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Abbreviations
ABB	� 1 × annexin-binding buffer
BSA	� Bovine serum albumin
CFSE	� Carboxyfluorescein diacetate succinimidyl 

ester
CIK	� Cytokine-induced killer
DNAM-1	� DNAX accessory molecule-1
ELISA	� Enzyme-linked immunosorbent assay
IFN-γ	� Interferon-γ
IL-2	� Interleukin-2
IL-6	� Interleukin-6
ITIM	� Immunoreceptor tyrosine-based inhibition 

motif
MHC	� Major histocompatibility complex
NK	� Natural killer
OKT-3	� Activating monoclonal antibody against CD3
PBMCs	� Peripheral blood mononuclear cells
PVR	� Poliovirus receptor
TIGIT	� T cell Ig and ITIM domain
TNF-α	� Tumor necrosis factor-α

Introduction

Cytokine-induced killer cells were first characterized by 
Schmidt-Wolf et al. [1–3]. These authors expanded the cells 
in culture from peripheral blood mononuclear cells (PBMCs) 
that were primed with IFN-γ and activated with interleukin-2 
(IL-2) and monoclonal antibody to OKT3. CIK cells share 
phenotypic and functional properties with both natural killer 
(NK) and T cells by co-expressing CD3 and CD56 [4, 5]. 
CD3+CD56+ double-positive cell subsets are the most rel-
evant effector cells in the bulk CIK cell population and show 
major histocompatibility complex (MHC)-unrestricted cyto-
toxicity toward neoplastic cells but not normal cells [2, 6, 7].
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The ease of CIK cell production in vitro and their anti-
tumor potential have made them suitable candidates for 
adoptive cell immunotherapy programs. Indeed, both 
autologous and allogeneic CIK cells have been evaluated 
in phase I and II clinical trials for the treatment for various 
hematopoietic and solid tumors [8–17]. However, clinical 
efficacy has been modest to date and limited by suboptimal 
tumor cell killing [18, 19]. Therefore, novel approaches to 
improve the antitumor activity of CIK cells are needed to 
achieve better clinical efficiency.

T cell Ig and ITIM domain is a newly identified inhibi-
tory receptor that is mainly expressed on NK and T cells, 
particularly memory T cells, follicular T helper cells, and 
Treg cells [20–25]. It is a CD28 family protein consisting 
of an extracellular IgV domain, transmembrane domain, 
and cytoplasmic tail containing two ITIMs (immunorecep-
tor tyrosine-based inhibition motifs) [25, 26]. Poliovirus 
receptor (PVR or CD155) was identified as the ligand of 
TIGIT [22, 24]. Kuchroo et  al. [18, 27–29] showed that 
TIGIT has intrinsic effects on T cells and directly inhibits T 
cell proliferation. Moreover, TIGIT inhibits NK cell cytol-
ysis through engagement of CD155 [24, 30]. DNAM-1 
expression on activated NK cells has a role in enhancing 
cytotoxic functions by competing with TIGIT for CD155 
[31].

Here, we examined in detail the function of TIGIT on 
CIK cells. We show that TIGIT and CD155 are expressed 
by CIK cells. Using an anti-TIGIT antibody, we demon-
strated a direct inhibitory effect on CIK cell proliferation 
by TIGIT. In addition, we found that antibody blockade of 
TIGIT or CD155 enhanced the cytotoxicity of CIK cells 
upon encountering CD155-expressing tumor cells. We also 
demonstrate TIGIT-mediated inhibition of cytokine pro-
duction with decreases in IFN-γ, IL-6, and TNF-ɑ. Further-
more, we found that the increases in IFN-γ and cytotoxicity 
by TIGIT blockade were suppressed by blocking DNAM-1 
signaling.

Materials and methods

Cell lines and antibodies

The human melanoma cell line A375 was grown in DMEM 
(GIBCO BRL, Grand Island, NY, USA) supplemented with 
10 % fetal bovine serum (FBS, GIBCO BRL) as described 
[32]. The human renal carcinoma cell line 786-O and 
human chronic myelogenous leukemia cell line K562 were 
obtained from the Shanghai Cell Collection (Shanghai, 
China). 786-O and K562 cells were cultured at 37 °C with 
5 % CO2 in RPMI-1640 medium (GIBCO BRL) contain-
ing 10 % FBS, 2 mM l-glutamine, and 100 U/ml penicillin/
streptomycin. Antibodies used were as follows: anti-TIGIT 

and antihuman TIGIT functional-grade purified (eBio-
science, San Diego, USA); anti-CD155, anti-DNAM-1, 
and purified antihuman CD155 (BioLegend, CA, USA); 
and anti-CD3, anti-CD4, anti-CD8, and anti-CD56 (BD 
PharMingen, San Diego, CA, USA).

CIK cell culture

Human PBMCs were isolated from four healthy volunteers 
using Ficoll separation solution (Biochrom, Berlin, Ger-
many). This study was approved by the Ethics Commit-
tee of The Affiliated Hospital of Xuzhou Medical College, 
Xuzhou, China, according to the guidelines of the Declara-
tion of Helsinki. To generate CIK cells, the PBMCs were 
cultured in complete medium consisting of RPMI-1640, 
10  % FBS, and 1000 U/ml recombinant human IFN-γ, 
(PeproTech, Rocky Hill, USA). After 24 h, the cells were 
treated with 30  ng/ml anti-CD3 monoclonal antibody 
(OKT-3, eBioscience) and 300  IU/ml recombinant human 
IL-2 (PeproTech). Fresh complete medium containing 
300 IU/ml IL-2 was added every 2–3 days. Cells were har-
vested at days 0, 4, 7, 10, 14, 18, 21, 28, and 35 and char-
acterized for standard CIK cell markers by flow cytometry. 
On day 10, CIK cells were treated with 2 μg/ml anti-TIGIT 
functional-grade purified antibody, or 2 μg/ml mouse IgGl 
isotype control.

Flow cytometric analysis

Flow cytometry was performed on a FACS Canto (Becton–
Dickinson, San Jose, USA). Briefly, 1 × 106 cells were har-
vested, washed, and resuspended in 100 μl PBS, and then, 
5 μl FITC- and/or PE-conjugated antibodies were added to 
each sample. After incubation at 4 °C for 30 min, the cells 
were washed with PBS, resuspended in 300 μl buffer, and 
analyzed by flow cytometry.

Cell proliferation assay

Cell proliferation was assessed by staining with carboxy-
fluorescein diacetate succinimidyl ester (CFSE, Invitrogen, 
Carlsbad, USA). CIK cells were stained with CFSE prior to 
treatment with the anti-TIGIT antibody at day 10. The cells 
were analyzed by flow cytometry after 8  days in culture. 
Briefly, on day 10, CIK cells were harvested, washed, and 
resuspended in 1 ml PBS with 1 % BSA at a final concen-
tration of 5 × 106 cells/ml, and then labeled for 10 min at 
37 °C with 2 mM CFSE. The staining was stopped by incu-
bation on ice for 5  min in five volumes of ice-cold com-
plete medium. The cells were then washed three times with 
ice-cold PBS containing 1 % BSA and returned to culture 
under appropriate conditions. CFSE staining was analyzed 
using a FACScan.
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Apoptotic cell detection

Apoptotic cells were detected by an Annexin-V Apoptosis 
Detection Kit FITC (eBioscience, Santiago, USA) accord-
ing to the manufacturer’s instructions. The cell pellet was 
resuspended in 1 × annexin-binding buffer (ABB). An ali-
quot of 5 µl Annexin-V fluorescent dye was added to the 
sample, followed by incubation for 15 min at room temper-
ature. The sample was washed and resuspended in 200 µl 
ABB. Then, 2  µl of 10  mg/ml propidium iodide dye was 
added to the sample, followed by incubation for 15  min 
on ice. After incubation, the sample was subjected to flow 
cytometric analysis.

Cytotoxicity assay

To determine specific cytotoxicity, we used the CytoTox 
96 Nonradioactive Cytotoxicity assay (Promega, Madi-
son, USA) based on calorimetric detection of the released 
enzyme lactate dehydrogenase (LDH). Target cells were 
harvested, washed, counted, and diluted to 2 ×  105 cells/
ml, and then 50 µl/well was added to a 96-well plate. Effec-
tor CIK cells were added at effector-to-target cell ratios of 
5:1, 10:1, 20:1 and co-cultured for 4 h. All conditions were 
assayed in quadruplicate. After 4 h of incubation at 37 °C, 
50 µl of supernatants was assayed for LDH activity follow-
ing the manufacturer’s protocol.

Determination of cytokine levels

Secreted levels of IFN-γ, IL-6, and TNF-α were deter-
mined by ELISA using commercially available ELISA kits 
(R&D, Minneapolis, MN USA) as described [33].

Statistical analysis

Values are expressed as the mean  ±  standard deviation. 
Statistical analysis was performed using the Student’s t test, 
one-way analysis of variance followed by Duncan’s new 
multiple range method, or the Newman–Keuls test. P val-
ues of less than 0.05 were considered significant.

Results

Characterization of CIK cells

The phenotype of CIK cell was analyzed by flow cytometry 
at days 0, 4, 7, 10, 14, 18, 21, 28, and 35 of culture. The 
percentages of CD3+CD8+, CD3+CD4+, and CD3+CD56+ 
double-positive cells are shown in Fig.  1. The proportion 
of CD3+ CD56+ cells steadily increased during culture, 
peaked at 21 days, and was maintained thereafter (Fig. 1b).

TIGIT, DNAM‑1, and CD155 are expressed on CIK 
cells

We examined TIGIT expression in CIK cells as depicted in 
Fig. 2a, b. TIGIT expression levels steadily increased start-
ing at day 7 post-CIK cell activation, peaked at 21  days, 
and was maintained thereafter. CD155, the ligand of 
TIGIT, was induced after activation of CIK cells (Fig. 2c, 
d). Because CD155 is also a ligand of DNAM-1, we deter-
mined the expression of DNAM-1 on CIK cells (Fig. 2e, f).

TIGIT inhibits CIK cell proliferation

We investigated whether TIGIT directly inhibited CIK cell 
proliferation. On day 10 of CIK culture, we used the anti-
TIGIT antibody to block TIGIT in CIK cells for 8  days, 
and then, CIK cell proliferation was assessed. As shown in 
Fig. 3a, b, antibody blockade of TIGIT enhanced the prolif-
eration of CIK cells. Furthermore, TIGIT blockade did not 
cause a significant increase in the frequency of early or late 
apoptotic CIK cells (Fig. 3c, d).

TIGIT and CD155 were highly expressed on activated 
CIK cells (Fig. 2). Therefore, we further tested whether the 
TIGIT–CD155 interaction led to the inhibition of CIK cell 
proliferation. To this end, we blocked TIGIT and CD155 
in CIK cells using anti-TIGIT and anti-CD155 antibodies, 
respectively. As shown in Fig.  3e, antibody blockade of 
CD155 or TIGIT directly enhanced CIK cell proliferation. 
These results suggest that TIGIT also has intrinsic effects 
on CIK cells and inhibits CIK cell proliferation by binding 
to its ligand, CD155.

TIGIT inhibits CIK cell cytotoxicity

To test whether TIGIT directly inhibited CIK cell cytotox-
icity, we evaluated CIK cell killing of tumor cells express-
ing various levels of CD155. We used three tumor cell lines, 
A375, 786-O, and K562, with diverse expression levels of 
CD155 (Fig.  4a). Blocking the TIGIT–CD155 interaction 
resulted in significantly increased killing of A375 cells (high 
CD155-expressing cells), only slightly increased killing of 
786-O cells (low CD155-expressing cells), and had no effect 
on K562 cells (lowest CD155-expressing cells) (Fig. 4b). We 
further investigated whether the activity of TIGIT depends 
on binding to CD155. As demonstrated in Fig. 4c, blocking 
of CD155 on A375 cells significantly increased killing by 
CIK cells. These results suggest that the TIGIT interaction 
with CD155 directly inhibits CIK cell cytotoxicity.

TIGIT inhibits cytokine productions in CIK cells

To further examine the direct mechanism of the inhibitory 
effect of TIGIT on CIK cell function, we investigated the 
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role of TIGIT signaling in cytokine production by CIK 
cells. CIK cells were incubated with plate-bound anti-
TIGIT or isotype control antibodies and stimulated for 
5 days. TIGIT blockade significantly increased the produc-
tion of IFN-γ by CIK cells (Fig. 5a). To a lesser extent, pro-
duction of TNF-α and IL-6 was also increased in CIK cells 
exposed to the anti-TIGIT antibody (Fig. 5b, c). These data 
demonstrate that TIGIT suppresses CIK cell responses.

Enhancement of CIK cell responses after TIGIT 
blockade is mediated by CD155 engagement 
of DNAM‑1

In addition to the inhibitory cell-intrinsic role of TIGIT 
in CIK cells, we examined whether TIGIT had a second 
mechanism of negative immunoregulation by competing 
with DNAM-1 for CD155. To examine the mechanism of 
the increased production of IFN-γ by blockade of TIGIT, 
we cultured CIK cells with antibodies against either CD155 
or DNAM-1. As shown in Fig. 6a, adding either the anti-
CD155 or anti-DNAM-1 antibody blocked the increased 
production of IFN-γ induced by TIGIT blockade. Next, 
we performed a killing assay to assess the direct effect 
of DNAM-1 receptors on CIK cells interacting with 

CD155-expressing tumor cells. The activating receptor 
DNAM-1 was blocked on CIK cells blockaded for TIGIT. 
As shown in Fig.  6b, blocking DNAM-1 inhibited CIK-
mediated lysis of A375 cells, but had no effect on lysis 
of K562 cells. These data indicate that in the absence of 
TIGIT, the DNAM-1–CD155 interaction induces IFN-γ 
production and increases cytotoxicity of CIK cells.

Discussion

Despite the various reports on CIK cells, including clinical 
trials of adoptively transferred bulk-expanded CIK cells, 
the molecular mechanism by which CIK cells kill tumor 
cells has not been clearly defined. This study aimed to eval-
uate the effect of the inhibitory receptor TIGIT on PBMC-
derived CIK cells.

TIGIT is an inhibitor of T cell priming and NK cell kill-
ing, but its importance in CIK cells had not been tested. We 
analyzed the kinetics of TIGIT expression in CIK cells by 
flow cytometry. TIGIT expression was induced upon acti-
vation of CIK cells and peaked at day 21 of CIK cell activa-
tion. The kinetics of surface expression of TIGIT were sim-
ilar to the increase in CD3+CD56+ double-positive cells 

Fig. 1   Phenotypic analysis 
of CIK cells during culture. 
PBMCs were isolated from four 
healthy human volunteers and 
stimulated with IFN-γ, OKT-3, 
and IL-2, and cultured for 35 
days. FACS analysis was per-
formed at days 0, 4, 7, 10, 14, 
18, 21, 28, and 35 of culture. a 
The percentage of CD3+CD8+, 
CD3+CD4+, CD3+CD56+ 
double-positive cells is shown at 
day 14 of culture. Data shown 
are representative of at least 
four independent experiments. 
b The line graphs display 
time course of expression of 
CD3+CD8+, CD3+CD4+, and 
CD3+CD56+ double-positive 
cells in the CIK cell population. 
Data are representative of four 
different donors. Mean values 
are shown ± SD
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during CIK cell culture. These results suggest that TIGIT 
expression is closely associated with CIK cell activation. 
Antibody blockade of TIGIT strongly enhanced CIK cell 
proliferation in a time-dependent manner. Similarly, cultur-
ing CIK cells with anti-TIGIT antibody resulted in higher 
production levels of IFN-γ. These data showed that TIGIT 

acts as a critical and specific regulator of the effector func-
tions of stimulated CIK cells in addition to its roles in other 
immune cell lineages.

T cell Ig and ITIM domain inhibits T cell responses and 
NK cell cytotoxicity by binding its ligand CD155 [27, 34]. 
We tested whether the inhibition of CIK cell responses by 

Fig. 2   Expression of TIGIT, 
CD155, and DNAM-1 on CIK 
cells. CIK cells were taken at 
the indicated time points, and 
surface expression of TIGIT 
and CD155 was assessed by 
flow cytometry. The line graphs 
display the cell surface expres-
sion of TIGIT (a), CD155 (c), 
and DNAM-1 (e) at day 14 of 
culture, and the time course 
of expression of TIGIT (b), 
CD155 (d), and DNAM-1 (f) on 
CIK cells. Data are representa-
tive of four different donors. 
Mean values are shown ± SD
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TIGIT was mediated through binding to CD155. CD155 
was highly expressed on activated CIK cells. Blocking the 
TIGIT–CD155 interaction by antibody blockade of CD155 
or TIGIT enhanced the proliferation of CIK cells. We further 

observed that TIGIT interacts with CD155, and this interac-
tion leads to inhibition of CIK cell cytotoxicity. These results 
demonstrated that TIGIT acts as a negative regulator by 
binding to its ligand, CD155, to inhibit CIK cell responses.

Fig. 3   TIGIT cell-intrinsic signaling inhibits CIK cell proliferation. 
a Proliferation of CFSE-labeled CIK cells at day 10 of culture, and 
then stimulated with anti-TIGIT or isotype-matched control antibody 
in the presence of IL-2. CFSE dilution was analyzed by flow cytom-
etry at day 14 in the presence of anti-TIGIT antibody. Data are repre-
sentative of at least four independent experiments. b CIK cell prolif-
eration was assessed at days 10, 12, 14, 16, and 18 of culture in the 
same conditions as in (a), and proliferation indices were determined 
using FlowJo software (n = 5). c Flow cytometry analysis based on 
Annexin-V/PI staining was performed to evaluate the percentage 

of apoptotic cells at day 18 of CIK culture in the presence of anti-
TIGIT antibody. Data are representative of at least four independent 
experiments. d The percentage of apoptotic CIK cells was assessed 
at days 10, 12, 14, 16, and 18 of culture in the same conditions as 
in (c) (n = 5). e Blocking of TIGIT or CD155 activity enhances the 
proliferation of CIK cells. CIK cell proliferation was assessed in the 
presence of anti-TIGIT, anti-CD155 or no antibody at days 10, 12, 
14, 16, and 18 in the same conditions as in (a), and proliferation indi-
ces were determined using the FlowJo software (n = 5). Mean values 
are shown ± SD. *p < 0.05, **p < 0.001 compared to control group
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TIGIT may also directly compete with costimulatory 
receptor DNAM-1 for binding to the same ligand, CD155. 
However, the molecular relationship between TIGIT and 
DNAM-1 has not been fully elucidated [28]. The anti-
DNAM-1 antibody was sufficient to abolish the effects 
of anti-TIGIT, suggesting that TIGIT signaling directly 

inhibits CIK cells by competing with DNAM-1 for binding 
to CD155. The TIGIT/DNAM-1 pathway is similar to the 
CD28/CTLA4 pathway that involves binding to CD80 and 
CD86 ligands.

The TIGIT-intrinsic mechanism of negative regulation 
of T and NK cell functions may also have implications in 

Fig. 4   TIGIT inhibits CIK cell cytotoxicity upon interaction with 
CD155. a Flow cytometric analysis of A375, 786-O, and K562 cell 
expression of CD155 stained with anti-CD155 antibody. b Blocking 
of TIGIT activity enhances the killing of CIK cells. Starting on day 
10, CIK cells were stimulated with anti-TIGIT or isotype-matched 
control antibody in the presence of IL-2 for 4  days. The CIK cells 
were then incubated with A375, 786-O, and K562 cells at an E:T 

ratio of 10:1, and specific lysis was determined 4  h later. Data are 
shown as mean ± SD of four replicates. c Blocking of TIGIT–CD155 
interactions. A375 cells were pre-incubated with anti-CD155 or iso-
type-matched control antibody overnight, and then incubated with 
CIK cells expressing TIGIT at the indicated E:T ratios, and specific 
lysis was determined 4 h later. Data are shown as mean ± SD of four 
replicates. *p < 0.05, **p < 0.001 compared to control group

Fig. 5   TIGIT inhibits CIK cell cytokine production. Starting on day 
10, CIK cells were stimulated with anti-TIGIT or isotype-matched 
control antibody in the presence of IL-2 for 5  days. Production of 

IFN-γ (a), TNF-ɑ (b), and IL-6 (c) was determined by ELISA at 
days 1, 3, and 5. Data are shown as mean ± SD of four replicates. 
*p < 0.05, **p < 0.001 compared to control group
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tumor immunity. Ipilimumab, an antibody that blocks a 
negative regulatory pathway, augments antitumor immunity 
[35–38]. Thus, the TIGIT pathway is an attractive target for 
therapeutic manipulation.

Our data demonstrate that TIGIT is an inhibitory recep-
tor expressed by CIK cells and directly inhibits CIK cell 
activation by binding CD155. This mechanism may enable 
tumors overexpressing CD155 to escape immune attack 
by CIK cells. Several recent reports have demonstrated 
enhanced expression of CD155 in various tumors such as 
colorectal carcinomas, gastric cancer, and neuroblastomas 
[34, 39–43]. Although further studies are needed to test the 
therapeutic benefits of targeting TIGIT, modulation of the 
TIGIT–CD155 interaction may allow more targeted manip-
ulation of CIK cells for antitumor immunotherapy.
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