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ABSTRACT
Background Combining immune checkpoint inhibitors 
(ICIs) with chemotherapy has become a standard treatment 
for patients with non- small cell lung cancer (NSCLC) 
lacking driver gene mutations. Reliable biomarkers are 
essential for predicting treatment outcomes. Emerging 
evidence from various cancers suggests that early 
assessment of serum metabolites could serve as valuable 
biomarkers for predicting outcomes. This study aims 
to identify metabolites linked to treatment outcomes in 
patients with advanced NSCLC undergoing first- line or 
second- line therapy with programmed cell death 1 (PD- 1) 
inhibitors plus chemotherapy.
Method 200 patients with advanced NSCLC receiving 
either first- line or second- line PD- 1 inhibitor plus 
chemotherapy, and 50 patients undergoing first- line 
chemotherapy were enrolled in this study. The 200 
patients receiving combination therapy were divided 
into a Discovery set (n=50) and a Validation set (n=150). 
These sets were further categorized into respond and 
non- respond groups based on progression- free survival 
PFS criteria (PFS≥12 and PFS<12 months). Serum samples 
were collected from all patients before treatment initiation 
for untargeted metabolomics analysis, with the goal of 
identifying and validating biomarkers that can predict 
the efficacy of immunotherapy plus chemotherapy. 
Additionally, the validated metabolites were grouped into 
high and low categories based on their medians, and their 
relationship with PFS was analyzed using Cox regression 
models in patients receiving combination therapy.
Results After the impact of chemotherapy was 
accounted for, two significant differential metabolites 
were identified in both the Discovery and Validation 
sets: N- (3- Indolylacetyl)- L- alanine and methomyl (VIP>1 
and p<0.05). Notably, upregulation of both metabolites 
was observed in the group with a poorer prognosis. 
In the univariate analysis of PFS, lower levels of N- (3- 
Indolylacetyl)- L- alanine were associated with longer 
PFS (HR=0.59, 95% CI, 0.41 to 0.84, p=0.003), and a 
prolonged PFS was also indicated by lower levels of 
methomyl (HR=0.67, 95% CI, 0.47 to 0.96, p=0.029). 
In multivariate analyses of PFS, lower levels of N- (3- 
Indolylacetyl)- L- alanine were significantly associated with 
a longer PFS (HR=0.60, 95% CI, 0.37 to 0.98, p=0.041).

Conclusion Improved outcomes were associated with 
lower levels of N- (3- Indolylacetyl)- L- alanine in patients 
with stage IIIB- IV NSCLC lacking driver gene mutations, 
who underwent first- line or second- line therapy 
with PD- 1 inhibitors combined with chemotherapy. 
Further exploration of the potential predictive value of 
pretreatment detection of N- (3- Indolylacetyl)- L- alanine in 
peripheral blood for the efficacy of combination therapy is 
warranted.
Statement The combination of ICIs and chemotherapy 
has established itself as the new standard of care for first- 
line or second- line treatment in patients with advanced 
NSCLC lacking oncogenic driver alterations. Therefore, 
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identifying biomarkers that can predict the efficacy and prognosis of 
immunotherapy plus chemotherapy is of paramount importance. Currently, 
the only validated predictive biomarker is programmed cell death ligand- 1 
(PD- L1), but its predictive value is not absolute. Our study suggests 
that the detection of N- (3- Indolylacetyl)- L- alanine in patient serum with 
untargeted metabolomics prior to combined therapy may predict the 
efficacy of treatment. Compared with detecting PD- L1 expression, the 
advantage of our biomarker is that it is more convenient, more dynamic, 
and seems to work synergistically with PD- L1 expression.

INTRODUCTION
In recent years, the treatment landscape for non- small 
cell lung cancer (NSCLC) lacking driver gene mutations 
has undergone a substantial transformation with the 
advent of immune checkpoint inhibitors (ICIs) targeting 
programmed cell death protein 1 (PD- 1) or its programmed 
cell death ligand- 1 (PD- L1).1–3 Immunotherapy has tran-
sitioned from a secondary treatment choice to a primary 
therapy, spanning advanced to locally advanced and even 
early- stage disease, and evolving from single- agent therapy 
to combination approaches.4 5 Despite the notable advan-
tages of ICIs, only a limited subset of patients, approxi-
mately 20%, experience sustained positive responses to 
immunotherapy, while some encounter severe adverse 
effects or show no response.6 Accumulating evidence 
suggests that combining therapies can enhance the effi-
cacy of immunotherapy by boosting immune system acti-
vation compared with monotherapy.7 8 Specifically, the 
combination of ICIs and chemotherapy has become the 
standard of care for first- line or second- line treatment in 
patients with advanced NSCLC lacking oncogenic driver 
alterations.9

While immunotherapy progresses, it faces new chal-
lenges, particularly in identifying suitable biomarkers to 
predict treatment response. Various potential biomarkers 
have been explored thus far to identify patients more 
likely to respond to ICIs. Currently, the sole validated 
predictive biomarker is PD- L1 expression,10 11 although 
with non- definitive predictive value. Generally, patients 
with high PD- L1 expression, defined as a tumor propor-
tion score (TPS)≥50%, tend to exhibit better responses 
to immunotherapy, but clinical benefits have also been 
observed in patients with TPS<1%.12 This variability 
can be attributed, in part, to the temporal and spatial 
heterogeneity of tumors.13 Additionally, blood- based 
tumor mutational burden (bTMB) has emerged as a 
candidate biomarker for immunotherapy and can be 
assessed via blood tests.14 However, there is no universally 
accepted cut- off value for bTMB, and the relationship 
between bTMB and ICI treatment efficacy appears to be 
non- linear.15 In essence, higher PD- L1 expression and 
elevated TMB confer a higher likelihood of responding 
to immunotherapy, but tumor immunity is a dynamic and 
intricate process influenced by multiple immunosuppres-
sive and immunostimulatory factors.16 Predicting the effi-
cacy of immunotherapy with a single biomarker remains 
challenging. Furthermore, immunotherapy in combina-
tion with chemotherapy has become standard practice in 

clinical settings for the treatment of patients with stage 
IIIB- IV NSCLC without driver mutations, even in cases 
of negative or low PD- L1 expression.17 18 Consequently, 
there is a clear need for effective and readily accessible 
biomarkers for chemoimmunotherapy, making it impera-
tive to comprehensively explore such biomarkers.

Metabolites play a crucial role in shaping the disease 
phenotype, resulting from a complex interplay between the 
genome and environmental factors.19 20 While genomics 
and proteomics are well- established fields, metabolomics 
is an emerging omics discipline capable of qualitatively 
and quantitatively analyzing all low- molecular- weight 
metabolites within a biological system over a defined time 
frame. This makes it a valuable tool for investigating the 
connections between metabolites and disease develop-
ment.21 Numerous metabolites have been implicated in 
the progression of NSCLC.22–24 However, the relation-
ship between metabolites and outcomes in patients with 
NSCLC treated with ICIs combined with chemotherapy 
remains unclear. Additionally, blood samples represent 
one of the most common sample types in metabolomics 
due to their clinical advantages: ease of acquisition, suit-
ability for dynamic monitoring, and minimal invasiveness. 
These factors highlight the potential of serum metabo-
lites as prognostic biomarkers for patients with stage 
IIIB- IV NSCLC undergoing ICI- chemotherapy treatment.

Our study aimed to establish a connection between 
pretreatment metabolites and treatment efficacy in 
patients with advanced NSCLC lacking driver mutations 
who received first- line or second- line PD- 1 inhibitors 
combined with chemotherapy. Specifically, we aimed to 
identify differential metabolites significantly associated 
with prognosis and subject them to multivariate anal-
ysis to pinpoint potential differential metabolic markers 
capable of predicting patient outcomes along with their 
respective thresholds. Furthermore, we compared prog-
nostic models employing metabolome biomarkers with 
those based on clinical predictors.

METHODS
Patients
A retrospective analysis was encompassed involving a 
total of 250 patients at Shanghai Chest Hospital from 
January 2019 to December 2021. Among these, 200 were 
diagnosed with stage IIIB- IV NSCLC according to the 
eighth edition of tumor, node, metastases (TNM) classi-
fication for lung cancer and underwent either first- line 
or second- line treatment with a PD- 1 inhibitor combined 
with chemotherapy. The remaining 50 patients, also diag-
nosed with stage IIIB- IV NSCLC received first- line cyto-
toxic chemotherapy. Among the 200 patients undergoing 
combination therapy, 50 were randomly assigned to the 
Discovery set, and 150 to the Validation set.

Inclusion criteria for both the Discovery and Validation 
sets were as follows: (1) confirmed diagnosis of NSCLC 
through pathological assessment; (2) TNM stage IIIB to 
IV; (3) presence of at least one measurable lesion; (4) 
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receipt of first- line or second- line combination chemo-
therapy involving a PD- 1 inhibitor, with first- line therapy 
consisting of chemotherapy for patients receiving second- 
line combination treatment. For patients treated with 
chemotherapy alone, the inclusion criteria were: (1) 
confirmed diagnosis of NSCLC through pathological 
assessment; (2) TNM stage IIIB to IV; (3) presence of at 
least one measurable lesion; (4) receipt of first- line cyto-
toxic chemotherapy. All 250 patients were excluded if 
they met any of the following criteria: (1) the presence 
of driver gene mutations (EGFR/ALK/ROS1), and the 
detection technology used for genetic testing is second- 
generation sequencing or PCR multigene combined 
detection; (2) subsequent surgical intervention after 
medical treatment; (3) occurrence of infection within 
10 days before blood collection; (4) failure to complete 
essential systemic examinations such as chest CT, abdom-
inal ultrasound, bone scan, brain MRI, or positron emis-
sion tomography (PET)- CT before enrollment in lieu of 

the aforementioned tests; (5) presence of severe systemic 
chronic conditions, such as cardiovascular and cerebro-
vascular disorders, severe liver or kidney dysfunction, or 
autoimmune diseases with the potential to impact the use 
of immunotherapy drugs (figure 1).

The follow- up period concluded on March 31, 2023.

Study design
The 250 patients were classified into two groups based on 
their treatment regimens: the chemotherapy group and 
the combined treatment group. Within the combined 
treatment group, the 200 patients were randomly divided 
into two subsets: the Discovery set and the Validation set. 
Serum samples collected from all patients before treat-
ment underwent untargeted metabolomics analysis to 
identify differential metabolites. Several NSCLC articles 
have highlighted that the progression- free survival (PFS) 
rate at 12 months can be a primary observed endpoint 
for patient outcomes.25–27 PFS was thus used as a criterion 

Figure 1 Inclusion and exclusion criteria for selecting patients. NSCLC, non- small cell lung cancer; PD- 1, programmed cell 
death protein 1.
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to further categorize patients into the non- response 
(NR) group (PFS<12 months) and the response (R) 
group (PFS≥12 months) within both the Discovery and 
Validation sets. By comparing the NR and R groups in 
the Discovery set, potential prognostic markers for the 
efficacy of combination therapy were sought and subse-
quently validated in the Validation set.

Based on the relative content of the identified differ-
ential metabolites, patients were segmented into two 
groups: a high group (above the median relative content) 
and a low group (below the median relative content). 
This analysis included all patients who received PD- 1 

inhibitor plus chemotherapy. The primary endpoint of 
this study was PFS, and the secondary endpoint was the 
objective response rate (ORR), defined as the propor-
tion of patients with complete responses (CR) and partial 
responses (PR). PFS was defined from the start of treat-
ment until the patient’s disease progression or death or 
the last follow- up time. Tumor R was assessed by a radiol-
ogist and a clinician according to response evaluation 
criteria in solid tumors (RECIST) (V.1.1).

Data collection and treatment
Clinical data and laboratory parameters, including age 
and sex, as well as smoking history, tumor histology, 
TNM stage, eastern cooperative oncology group (ECOG) 
performance status (PS), therapeutic line, number of 
metastatic organs, N stage and PD- L1 expression, were 
retrieved from medical records. Monitoring during 
treatment was regularly performed, with assessments 
conducted every two to three treatment cycles through 
laboratory tests and imaging studies such as chest CT, 
abdominal ultrasound, and, when necessary, brain MRI, 
bone scan, or PET- CT.

Immunotherapy was administered as follows: intrave-
nous administration of pembrolizumab, tislelizumab, or 
sintilimab at a dose of 200 mg every 3 weeks. Combination 
chemotherapy drugs, tailored to individual patient condi-
tions, included pemetrexed, paclitaxel/nab- paclitaxel, 
vinorelbine, docetaxel, gemcitabine and platinum. A 
similar treatment regimen was followed by chemotherapy 
patients, who were also treated every 3 weeks. Treatment 
was continued until disease progression, intolerable 
adverse reactions, or death. Blood samples were collected 
from patients within 10 days before initiating combina-
tion therapy or chemotherapy, with serum being used for 
untargeted metabolomics analysis.

Sample preparation and extraction for untargeted 
metabolomics
Serum samples were retrieved from the −80°C freezer and 
thawed on ice until no ice was present. All subsequent 
procedures were performed on ice. Following thawing, 
a 10 s vortex was applied to each sample, and 50 µL of 
the sample was transferred to centrifuge tubes labeled 
accordingly. Subsequently, 300 µL of a 20% acetoni-
trile methanol internal standard extract was introduced 
into each tube, followed by a 3 min vortex. The samples 
underwent centrifugation at 12,000 r/min for 10 min at 
4°C. Following centrifugation, 200 µL of the resulting 
supernatant was meticulously transferred to separate 
labeled centrifuge tubes, allowing them to stand in a 
−20°C freezer for 30 min. Subsequent to this, the samples 
underwent another centrifugation at 4°C and 12,000 r/
min for 3 min, and 180 µL of the resultant supernatant 
was transferred to the liner tube of corresponding injec-
tion vials for onboard analysis. The serum samples were 
analyzed onboard the machine under appropriate chro-
matographic and mass spectrometric conditions.

Table 1 Baseline characteristics of patients

Characteristic Patients

Total number 250

Age (years), n (%)

  <65 104 (41.6)

  ≥65 146 (58.4)

Gender, n (%)

  Male 211 (84.4)

  Female 39 (15.6)

Smoking history

  Never 58 (23.2)

  Current/former 192 (76.8)

Histology, n (%)

  Squamous 129 (51.6)

  Non- squamous* 121 (48.4)

TNM stage, n (%)

  IIIB- IIIC 76 (30.4)

  IV 174 (69.6)

ECOG PS, n (%)

  0–1 206 (82.4)

  2 44 (17.6)

Number of metastatic organs, n (%)

  0–1 175 (70.0)

  ≥2 75 (30.0)

N stage, n (%)

  0–1 51 (20.4)

  2–3 199 (79.6)

PD- L1 expression, n (%)

  TPS<1% 67 (26.8)

  1%≤TPS≤49% 70 (28.0)

  TPS≥50% 48 (19.2)

  Unknown 65 (26.0)

*Non- squamous tumor included adenocarcinoma, 
lymphoepithelioma- like carcinoma, adenosquamous carcinoma.
ECOG, eastern cooperative oncology group; PD- L1, programmed 
cell death- ligand 1; PS, performance status; TNM, tumor, node, 
metastases; TPS, tumor proportion score.



5Zheng L, et al. J Immunother Cancer 2024;12:e008190. doi:10.1136/jitc-2023-008190

Open access

Analysis of data
Raw data files obtained from liquid chromatography- 
tandem mass spectrometry (LC- MS) underwent conver-
sion into mzXML format using Proteo Wizard software. 
Subsequently, XCMS program was used for peak extraction, 
peak sequence correction, and retention time correction. 
Peak areas were further adjusted employing the “SVR” 
method. Exclusion criteria involved peaks with less than 
50% detection in each group of samples. Metabolic iden-
tification information was obtained through searches in 
the laboratory’s self- built database, integrated public data-
bases, artificial intelligence (AI) databases, and metDNA. 
For data interpretation, unsupervised principal compo-
nent analysis (PCA) was conducted using R, specifically 
the statistical function prcomp. Data were standardized to 

unit variance before executing unsupervised PCA, which 
aimed to assess global metabolome changes between 
groups and ensure study stability. Supervised analysis 
involved orthogonal partial least squares discriminant 
analysis (OPLS- DA) with unit variance scaling to enhance 
separation between groups. Variables contributing signifi-
cantly to classification were identified based on their vari-
able importance in projection (VIP) scores. Differential 
metabolites were determined using criteria VIP>1 and a p 
value<0.05. VIP values were extracted from the OPLS- DA 
results, which included score plots and permutation plots 
generated using the R package meta- analyzer. Prior to 
OPLS- DA, data were log- transformed (log2) and mean- 
centered, and permutation testing (200 permutations) 
was conducted to prevent overfitting.

Table 2 Characteristics of the patients in the chemotherapy group, Discovery set and Validation set

Characteristic Chemotherapy (n=50) Discovery set (n=50) Validation set (n=150) P value

Age (years), n (%)

  <65 23 (46.0) 15 (30.0) 66 (44.0) 0.172

  ≥65 27 (54.0) 35 (70.0) 84 (56.0)

Gender, n (%)

  Male 42 (84.0) 42 (84.0) 127 (84.7) 0.990

  Female 8 (16.0) 8 (16.0) 23 (15.3)

Smoking history

  Never 11 (22.0) 10 (20.0) 37 (24.7) 0.775

  Current/former 39 (78.0) 40 (80.0) 113 (75.3)

Histology, n (%)

  Squamous 21 (42.0) 31 (62.0) 77 (51.3) 0.134

  Non- squamous* 29 (48.0) 19 (38.0) 73 (48.7)

TNM stage, n (%)

  IIIB- IIIC 18 (36.0) 16 (32.0) 42 (28.0) 0.546

  IV 32 (64.0) 34 (64.0) 108 (72.0)

ECOG PS, n (%)

  0–1 39 (78.0) 42 (84.0) 125 (83.3) 0.655

  2 11 (22.0) 8 (16.0) 25 (16.7)

Number of metastatic organs, n (%)

  0–1 35 (70.0) 38 (76.0) 102 (68.0) 0.565

  ≥2 15 (30.0) 12 (24.0) 48 (32.0)

N stage, n (%)

  0–1 7 (14.0) 9 (18.0) 35 (23.3) 0.327

  2–3 43 (86.0) 41 (82.0) 115 (76.7)

PD- L1 expression, n (%)

  TPS<1% 19 (38.0) 14 (28.0) 34 (22.7) 0.654

  1%≤TPS≤49% 16 (32.0) 16 (32.0) 38 (25.3)

  TPS≥50% 8 (16.0) 10 (20.0) 30 (20.0)

  Unknown 7 (14.0) 10 (20.0) 48 (32.0)

*Non- squamous tumor included adenocarcinoma, lymphoepithelioma- like carcinoma, adenosquamous carcinoma.
ECOG, eastern cooperative oncology group; PD- L1, programmed cell death- ligand 1; PS, performance status; TNM, tumor, node, 
metastases; TPS, tumor proportion score.
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Statistical analysis of clinical data primarily used SPSS 
V.25.0 software and GraphPad Prism software (Prism 
V.8). The χ2 test assessed the statistical significance of 
baseline and patient characteristic differences between 
groups, as well as differences in ORR. Median PFS was 
calculated using the Kaplan- Meier method. Cox regres-
sion analyses, encompassing univariate and multivar-
iate analyses, determined HRs for each factor’s impact 
on PFS. Normally distributed group comparisons were 
performed using t- test, while non- normally distributed 
group comparisons used the Wilcoxon rank- sum test. 
Two- sided p values<0.05 were considered statistically 
significant.

RESULTS
Characteristics of chemotherapy, Discovery set and Validation 
set
A total of 250 participants were involved in this study, and 
their baseline characteristics are summarized in table 1.

Among them, 200 patients (80.0%) underwent first- 
line or second- line combination therapy. To explore 
whether the detected differential metabolites were linked 
to immunotherapy or chemotherapy, 50 patients (20.0%) 
underwent first- line chemotherapy. Further categorizing 
patients receiving combination therapy, the Discovery set 
comprised 50 patients (20.0%), and the Validation set 
comprised 150 patients (60.0%). Table 2 demonstrates 
that patient characteristics were well- balanced among the 
three groups.

Figure 2 illustrates that the PFS was 15.0 months in 
the Discovery set, 18.0 months in the Validation set, and 
7.0 months in the chemotherapy group. No significant 
differences were noted in PFS and ORR between the 
Discovery set and Validation set (p>0.05). However, the 
chemotherapy group displayed a shorter PFS and a lower 
ORR compared with the Discovery set and Validation set 
(p<0.05).

Exploring potential biomarkers
Building on the aforementioned analysis, the prognosis 
of the Discovery set was notably superior to that of the 
chemotherapy group. Subsequently, untargeted metab-
olomics analysis was performed on both the discovery 
and chemotherapy groups. The reliability of this study 
is evidenced by the close clustering of quality control 
(QC) samples in the PCA for both the chemotherapy 
group and the Discovery set (figure 3A). Furthermore, 
the OPLS- DA analysis revealed significant differences 
and robust predictability between the two groups 
(figure 3B). Initially, 1475 differential metabolites were 
initially selected using a combination of univariate and 
multivariate statistical analyses (VIP>1 and p<0.05). 
These were further filtered based on fold change (FC) 
values (FC<0.5 or FC>2), resulting in 57 metabolites of 
particular interest, including 4- aminobenzoate, Phe4Cl- 
Tyr- OH, and phenylbutazone, which exhibited the most 
significant differences (figure 4A). It was hypothesized 
that these metabolites could be linked to the prognosis 
of immunotherapy.

Subsequently, the focus shifted to exploring potential 
prognostic biomarkers for patients with advanced NSCLC 
treated with ICIs plus chemotherapy. Based on PFS, the 
Discovery set was divided into the R group (PFS≥12 
months) and NR group (PFS<12 months), with balanced 
patient characteristics except for treatment lines, as indi-
cated in table 3.

PCA and OPLS- DA analyses continued to demonstrate 
clear and reliable group separation (figure 3C & D). 
Using the same selection criteria as mentioned earlier, 
212 differential metabolites were identified, of which 11 
exhibited FC values >2 or <0.5. Among these, the metab-
olite Arg- Gln- Tyr- Lys showed the most significant differ-
ence (figure 4B). To account for potential interference 
from chemotherapy, attention was directed toward the 
common differential metabolites identified in two compar-
isons. There were 57 common differential metabolites, 

Figure 2 (A) Kaplan- Meier progression- free survival curves; (B) objective response rate of the chemotherapy group, Discovery 
set and Validation set. ***, p<0.05. CR, complete response; PD, progressive disease; PR, partial response; SD, stable disease.
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although further validation is needed to confirm whether 
these metabolites can serve as biomarkers (figure 5A).

Comparison of differential metabolites in Discovery and 
Validation sets
To validate the predictive and prognostic roles of these 
serum metabolites, we used an independent cohort, the 
Validation set, consisting of 150 samples. Similar to the 
Discovery set, we divided the Validation set into R and NR 
groups based on PFS (PFS≥12 months or <12 months) 
and conducted untargeted metabolomics analysis. 

Initially, PCA demonstrated reliability, and OPLS- DA 
revealed clear separations between the R and NR groups 
without signs of overfitting (figure 3E & F). Using the 
criteria of VIP>1 and p<0.05, we identified 150 metab-
olites as significant differential metabolites. The fold 
difference bar displayed pairwise comparisons of the top 
20 annotated metabolites with the most significant FC in 
expression between the NR and R groups. Among these, 
7- ketodeoxycholic acid exhibited the most substantial 
change, with an FC>2 (figure 4C).

Figure 3 The principal component analysis (PCA) plot of (A) chemotherapy versus Discovery set; (C) NR group versus R 
group in Discovery set; (E) NR group versus R group in Validation set. The orthogonal partial least squares discriminant analysis 
(OPLS- DA) of (B) chemotherapy versus Discovery set; (D) NR group versus R group in Discovery set; (F) NR group versus R 
group in Validation set. QC, quality control; NR, non- response; R, response.
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Figure 4 Fold difference bar (top 20) of (A) chemotherapy versus Discovery set; (B) NR group versus R group in Discovery set; 
(C) NR group versus R group in Validation set. The abscissa is the log2FC of the differential metabolite, that is, the fold difference 
of the differential metabolite is a logarithmic value based on 2, and the ordinate is the differential metabolite. Red represents 
upregulated metabolite content and green represents downregulated metabolite content. FC, fold change; NR, non- response; 
R, response.
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Comparing the Discovery and Validation groups, along 
with the control group (chemotherapy), we discovered 
three common differential metabolites shared between 
the Discovery and Validation sets (figure 5C). These metab-
olites were 3,3'-Diamino- 4,4'-dihydroxydiphenyl Sulfone, 
N- (3- Indolylacetyl)- L- alanine, and methomyl. The VIP 
and p value of 3,3'-Diamino- 4,4'-dihydroxydiphenyl 
Sulfone, N- (3- Indolylacetyl)- L- alanine, and methomyl in 
the Discovery set were VIP=2.25 and p=0.03; VIP=2.65 
and p<0.01 and VIP=1.78 and p<0.01. The VIP and p value 

of 3,3'-Diamino- 4,4'-dihydroxydiphenyl Sulfone, N- (3- 
Indolylacetyl)- L- alanine, and methomyl in the Validation 
set were VIP=2.01 and p=0.03; VIP=2.06 and p<0.01 and 
VIP=2.44 and p=0.02 (table 4).

Furthermore, we examined the variation trend in the 
relative content of these three metabolites. We observed 
that low levels of N- (3- Indolylacetyl)- L- alanine and 
methomyl were associated with longer PFS. However, an 
interesting discrepancy emerged: in the Discovery group, 
low levels of 3,3'-Diamino- 4,4'-dihydroxydiphenyl Sulfone 

Table 3 Correlation between therapeutic effect of Discovery set, Validation set and clinicopathological characteristics

Characteristic

Discovery set Validation set

NR (n=22) R (n=28) P value NR (n=75) R (n=75) P value

Age (years), n (%)

  <65 6 (27.3) 9 (32.1) 0.709 33 (44.0) 33 (44.0) 1.000

  ≥65 16 (72.7) 19 (67.9) 42 (56.0) 42 (56.0)

Gender, n (%)

  Male 18 (81.8) 24 (85.7) 0.710 63 (84.0) 64 (85.3) 0.821

  Female 4 (18.2) 4 (14.3) 12 (16.0) 11 (14.7)

Smoking history

  Never 6 (27.3) 4 (14.3) 0.433 16 (21.3) 21 (28.0) 0.344

  Current/former 16 (72.7) 24 (85.7) 59 (78.7) 54 (72.0)

Histology, n (%)

Squamous 14 (63.7) 17 (60.7) 0.833 44 (58.7) 33 (44.0) 0.072

Non- squamous* 8 (36.4) 11 (39.3) 31 (41.3) 42 (56.0)

TNM stage, n (%)

  IIIB- IIIC 6 (27.3) 10 (35.7) 0.525 22 (29.3) 20 (26.7) 0.716

  IV 16 (72.7) 18 (64.3) 53 (70.7) 55 (73.3)

ECOG PS, n (%)

  0–1 20 (90.9) 22 (78.6) 0.428 60 (80.0) 65 (86.7) 0.273

  2 2 (9.1) 6 (21.4) 15 (20.0) 10 (13.3)

Therapeutic line, n (%)

  First- line 19 (86.4) 19 (67.9) 0.128 39 (52.0) 52 (69.3) 0.030†

  Second- line 3 (13.6) 9 (32.1) 36 (48.0) 23 (30.7)

Number of metastatic organs, n (%)

  0–1 17 (77.3) 21 (75.0) 0.852 52 (69.3) 50 (66.7) 0.726

  ≥2 5 (22.7) 7 (25.0) 23 (30.7) 25 (33.3)

N stage, n (%)

  0–1 6 (27.3) 3 (10.7) 0.253 17 (22.7) 18 (24.0) 0.847

  2–3 16 (72.7) 25 (89.3) 58 (77.3) 57 (76.0)

PD- L1 expression, n (%)

  TPS<1% 5 (22.7) 9 (32.1) 0.591 21 (28.0) 13 (17.3) 0.093

  1%≤TPS≤49% 6 (27.3) 10 (35.7) 19 (25.3) 19 (25.3)

  TPS≥50% 4 (18.2) 6 (21.4) 9 (12.0) 21 (28.0)

  Unknown 7 (31.8) 3 (10.7) 26 (34.7) 22 (29.4)

*Non- squamous tumor included adenocarcinoma, lymphoepithelioma- like carcinoma, adenosquamous carcinoma.
†P value<0.05.
ECOG, eastern cooperative oncology group; NR, non response; PD- L1, programmed cell death- ligand 1; PS, performance status; R, 
response; TNM, tumor, node, metastases; TPS, tumor proportion score.
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predicted better outcomes, whereas in the Validation 
group, low levels of 3,3'-Diamino- 4,4'-dihydroxydiphenyl 
Sulfone predicted worse outcomes (figure 6).

These results suggest that N- (3- Indolylacetyl)- L- alanine and 
methomyl have the potential to differentiate patients with a 
favorable prognosis among advanced NSCLC cases without 
oncogenic driver alterations before they receive first- line or 
second- line PD- 1 inhibitor combined with chemotherapy.

Analysis of clinical outcome on the basis of the relative 
content of differential metabolites
To assess the impact of the two identified metabolites, 
N- (3- Indolylacetyl)- L- alanine and methomyl, on the 
overall patient population, those receiving ICIs plus 
chemotherapy were divided into low and high groups 
according to the median relative content of these 

Figure 5 The Venn diagram displays the number of differential metabolites in the comparisons of (A) chemotherapy group 
versus Discovery set and NR versus R in Discovery set; (B) NR versus R in Discovery set and NR versus R in Validation set; (C) 
chemotherapy group versus Discovery set, NR versus R in Discovery set and NR versus R in Validation set. NR, non- response; 
R, response.

Table 4 The common differential metabolites for comparison of three groups

Compounds

Discovery set Validation set

VIP P value Type VIP P value Type

3,3'-Diamino- 4,4'-dihydroxydiphenyl Sulfone 2.25 0.03 up 2.01 0.03 down

N- (3- Indolylacetyl)- L- alanine 2.65 <0.01 up 2.06 <0.01 up

Methomyl 1.78 <0.01 up 2.44 0.02 up

VIP, variable importance in projection.
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metabolites. Patient characteristics were balanced 
between the low and high groups for both metabolites 
(table 5).

The Kaplan- Meier plots in figure 7 demonstrated signif-
icant differences in median PFS between the low and 
high groups for both N- (3- Indolylacetyl)- L- alanine and 
methomyl. Specifically, the low N- (3- Indolylacetyl)- L- 
alanine group had a median PFS of 18.0 months, compared 

with 11.0 months in the high N- (3- Indolylacetyl)- L- alanine 
group (p=0.003). Similarly, the low methomyl group had 
a median PFS of 18.0 months, while the high methomyl 
group had a median PFS of 10.0 months (p=0.029). In a 
univariate analysis for PFS in table 6, no significant differ-
ences were observed with respect to patient age, sex, 
smoking history, histological type, TNM stage, ECOG PS, 
therapeutic line, number of metastatic organs and N stage.

Figure 6 The histogram of (A) relative content of 3,3'-Diamino- 4,4'-dihydroxydiphenyl Sulfone in Discovery set; (B) in Validation 
set; (C) relative content of N- (3- Indolylacetyl)- L- alanine in Discovery set; (D) in Validation set; (E) relative content of methomyl in 
Discovery set; (F) in Validation set. NR, non- response; R, response.
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However, low N- (3- Indolylacetyl)- L- alanine indicated 
longer PFS (HR=0.59, 95% CI, 0.41 to 0.84, p=0.003), and 
low methomyl also suggested prolonged PFS (HR=0.67, 
95% CI, 0.47 to 0.96, p=0.029). Furthermore, PD- L1 
expression (TPS≥50%) was associated with longer PFS 
compared with PD- L1 expression (TPS<1%) (HR=0.33, 
95% CI, 0.17 to 0.61, p<0.001). To identify independent 
predictors, Cox multivariate analyses were performed in 
figure 8. In multivariate analyses, low N- (3- Indolylacetyl)- 
L- alanine was significantly associated with prolonged 

PFS (HR=0.60, 95% CI, 0.37 to 0.98, p=0.041), while 
PD- L1 expression (TPS≥50%) remained associated with 
longer PFS (HR=0.35, 95% CI, 0.18 to 0.67, p=0.002). No 
significant association between methomyl and PFS was 
identified.

In addition to PFS, the study also evaluated the ORR. A 
total of 67 (33.5%) patients achieved an objective response. 
ORRs were 43.0% in the low N- (3- Indolylacetyl)- L- alanine 
group and 24.0% in the high N- (3- Indolylacetyl)- L- 
alanine group (figure 9A). Similarly, ORRs were 42.0% 

Table 5 Correlation between the content of substance and clinicopathological characteristics

Characteristic

N- (3- Indolylacetyl)- L- alanine Methomyl

Low (n=100) High (n=100) P value Low (n=100) High (n=100) P value

Age (years), n (%)

  <65 36 (36.0) 45 (45.0) 0.195 40 (40.0) 41 (41.0) 0.885

  ≥65 64 (64.0) 55 (55.0) 60 (60.0) 59 (59.0)

Gender, n (%)

  Male 84 (84.0) 85 (85.0) 0.845 83 (83.0) 86 (86.0) 0.558

  Female 16 (16.0) 15 (15.0) 17 (17.0) 14 (14.0)

Smoking history

  Never 23 (23.0) 24 (24.0) 0.868 25 (25.0) 22 (22.0) 0.617

  Current/former 77 (77.0) 76 (76.0) 75 (75.0) 78 (78.0)

Histology, n (%)

  Squamous 54 (54.0) 54 (54.0) 1.000 52 (52.0) 56 (56.0) 0.570

  Non- squamous* 46 (46.0) 46 (46.0) 48 (48.0) 44 (44.0)

TNM stage, n (%)

  IIIB- IIIC 29 (29.0) 29 (29.0) 1.000 27 (27.0) 31 (31.0) 0.533

  IV 71 (71.0) 71 (71.0) 73 (73.0) 69 (69.0)

ECOG PS, n (%)

  0–1 86 (86.0) 81 (81.0) 0.341 79 (79.0) 88 (88.0) 0.086

  2 14 (14.0) 19 (19.0) 21 (21.0) 12 (12.0)

Therapeutic line, n (%)

  First- line 68 (68.0) 61 (61.0) 0.301 65 (65.0) 64 (64.0) 0.883

  Second- line 32 (32.0) 39 (39.0) 35 (35.0) 36 (36.0)

Number of metastatic organs, n (%)

  0–1 75 (75.0) 65 (65.0) 0.123 72 (72.0) 68 (68.0) 0.537

  ≥2 25 (25.0) 35 (35.0) 28 (28.0) 32 (32.0)

N stage, n (%)

  0–1 21 (21.0) 23 (23.0) 0.733 18 (18.0) 26 (26.0) 0.172

  2–3 79 (79.0) 77 (77.0) 82 (82.0) 74 (74.0)

PD- L1 expression, n (%)

  TPS<1% 21 (21.0) 27 (27.0) 0.094 22 (22.0) 26 (26.0) 0.771

  1%≤TPS≤49% 24 (24.0) 30 (30.0) 30 (30.0) 24 (24.0)

  TPS≥50% 27 (27.0) 13 (13.0) 21 (21.0) 19 (19.0)

  Unknown 28 (28.0) 30 (30.0) 27 (27.0) 31 (31.0)

The low and high groups were grouped according to the median relative metabolite content.
*Non- squamous tumor included adenocarcinoma, lymphoepithelioma- like carcinoma, adenosquamous carcinoma.
ECOG, eastern cooperative oncology group; NR, non response; PD- L1, programmed cell death- ligand 1; PS, performance status; R, 
response; TNM, tumor, node, metastases; TPS, tumor proportion score.
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in the low methomyl group and 25.0% in the high 
methomyl group (figure 9B). The differences between 
the low and high groups for both metabolites were statis-
tically significant (p<0.05). In summary, consistent with 
the results of untargeted metabolomics, low levels of 
N- (3- Indolylacetyl)- L- alanine and methomyl were asso-
ciated with better outcomes for patients with advanced 
NSCLC treated with PD- 1 inhibitors plus chemotherapy. 
However, N- (3- Indolylacetyl)- L- alanine emerged as an 
independent predictor with potentially better predictive 
value than methomyl.

Subgroup analysis of patients according to low or high N-(3-
Indolylacetyl)-L-alanine
Subgroup analyses revealed that individuals with low levels of 
N- (3- Indolylacetyl)- L- alanine experienced notably extended 
PFS when compared with those with high N- (3- Indolylacetyl)- 
L- alanine levels. This difference was particularly pronounced 
among subgroups aged 65 and older, men, smokers, non- 
squamous histology, TNM stage IV, ECOG PS 0–1, first- line 
therapy, number of metastatic organs 0–1, N stage 2–3 and 
those with a TPS of 50% or higher (see figure 10). When 
we combined PD- L1 expression and the relative content of 

Figure 7 Kaplan- Meier progression- free survival curves according to the relative content of (A) N- (3- Indolylacetyl)- L- alanine; 
(B) methomyl. The low and high groups were grouped according to the median relative metabolite content. PFS, progression- 
free survival.

Table 6 Univariate analysis for PFS

Variable

Univariate

HR (95% CI) P value

Age (<65 vs ≥65) 0.90 (0.63 to 1.29) 0.564

Gender (male vs female) 0.95 (0.59 to 1.52) 0.832

Smoking history (never vs current/former) 0.89 (0.59 to 1.36) 0.600

Histology (non- squamous* vs squamous) 0.78 (0.55 to 1.11) 0.169

TNM stage (IIIB- IIIC vs IV) 0.89 (0.60 to 1.31) 0.550

ECOG PS (0–1 vs 2) 0.79 (0.50 to 1.24) 0.305

Therapeutic line (first- line vs second- line) 0.90 (0.63 to 1.30) 0.584

Number of metastatic organs (0–1 vs ≥2) 0.90 (0.62 to 1.33) 0.607

N stage (0–1 vs 2–3) 1.03 (0.67 to 1.56) 0.901

PD- L1 expression† (1%≤TPS≤49% vs TPS<1%) 0.70 (0.43 to 1.12) 0.133

PD- L1 expression† (TPS≥50% vs TPS<1%) 0.33 (0.17 to 0.61) <0.001‡

N- (3- Indolylacetyl)- L- alanine (low vs high) 0.59 (0.41 to 0.84) 0.003‡

Methomyl (low vs high) 0.67 (0.47 to 0.96) 0.029‡

The low and high groups were grouped according to the median relative metabolite content.
*Non- squamous tumor included adenocarcinoma, lymphoepithelioma- like carcinoma, adenosquamous carcinoma.
†Only for patients with available PD- L1 expression data (patients with unknown PD- L1 expression were excluded).
‡**P value<0.05 indicates statistical significance.
ECOG, eastern cooperative oncology group; PD- L1, programmed cell death- ligand 1; PFS, progression- free survival; PS, performance status; 
TNM, tumor, node, metastases; TPS, tumor proportion score.
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N- (3- Indolylacetyl)- L- alanine to analyze PFS, we found that 
the combination of low N- (3- Indolylacetyl)- L- alanine and 
high PD- L1 expression (TPS≥1%) had the longest PFS, while 
the combination of high N- (3- Indolylacetyl)- L- alanine and 
low PD- L1 expression (TPS<1%) had the shortest PFS (see 
figure 11).

DISCUSSION
Lung cancer remains a significant public health challenge 
due to its high malignancy and associated morbidity and 
mortality rates.28 The emergence of immunotherapy 
has provided new hope for patients with gene- negative 
lung cancer and has reshaped the treatment landscape 
for this disease. However, the lack of precise predictive 

markers has made it challenging to identify patient popu-
lations that could benefit most from immunotherapy.29 
There were many studies that illustrated metabolomics 
could be applied to the early detection of NSCLC. For 
example, researchers have detected the plasma lipid 
metabolome of 171 patients with early NSCLC and 140 
healthy individuals, screened 9 plasma lipid markers after 
support vector machine algorithm and high- resolution 
mass spectrometry, and finally established targeted 
metabolic detection methods and artificial intelligence 
classification models. The method detected over 2,100 
samples in four cohorts with more than 90% accuracy 
for stage I NSCLC.23 Another study developed an NSCLC 
model based on metabolomic profiles in blood, and the 

Figure 8 Multivariate Cox regression analysis of PFS. *Non- squamous tumor included adenocarcinoma, lymphoepithelioma- 
like carcinoma, adenosquamous carcinoma. #Only for patients with available PD- L1 expression data (patients with unknown 
PD- L1 expression were excluded). **, p<0.05 indicates statistical significance. The low and high groups were grouped according 
to the median relative metabolite content. ECOG, eastern cooperative oncology group; CR, complete response; PD, progressive 
disease; PD- L1, programmed cell death ligand- 1; PR, partial response; PS, performance status; SD, stable disease; TNM, 
tumor, node, metastases.

Figure 9 Therapeutic response according to the relative content of (A) N- (3- Indolylacetyl)- L- alanine; (B) methomyl. ***, p<0.05. 
The low and high groups were grouped according to the median relative metabolite content. CR, complete response; PD, 
progressive disease; PR, partial response; SD, stable disease.
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researchers first validated their statistical model to iden-
tify NSCLC by measuring metabolomic profile values in 
blood samples from patients with NSCLC at diagnosis and 
comparing them with blood samples from healthy popu-
lation controls. They then revalidated their model using 
blood samples from the same patients obtained prior to 
NSCLC diagnosis. The results showed that the predic-
tive model yielded values between healthy controls and 
patients with NSCLC at diagnosis.30 Additionally, metab-
olomics, a cutting- edge omics technology grounded in 
systems biology, has emerged as a promising approach for 
identifying effective predictive markers for lung cancer 
immunotherapy in the post- genomic era.31

Our study focused on comparing the differential metab-
olites between patients with good and poor prognoses in 

advanced NSCLC who received chemoimmunotherapy. 
We discovered that two metabolites, N- (3- Indolylacetyl)- 
L- alanine and methomyl, were significantly differentially 
expressed in both the Discovery and Validation sets. 
Notably, these metabolites exhibited consistent trends 
in both cohorts, with higher levels observed in patients 
with poor prognoses. Furthermore, low levels of N- (3- 
Indolylacetyl)- L- alanine were strongly associated with 
longer PFS in the overall population receiving combi-
nation treatment, suggesting that N- (3- Indolylacetyl)- 
L- alanine may be a more reliable potential biomarker 
compared with methomyl.

Our findings hold important implications for clinical 
practice. Chemoimmunotherapy is increasingly employed 
in the treatment of advanced NSCLC, underscoring the 

Figure 10 Subgroup analysis of progression- free survival in patients according to the relative content of N- (3- Indolylacetyl)- 
L- alanine. *Non- squamous tumor included adenocarcinoma, lymphoepithelioma- like carcinoma, adenosquamous carcinoma. 
#Only for patients with available PD- L1 expression data (patients with unknown PD- L1 expression were excluded). **, p<0.05 
indicates statistical significance. The low and high groups were grouped according to the median relative metabolite content. 
ECOG, eastern cooperative oncology group; PD- L1, programmed cell death- ligand 1; PS, performance status; TPS, tumor 
proportion score; TNM, tumor, node, metastases.
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need for effective biomarkers. Serum- based biomarkers 
offer the advantage of easy and dynamic monitoring, along 
with convenient and accessible testing. By employing 
untargeted metabolomics to analyze serum metabolites, 
we maximized our ability to identify relevant compounds. 
While previous research has explored the relationship 
between metabolites and the efficacy of immunotherapy 
in lung cancer. For example, we observed a study where 
authors investigated the correlation between metabo-
lomic profiles and efficacy in patients with NSCLC using 
ICIs.24 The study demonstrated alterations in 21 meta-
bolic pathways in patients with PFS≥6 months compared 
with those with PFS<6 months. Notably, methane metabo-
lism was more likely (p=0.04), while methanol metabolism 
was less likely (p=0.03). In another study,32 metabolomics 
revealed significantly altered amino acid species in the 
serum of patients with lung cancer treated with PD- 1 
blocking antibodies, namely taurine enhanced antitumor 
immunity by enhancing the function of CD8+T cells. 
However, few studies have investigated the role of metab-
olites in predicting the effectiveness of ICIs combined 
with chemotherapy in patients with advanced NSCLC. 
Therefore, our study represents an innovative contri-
bution to this field. Additionally, our use of multiple 
independent cohorts, including a chemotherapy group, 
Discovery set, and Validation set, enhances the reliability 
and reproducibility of our findings. Ultimately, we iden-
tified N- (3- Indolylacetyl)- L- alanine and methomyl as 
consistent differential metabolites in both the Discovery 
and Validation sets, providing valuable insights for future 
research and clinical applications.

N- (3- Indolylacetyl)- L- alanine is a derivative of amino 
acid, and although direct studies on its role are lacking, 
attention has grown towards the modulation of immune 
cell function through amino acid metabolism. Several 
studies have indicated that amino acid metabolism can 

serve as a potential therapeutic target for regulating 
immune responses in various conditions, including 
cancer, infections, and autoimmune diseases. This 
suggests that N- (3- Indolylacetyl)- L- alanine, as an amino 
acid derivative, may have relevance in the context of 
immune responses, making it an interesting candidate 
for further investigation in immunotherapy.

At present, metabolomics generally needs to be used 
in combination with proteomics and genomics when 
validating the relationship between metabolites and 
diseases,33–35 which makes detection require a lot of mate-
rial resources. Or the subsequent validation starts from 
cells or animals,36 37 and there is still a certain gap with the 
real application in clinical practice. While our experiment 
started from real- world clinical patient biospecimens and 
with the help of metabolomics means, differential metab-
olites were analyzed to obtain, both metabolites that were 
found in the clinic and metabolites were verified in the 
clinic. We believe that biomarkers detected by metabolo-
mics, may be unidentified metabolites, but they need to 
be identified in a clinical setting, which can provide clini-
cians with more data references when making medical 
decisions. To enable the utilization of metabolites as 
markers in clinical practice, a combination of funda-
mental scientific research and clinical mass spectrometry 
is imperative. Initial biomarker discovery occurs through 
untargeted metabolomics, followed by quantitative detec-
tion of metabolic markers through targeted metabolo-
mics. Subsequently, in- depth analysis of metabolomics 
data with clinical information, model validation, and 
calibration are conducted through laboratory studies. 
On defining clinical value, diagnostic performance, and 
detection indicators, the development and production 
of kits ensue. Kit performance requirements mandate a 
linear correlation coefficient (r) greater than 0.99, a rela-
tive deviation within±15.0%, and a coefficient of variation 

Figure 11 Kaplan- Meier progression- free survival curves according to the combination of N- (3- Indolylacetyl)- L- alanine and 
PD- L1 expression. The low and high groups were grouped according to the median relative metabolite content. PD- L1−: the 
TPS of PD- L1 expression is less than 1%; PD- L1+: the TPS of PD- L1 expression is ≥1%. PD- L1, programmed cell death- ligand 
1; TPS, tumor proportion score.
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(CV) of ≤20.0%. Detection on references with low and 
high concentrations is performed, ensuring relative devi-
ations within±15.0%. Kit application on references is 
repeated, and the intrabatch CV is kept at ≤15.0%. It is 
essential to note that laboratories need mass spectrom-
etry and relevant pretreatment equipment for ongoing 
marker program validations in a clinical setting.

Instead of directly categorizing PFS, we examined the 
prognostic impact of these two substances within contin-
uous data. We integrated other factors that could influ-
ence prognosis in clinical practice and incorporated 
metabolites into the Cox univariate and multivariate 
analysis model. The results revealed N- (3- Indolylacetyl)- 
L- alanine as an independent predictor, and lower rela-
tive levels of N- (3- Indolylacetyl)- L- alanine were linked to 
better outcomes. While methomyl lacked significance in 
the multivariate analysis, lower methomyl levels tended 
to correlate with improved ORR and PFS. Additionally, 
we conducted a subgroup analysis, showing that N- (3- 
Indolylacetyl)- L- alanine had a more significant predictive 
role in specific patient groups, like older men. As PD- L1 
expression increased, the predictive capability of this 
metabolite gradually improved. We inferred a potential 
association between this metabolite and PD- L1 expres-
sion, supported by survival analysis results of their combi-
nation. Consequently, combining these two analyses is a 
viable approach, with metabolites dynamically monitored 
in the blood to compensate for limitations in PD- L1 
expression detection, such as temporal and spatial vari-
ability. In summary, we validated the potential of these 
two metabolites as biomarkers in metabolomics and clin-
ical applications, highlighting the strength of our study.

Despite the valuable findings produced by our study, 
it has certain limitations. First, it is retrospective, poten-
tially introducing selection bias, and necessitates large 
prospective multicenter studies for future validation. 
However, the routinely collected and well- established 
clinical data in our study help mitigate some biases and 
confounding factors. For instance, regarding blood 
collection, we consistently obtained samples before treat-
ment with informed patient consent, storing them under 
suitable conditions in hospital blood bank refrigerators 
at −80°C. The time and date of each blood collection and 
patient characteristics were also recorded in detail. After 
obtaining hospital ethical review consent, we obtained 
blood samples from patients who met the inclusion and 
exclusion criteria. Because the date of each blood collec-
tion was recorded, we could obtain blood samples from 
patients within 10 days before treatment. Second, due 
to insufficient maturity of overall survival (OS) data, 
our study predominantly focused on PFS, necessitating 
continuous patient follow- up to refine OS data. Efforts 
will be made to address the drawbacks of small sample 
size and lack of external validation by collaborating with 
multiple cancer research centers, expanding the NSCLC 
sample size, and increasing basic experimental studies 
to explore the mechanism of the study results. We have 
also extended metabolic and immune- related studies to 

other lung cancer types, such as small cell lung cancer. 
Furthermore, our choice of untargeted metabolomics 
assay for broader metabolite coverage resulted in a lack of 
absolute qualitative and quantitative data on the metabo-
lites. Nonetheless, we established control and validation 
groups to enhance result accuracy.

In conclusion, our untargeted metabolomics approach 
identified and validated the upregulation of N- (3- 
Indolylacetyl)- L- alanine and methomyl in patients with 
advanced NSCLC undergoing first- line or second- line 
PD- 1 inhibitor plus chemotherapy with poor prog-
noses. Additionally, a correlation between low N- (3- 
Indolylacetyl)- L- alanine levels and extended PFS, acting 
as an independent predictor was observed. There-
fore, N- (3- Indolylacetyl)- L- alanine holds promise for 
predicting therapeutic efficacy in patients with NSCLC 
receiving chemoimmunotherapy in clinical practice.
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