for CRLM and similar 
malignancies.

In their study, Sundström et  al. found tumor-derived 
MAIT cells to be only slightly impaired such that ~50% of 
the cells were still able to produce IFN-γ in response to a 

Fig. 5  Baseline and inducible IFN-γ production by blood and hepatic 
MAIT cells is refractory to treatment with FOLFOX ± Avastin. 
PBMCs (a), tumor-free hepatic mononuclear cells (b) and tumor-
infiltrating mononuclear cells (c) were isolated from CRLM patients 
who had received no chemotherapy (filled triangles), preoperative 

FOLFOX (filled circles) or FOLFOX plus Avastin (open squares). 
The ability of MAIT cells (left panels) and  CD3+Vα7.2− conven-
tional T cells (right panels) to produce IFN-γ in response to rIL-
12+rIL-18, SEB or Klebsiella lysate was evaluated by flow cytom-
etry. Error bars represent SEM
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combination of PMA and ionomycin [38], which activates 
the cells in a TCR-independent fashion only. In our study 
involving multiple TCR-dependent and -independent stimuli, 
tumor-infiltrating MAIT cells were almost completely dys-
functional. This discrepancy cannot be attributed to cellular 
stimulation protocol differences because we also used PMA 
plus ionomycin in pilot experiments to restore IFN-γ pro-
duction by MAIT cells, albeit to no avail (data not shown). 
Instead, we propose that distinct properties of the tumor 
microenvironments in the two studies (i.e., primary tumors 
in the gut versus metastatic tumors in the liver) and/or intrin-
sically unique features of gut- and liver-resident MAIT cells 
may account for the above-noted difference.

An intriguing side observation in the course of our study 
was substantial GZM B expression by hepatic MAIT cells 
(Supplementary Figure 2), which is unlike resting, blood-
derived human MAIT cells that reportedly express no GZM 
B [33]. This is consistent with a partially activated pheno-
type in hepatic MAIT cells’ steady state due, perhaps, to 
their constant exposure to gut microbes through the portal 
venous system [48].

Once/if restored, IFN-γ production by MAIT cells should 
activate NK and T cells as well as macrophages among other 
cell types, thus indirectly contributing to antitumor immu-
nity. Furthermore, since MAIT cells are armed with a cyto-
lytic arsenal of their own [33] and also express NKG2D [15] 
that is known to facilitate anticancer immune surveillance 
[25], it will be crucial to explore if MAIT cells can directly 
sense tumor cells or antigens.

MAIT cells may represent attractive therapeutic targets in 
CRC because: (i) they home to mucosal layers (including the 
primary site of CRC); (ii) they circulate with high frequen-
cies in blood and are highly enriched in the liver (a common 
site of CRC metastasis); (iii) MAIT cells are among very few 
T cell types that launch rapid responses and can, as such, be 
viewed as ‘emergency responders’ not only to infection but 
also to other stimuli (natural or synthetic); (iv) MAIT cell 
agonists and antagonists have been recently described [19, 
49] and the possibility of ex vivo MAIT cell expansion for 
therapeutic purposes is not far-fetched [50]; (v) MAIT cells 
are restricted by the monomorphic antigen-presenting mol-
ecule MR1 [51]. As such, MR1-restricted agonists should 
work beyond the HLA restriction barrier to target MAIT 
cells in genetically diverse human populations. It remains 
to be elucidated whether systemic administration or local, 
tumor-targeted delivery of MR1-restricted antigens alone 
or in combination with other immuno- or chemotherapeutic 
agents will overcome MAIT cell unresponsiveness in CRC. 
Future investigations will address the clinical outcome(s) of 
novel MAIT cell-based interventions.
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