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impact in addition to unraveling of the entangled complex-
ity underlying dysregulated immunity in chronic inflam-
mation. Thus, newly discovered biomarkers and those that 
are under investigation are projected to open a new era 
towards combating the silent damage induced by chronic 
inflammation.
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Abbreviations
5FU  5-fluorouracyl
A1c  Glycated hemoglobin
BM  Bone marrow
CAR-T  Chimeric antigen receptor T cell
CRC  Colorectal cancer
CTLA-4  Cytotoxic T lymphocyte associated protein 

4
CVD  Cardiovascular disease
DC  Dendritic cell
HMGB1  High mobility group box 1 protein
hs-CRP  High sensitivity C-reactive protein
IBD  Inflammatory bowel disease
IFN-γ  Interferon gamma
ITAM  Immunoreceptor tyrosine-based activation 

motif
LDH  Lactate dehydrogenase
MDSC  Myeloid derived suppressor cells
MFI  Mean fluorescence intensity
Mo-MDSC  Monocytic MDSC
NO  Nitric oxide
PD1  Programmed death receptor 1
PD-L1  Programmed death receptor ligand 1
PMN-MDSC  Poly-morpho-nuclear MDSC

Abstract Chronic inflammation arising in a diverse range 
of non-cancerous and cancerous diseases, dysregulates 
immunity and exposes patients to a variety of complica-
tions. These include immunosuppression, tissue dam-
age, cardiovascular diseases and more. In cancer, chronic 
inflammation and related immunosuppression can directly 
support tumor growth and dramatically reduce the effica-
cies of traditional treatments, as well as novel immune-
based therapies, which require a functional immune sys-
tem. Nowadays, none of the immune biomarkers, regularly 
used by clinicians can sense a developing chronic inflam-
mation, thus complications can only be detected upon 
their appearance. This review focuses on the necessity 
for such immune status biomarkers, which could predict 
complications prior to their appearance. Herein we bring 
examples for the use of cellular and molecular biomark-
ers in diagnosis, prognosis and follow-up of patients suf-
fering from various cancers, for prediction of response to 
immune-based anti-cancer therapy and for prediction of 
cardiovascular disease in type 2 diabetes patients. Moni-
toring such biomarkers is expected to have a major clinical 
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RAGE  Receptor for advanced glycation end 
products

ROS  Reactive oxygen species
sICAM-1  Soluble intracellular adhesion molecule 1
SNX9  Sorting nexin 9
T2DM  Type 2 diabetes mellitus
TCR  T-cell receptor
TGF-β  Transforming growth factor beta
TIL  Tumor infiltrating lymphocyte
TNF-α  Tumor necrosis factor alpha
Treg  Regulatory T-cell
VEGF  Vascular-endothelial growth factor

Introduction

Dysregulated immunity under chronic inflammatory 
conditions, complications and clinical relevance

Chronic inflammation is becoming a major health care 
problem as it is considered “A Secret Killer” due to its 
“quiet” development, with no clinical signs, until compli-
cations are evident. Chronic inflammation develops when 
the immune system is unable to clear a persistent insult. 
This includes cases of immune evading pathogens, can-
cer, autoimmune diseases and chronic metabolic disor-
ders [1, 2]. Chronic inflammation is characterized by con-
tinual recruitment of innate and adaptive immune cells, 
which produce high levels of pro-inflammatory mole-
cules. This generates a harmful environment, resulting in 
tissue damage and increased risk of cancer initiation and 
progression. High levels of circulating pro-inflammatory 
molecules activate regulatory arms of the immune sys-
tem, mainly myeloid derived suppressor cells (MDSCs), 
aiming to prevent an excessive immune activation. These 
lead to a dysregulated immunity and immunosuppres-
sion, weakening the immune effector arm and exposing 
the host to a myriad of complications [1]. These include 
increased susceptibility to opportunistic infections, tis-
sue transformation, malignancies and other inflamma-
tory insults. In such cases, infiltrating immune cells and 
factors together with prolonged secretion of activating 
signaling compounds lead to an unresolved inflammatory 
process that is reaching distant organs and thereby affect-
ing healthy tissues.

Examples are evident in the association between 
chronic inflammatory bowel disease (IBD) and the 
increased risk of colon carcinoma, human papillomavi-
rus and Hepatitis B and C virus with cervical and hepa-
tocellular carcinoma, respectively, or Helicobacter pylori 
infection associated with gastric cancer [3–5]. Chronic 
inflammatory diseases can eventually affect every part of 
the body including internal organ systems and connective 

tissues, posing life-threatening conditions. Besides the 
increased risk of cancer, additional disease-related com-
plications are found in association with developing 
chronic inflammation in non-cancerous pathologies, as in 
type 2 diabetes mellitus (T2DM). Chronic inflammation 
observed in diabetic patients is one of the leading causes 
of the disease-associated complications manifested by 
decreased kidney function, eye maladies, heart attacks 
and strokes [6]. Under all conditions, chronic inflamma-
tion leads to a disturbed homeostasis, tilting the physi-
ological and immunological conditions towards a pro-
inflammatory harmful environment involving cells and 
secreted factors. As chronic inflammation is recognized 
for being the major cause and a key player in complica-
tions evident in different types of diseases, its diagnosis 
and treatment constitutes an enormous challenge for the 
medical world.

The clinical need

Based on the sudden appearance of the wide range of 
complications, there is a tremendous need for biomark-
ers that can sense the inflammatory status, its effect on 
the immune system and predict complications before 
their occurrence. In cancer, the chronic inflammation 
and ensuing immunosuppression perpetuate the harmful 
tumor micro- and macro-environment, su pporting its 
growth and spreading, while preventing the success of 
given immune and chemo-based therapies. Hence, it 
should be mandatory to use biomarkers that sense the 
change in immune status generated by chronic inflamma-
tory conditions and thus, predict success rates and follow 
the efficacies of such therapies. Moreover, some recently 
discovered biomarkers could be utilized for innovative 
intervention, targeting chronic inflammation itself. In 
non-cancerous diseases, as in diabetes, there is an urgent 
need to predict complications before they are evident, in 
order to treat the patients ahead of time and prevent dis-
ease deterioration. In all cases, contributing to patients’ 
quality of life and saving health care expenses are the 
current dominant medical goals. At present, there are 
virtually no markers in use capable of segregating acute 
and chronic inflammation. Most commonly used inflam-
matory serum markers (such as  PGE2, high sensitivity 
C-reactive protein (hs-CRP), IFNγ, TNFα, IL-1β and a 
myriad of other soluble factors) are already up-regulated 
in the acute phase, and therefore unsuitable for detecting 
the development of chronic inflammation. The next sec-
tion describes the use of cellular biomarkers in peripheral 
blood samples for sensing a developing chronic inflam-
mation by following the suppressive and the suppressed 
immune cell milieus.
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Immune system biomarkers that sense chronic 
inflammation and the ensuing immunosuppression

Monitoring the affecting cells

MDSCs

A massive amount of data has accumulated in the past 
30 years regarding accumulation and polarization of 
suppressive myeloid cells which were later termed 
MDSCs, in various diseases characterized by chronic 
inflammation, posing them as established responders 
and mediators of chronic inflammation. Thus, monitor-
ing MDSCs in patients may present a more coherent 
picture of their inflammatory profile and the ensuing 
immune status.

MDSCs are a heterogeneous population of immature 
myeloid cells sharing a common immunosuppressive 
activity. MDSCs can be identified by flow-cytometry as 
 Gr1+CD11b+ cells in mice. These can be further sub-
divided into  Ly6ChiLy6G−CD11b+ monocytic MDSCs 
(Mo-MDSCs) and  Ly6CloLy6G+CD11b+ poly-morpho-
nuclear MDSCs (PMN-MDSCs). Human MDSCs are 
generally characterized as HLA-DRlo/−CD33+CD11b+. 
Human Mo-MDSCs are HLA-DRloCD33+CD11b+CD1
4+CD15− and PMN-MDSCs are HLA-DR−CD33+CD1
1b+CD14−CD15+ [7]. Under normal conditions MDSCs 
are retained in the bone marrow (BM) and migrate to 
the periphery where they differentiate into DCs, mac-
rophages and neutrophils, while losing their suppressive 
activity. High levels of pro-inflammatory growth factors 
(GM-CSF and VEGF [8]), chemokines (CXCL10 [9], 
CXCL12 [10], CCL5 [11] and CCL2 [8]), and cytokines 
(TNF-α, IFN-γ, IL-1β, IL-6 and TGF-β [12]) in chronic 
inflammation lead to the polarization of MDSCs. Polar-
ized MDSCs accumulate in the BM and the periphery 
in their immature form while increasing their suppres-
sive activity and causing a general immunosuppres-
sion. Based on their phenotype, MDSC numbers could 
be evaluated by flow cytometry analyses and serve as 
biomarkers indicating chronic inflammation-induced 
immunosuppression, as described by numerous stud-
ies analyzing blood samples from cancer patients. The 
potential use of MDSCs as biomarkers in non-cancerous 
inflammatory diseases was previously reported in stud-
ies on diseases such as systemic lupus erythematosus 
[13], autoimmune arthritis [14], IBD [15] and in HIV 1 
infection [16]. However, measurable levels of MDSCs 
combined with additional molecular MDSC biomarkers, 
which reflect their immunosuppressive features/activity, 
could strengthen the certainty of the evaluation of the 
patients’ immune status.

Molecular features of MDSCs as biomarkers

Several molecular features in MDSCs, correlating with 
their suppressive activity, have been previously shown to 
increase in human diseases. These could assist in deter-
mining MDSC activity and the overall severity of chronic 
inflammation and related immunosuppression.

Production of nitric oxide (NO) and reactive oxygen 
species (ROS) by MDSCs is related to their suppressive 
activity [12, 17]. Little is known about the mechanism by 
which NO and ROS suppress T-cell activity. However, it 
has been shown that nitration and nitrozylation of T-cell 
surface molecules by MDSCs result in an aberrant T-cell 
receptor (TCR) complex assembly and reduced T-cell 
function [18]. Intracellular staining of NO and ROS and 
detection by flow cytometry in whole blood samples shows 
their increased production by MDSCs in colorectal cancer 
(CRC) [19], melanoma [12, 20] and non-small-cell-lung-
carcinoma [21] in addition to their increased levels.

PD-L1 (CD274) is the ligand for the inhibitory receptor 
on T-cells, programmed-death-receptor-1 (PD1). PD-L1 is 
expressed on both Mo-MDSCs and PMN-MDSCs and may 
be involved in their suppressive activity through PD-L1/
PD1 interaction. PD-L1 expression on Mo-MDSCs has 
been shown to increase along the progression of melanoma, 
peaking at stage III and stage IV [9]. Similar analyses show 
an increased expression of PD-L1 on PMN-MDSCs in met-
astatic CRC patients [22]. This cell surface marker can be 
detected by flow-cytometry.

The pro-inflammatory calcium binding S100A8/A9 pro‑
teins are produced by MDSCs. The expression of these 
proteins is greatly increased in MDSCs during chronic 
inflammation, along with the expression of their receptor; 
receptor for advanced glycation end products (RAGE) [12]. 
S100A8/A9 induce MDSC differentiation arrest, main-
taining them in their suppressive state. Serum levels of 
S100A8/A9 proteins measured by ELISA have been shown 
to increase in melanoma patients, representing a poor prog-
nosis [20]. S100A9 can also be detected by intracellular 
staining with commercially available monoclonal antibod-
ies, applicable for flow-cytometry.

CD39 and CD73, which work together in conversion of 
extracellular ATP into adenosine, have been shown to be 
involved in T-cell suppression [23, 24]. Recently, Limagne 
et al. have found these two receptors are expressed on 
PMN-MDSCs and to a lesser extent on Mo-MDSCs, as 
detected by flow cytometry. The expression of CD39 and 
CD73 was augmented on MDSCs isolated from blood of 
metastatic CRC patients. Furthermore, blocking the activity 
of these enzymes restored T-cell function in vitro, showing 
their direct involvement in the suppressive activity of these 
MDSCs [22].
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Regulatory T‑cells as biomarkers for chronic inflammation

The use of regulatory T-cells (Tregs) as biomarkers for 
chronic inflammation and immunosuppression is advan-
tageous, as it not only follows the amount of Tregs 
directly, but also demonstrates MDSC activity indirectly 
due to their ability to induce Tregs in vivo [25, 26]. Sev-
eral recent studies have followed peripheral blood Tregs 
in human diseases; Treg frequency has been shown to 
increase along the progression of melanoma, peaking at 
stage III-IV [9]. In CRC patients, lower frequency of cir-
culating Tregs corresponded to a better prognosis [23]. 
Although there are discrepancies as to the prognostic 
meaning of tumor infiltrating Tregs, which have been 
described to provide a good prognosis in certain reports 
or a bad one in others [27, 28], circulating Tregs seem 
to reflect the general immune status. They are increased 
in chronic inflammation and their numbers correlate with 
disease severity.

Monitoring the affected cells

One of the most prominent effects of MDSCs in chronic 
inflammation is T- and NK-cell dysfunction. Direct 
assessment of the severity of the immunosuppression and 
T-cell dysfunction in chronic inflammation is only possi-
ble by ex vivo activation of the T-cells and assessment of 
their proliferation and cytokine production. This method 
is time and resource consuming and clinically imprac-
tical. Finding molecular markers in the dysfunctional 
T-cells, which mirror MDSC levels and their suppressive 
activity, may provide the complementary data needed to 
fully assess patients’ immune status.

CD247—the T‑cell receptor ζ chain

MDSCs have been shown to inhibit proliferation, 
cytokine production and killing ability of T- and NK-cells 
both in vitro and in vivo [12, 29–31]. This dysfunction 
is associated with down-regulation CD247, the TCR ζ 
chain. CD247 is normally expressed in all peripheral T- 
and NK-cells and is associated with the TCR and the NK 
killing receptors NKp46, NKp30 and FcγRIII (CD16). 
It is a 16 kDa trans-membrane protein, which contains 
three immunoreceptor tyrosine-based activation motifs 
(ITAMs), making it the central signaling subunit of its 
associated receptors. Studies performed in mouse models 
have shown that the presence of MDSCs during chronic 
inflammation induces lysosomal degradation of CD247 
without affecting the surface expression of the remaining 
TCR subunits, leaving functionally cryptic and inactive 
complexes [31]. CD247 down-regulation is a reversible 

phenomenon, as the resolution of the chronic inflamma-
tion and/or elimination of MDSCs results in restoration 
of normal CD247 expression and T-cell functions [29]. 
Thus, CD247 expression levels in T- and NK-cells are 
sensitive to changes in MDSC suppressive activity and 
can be easily quantified by flow-cytometry analyses. 
Indeed, CD247 down-regulation has been shown in blood 
samples collected from patients suffering from vari-
ous diseases of different etiologies, compared to healthy 
donors. Moreover, most studies have found an inverse 
correlation between the down-regulation of CD247 and 
the level of MDSCs in patients with various cancer types 
[19, 32–35], chronic hepatitis C [36], HIV infection [37] 
and type II diabetes mellitus [38].

Sorting nexin 9—a novel biomarker for MDSC induced 
suppression

In the course of our studies, we came across a manu-
script published in 2002 by Schaefer et al. [39], which 
described a sequence within the human immunodefi-
ciency virus type 2 Nef protein, found to interact with 
CD247 and lead to its internalization. We hypothesized 
that an endogenous protein, similar to the Nef protein 
might be expressed in T-cells during chronic inflamma-
tion and lead to CD247 down-regulation. A protein blast 
of the Nef protein sequence that binds CD247 in the 
human proteome data resulted in a single human protein, 
which contains an identical sequence, and was identified 
as sorting nexin 9 (SNX9). Our study quickly focused 
on examining a possible interaction between SNX9 and 
CD247 and its involvement in CD247 down-regulation 
during chronic inflammation. SNX9 is a member of a 
family of sorting nexins, also including SNX18 and 
SNX33, described to be involved in many basic cellular 
processes such as endosomal sorting, clathrin mediated 
endocytosis, cell division and invadopodia formation [40, 
41]. SNX9 is ubiquitously expressed in most cell types 
including immune and cancer cells. Ish-shalom et al. [32] 
have indeed found an association between SNX9 and 
CD247 in T-cells, however no evidence could be found 
to its involvement in CD247 down-regulation. Surpris-
ingly, under chronic inflammatory conditions SNX9 was 
dramatically downregulated in mouse T- and B-cells. 
This finding was repetitive in various models of diseases 
characterized by chronic inflammation. Moreover, like 
CD247, SNX9 down-regulation was mediated directly 
by MDSCs both in vitro in co-culture of T-cells and 
MDSCs, and in vivo as SNX9 down-regulation has been 
reversed by MDSC depletion. In addition, fewer MDSCs 
were required to induce SNX9 down-regulation than the 
amount needed for the induction of CD247 down-reg-
ulation both in vitro and in vivo, suggesting that SNX9 
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is more sensitive to the presence of MDSCs. Moreover, 
while SNX9 was more sensitive to the induced chronic 
inflammation and associated immunosuppression than 
the CD247, the latter was more sensitive to the recovery 
stage upon MDSC neutralization; CD247 expression lev-
els recovered faster than SNX9. The development of a 
new monoclonal antibody enabled the detection of SNX9 
in human peripheral blood leukocytes by flow-cytometry 
[32]. Using the new method, Ish-shalom et al. [32] have 
detected such down-regulation also in T-cells in blood 
samples collected from advanced CRC patients, com-
pared to healthy donors. Thus, measurement of SNX9 
expression in blood samples can sensitively detect the 
increasing MDSC activity in the development of chronic 
inflammation and provide an earlier warning of impend-
ing immunosuppression, while CD247 is a more sensitive 
biomarker for the immune system recovery, upon MDSC 
and chronic inflammation neutralization.

Monitoring strategies

The biomarkers described above and new ones to be discov-
ered are expected to form a solid basis for the development 
of an immune system biomarker algorithm for the evalu-
ation of the patient’s immune status with high sensitivity 
and accuracy. Levels of cellular biomarkers as MDSCs and 
Tregs are currently determined by flow cytometry analysis 
of blood samples, the limiting factor being sample handling 
and analysis; fresh versus frozen whole or Ficoll separated 
blood samples. Determining percentage is relatively accu-
rate if compared to the right controls. Measuring changes 
in expression levels of affected intracellular molecules and 
compounds (CD247, SNX9, S100A8, S100A9, NO and 
ROS) is currently performed by flow cytometry and pre-
sented by the mean fluorescent intensity (MFI) in a particu-
lar cell population. However, depending on the molecule 
of interest the sensitivity and accuracy of the tests display 
high variability. ELISA assays are more complicated to be 
used when assessing a whole cell population, as the spe-
cific cells of interest must be first isolated/sorted prior to 
measurement of the indicated molecule(s). The isolation 
procedures remove the cells from the original environment, 
which could lead to changes in the cell features and thus, 
to inaccurate conclusions. Circulating molecules such as 
cytokines and chemokines could be detected in the patients’ 
sera by ELISA assays, which are sensitive and accurate 
when using the appropriate controls. Today, a combination 
of the above described biomarkers could allow diagnosis, 
providing a “yes” or “no” resolution most likely only for 
the patients positioned in the extreme groups. Unfortu-
nately, there are still intermediate patients with certain lev-
els of immunosuppressive biomarkers that their diagnosis 

is inconclusive. Therefore, identifying more biomarkers 
could help performing a better diagnosis and prognosis for 
this group of patients. Organ pathology, tumor and clinical 
parameters will have to be considered in all cases.

The clinical use of the newly described immune 
system biomarkers

In cancer

Immune cells can kill cancer cells but on the other hand, 
can provide supportive conditions for tumor growth and 
invasion under pro-inflammatory conditions developing 
during chronic inflammation. The popularity of taking the 
immune/inflammatory milieu into account in cancer prog-
nosis and follow-up is rising in recent years when cancer 
treatments are designed according to the following con-
cerns: (1) The inflammatory milieu has been described to 
directly support tumor growth and spreading. (2) Perpetu-
ated chronic inflammation during tumor growth leads to 
immunosuppression. (3) The generated immunosuppressive 
environment affects not only the patient’s immune status 
but also the efficacy of a variety of immune and chemo-
based anti-cancer therapies. Indeed, cumulative clinical 
data point at moderate success rates of ~20–40%, depend-
ing on the type of tumor, of such immune-based therapies. 
These are costly and may cause side effects, not falling 
from those of chemotherapy. Thus, there is an urgent need 
for new immune biomarkers to define responder versus 
non-responder patients, to choose the former for immedi-
ate treatment and offer the latter alternative combined treat-
ments to recuperate their immune system and create an 
optimal supportive environment to the novel immune-based 
therapies.

MDSCs and CD247 as diagnostic biomarkers in disease 
progression and follow‑up of anti‑cancer treatments

The clinical use of immune biomarkers that reflect the 
patients’ systemic immune status provide new insights into 
the design of anti-cancer treatment strategies, as the tradi-
tional classification systems of cancer could not fulfill this 
need. Accumulating evidence suggest that MDSCs and 
their accompanied immunosuppressive milieu could serve 
as markers for poor prognosis and disease progression in 
different types of cancer. We had recently reported that in 
stage-IV melanoma patients, HLA-DR−/lowCD33+CD11b+ 
MDSC levels increase in the peripheral blood alongside 
disease progression and metastases classification [33]. 
Additional publications show an increase in peripheral 
HLA-DR−/loCD14+ Mo-MDSCs in the progression of 
breast cancer [42], multiple myeloma [43], pancreatic 
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adenocarcinoma [44], CRC [22] and melanoma [9]. In 
some of the cases the combination of MDSC levels, sup-
pressive features and CD247 expression were used. In such 
cases, level of circulating MDSCs could provide invaluable 
insight as to which patients are at an increased risk of dis-
ease progression, health deterioration and higher mortality 
[9].

As changes in the disease staging and accordingly, in 
the ensuing inflammatory micro- and macro-environments 
are evident following various anti-cancer therapies, such 
immune biomarkers could be potentially used as sensors to 
follow-up the effects of conventional anti-cancer treatments 
as chemotherapy, radiotherapy and surgery.

Chemotherapy is meant to directly target and kill the 
dividing cancer cells. However, accumulating evidence 
highlight its effect on the immune system. Therefore, 
innovative ways could be used to measure chemotherapy 
efficacies while taking advantage of the immune bio-
markers that sense changes in the immune system, which 
correlate with the disease stage. Sevko et al. have tried 
to explain the limited efficiency of low dose cyclophos-
phamide treatment, commonly used to treat melanoma 
due to its tendency to induce immunogenic cell death and 
inhibit Tregs. It was established that the low dose cyclo-
phosphamide treatment in mice with spontaneous mela-
noma resulted in the accumulation of  Gr1+CD11b+ sup-
pressive MDSCs. Moreover, treatment of inflamed mice 
with low dose cyclophosphamide resulted in an increased 
production of NO and ROS by MDSCs, which was asso-
ciated with increased suppressive activity. Only these 
new findings could explain the inefficiency of the prom-
ising treatment with low dose cyclophosphamide [45]. 
Kanterman et al. have previously shown adverse effects 
of certain chemotherapies on MDSCs and the related 
immunosuppression using colitis-induced CRC in mice. 
Treatment with CPT11 increased levels of  Gr1+CD11b+ 
MDSC levels and ROS production, along with immu-
nosuppression associated with low CD247 expression 
in T-cells and increased mortality rate compared to 
untreated tumor bearing mice. On the other hand, 5-fluo-
rouracyl (5FU) had beneficial effects; diminishing MDSC 
levels along with their production of NO and ROS, allevi-
ating immunosuppression as evident by a normal expres-
sion of CD247, decreased tumor load and increased sur-
vival, compared to untreated tumor bearing mice [19]. 
These results were further corroborated in stage IV CRC 
patients. The study followed two cohorts of patients: one 
treated with FOLFIRI, which contains CPT11 together 
with 5FU, and another with FOLFOX, which contains 
oxaliplatin in combination with 5FU [19]. Patients who 
were treated with FOLFIRI had higher levels of HLA-
DR−CD33+CD11b+ circulating MDSCs and low CD247 

expression, while patients who were treated with FOL-
FOX had fewer circulating MDSCs and higher CD247 
expression. These results were in concurrence with the 
clinical outcome of the treatment as the patients who 
were treated with FOLFOX survived longer. Limagne 
et al. have followed patients who suffer from metastatic 
CRC and were treated with FOLFOX in combination 
with bevacizumab (Avastin) for 12 months. Their find-
ings showed increased probability of survival in patients 
who had low PMN-MDSCs and Mo-MDSCs before get-
ting the treatment. Moreover, while following the patients 
along the course of treatment, a decrease in PMN-MDSC 
frequency provided a much better prognosis and signifi-
cantly higher probability of survival than those who had 
an increase in PMN-MDSC frequency [22]. In these three 
examples the authors show the importance of following 
the immune based biomarkers, namely MDSCs, during 
treatment. It becomes clear that the immune status is crit-
ical in achieving a successful and efficient chemotherapy 
and must be followed.

Radiofrequency ablation is a commonly used pro-
cedure to treat non-small-cell-lung-carcinoma. How-
ever, in some cases the procedure fails to eliminate all 
the tumors, resulting in recurrence of the disease. Sch-
nider et al. have followed patients with recurrent tumors 
and compared them to patients who underwent com-
plete ablation. Patients who had an incomplete abla-
tion showed an early increase in serum levels of MDSC 
related factors like TNF-α, CCL-2 and CCL-4. Although 
the ablation did not affect MDSC frequency in those 
patients, NO production in MDSCs after radiotherapy 
was also increased at an early stage, indicative of an 
incomplete ablation. The authors suggested that these 
markers can be used as early sensors for the efficiency of 
radiofrequency ablation [21].

Surgical resection of tumors is the main treatment 
option for CRC patients. However, limited data has 
been shown regarding its effect on the immune sta-
tus, MDSCs and chronic inflammation. OuYang et al. 
have followed such patients, measuring the frequencies 
of MDSCs, Tregs,  CD8+ T-cells and NK-cells in their 
peripheral blood before and one week after the surgery. 
Although no change was observed in the frequencies of 
the effector cells  (CD8+ T-cells and NK-cells), tumor 
resection led to a significant reduction in HLA-DR−/

loCD33+CD11b+ MDSCs and Tregs. This suggests that 
surgically decreased tumor load reduces chronic inflam-
mation in the macro-environment, favoring effector cell 
activity rather than immunosuppression [23]. Thus, fol-
lowing the suppressive immune status could also deter-
mine the efficacy of tumor resection, giving early signs 
of complications or disease remission.
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MDSCs as prognostic markers for follow‑up of immune 
based anti‑cancer therapy efficacy and prediction 
of responsiveness

In recent years, the utilization of immune-based modal-
ities in treatment of cancer has been on the rise. These 
treatments aim to boost the endogenous anti-tumor 
immune responses or apply effector cells to combat the 
tumor when the endogenous immune system is unable 
to do so. Anti-cancer vaccines such as Sipuleucel-T in 
prostate cancer, melanoma peptide/tumor vaccines and 
personalized lymphoma vaccines, are based on presen-
tation of tumor antigens by DCs to enhance endogenous 
T-cell cytotoxic activity towards tumor eradication, a 
process requiring a functional patient’s immune system 
[46]. Another strategy is to use tumor-infiltrating lym-
phocytes (TILs) that are extracted from tumors, activated 
and expanded ex vivo, then returned to the patients with 
the hope that the enhanced activity of the tumor specific 
T-cell clones will combat the tumor. Chimeric antigen 
receptors T (CAR-T) cell treatments involve adoptively 
transferred CD8 T-cells expressing engineered anti-
tumor receptors and are expected to kill the tumor cells 
[47]. Another class of anti-cancer immune based thera-
pies is immune checkpoint blockers such as anti-CTLA-4 
and anti-PD1, which target inhibitory checkpoint mol-
ecules with the purpose of prolonging T-cell cytotoxic 
activity [48]. The prerequisite for the success of all the 
above-mentioned treatments is a permissive environment 
and functional immunity. Therefore, chronic inflamma-
tion poses a major obstacle in immune-based therapeu-
tic strategies. Several groups have reported difficulties 
in the ex vivo generation of mature DCs (required for 
establishment of cancer vaccines) when the prevalence 
of  CD14+HLA−DR−/low MDSCs was high in the initial 
samples taken from patients with glioblastoma, prostate 
cancer and non-Hodgkin lymphoma [49–52]. Moreo-
ver, the presence of MDSCs hinders the activity of can-
cer vaccine as shown for small-cell–lung-carcinoma and 
renal cell carcinoma [53, 54]. TIL treatment in a mouse 
melanoma model, has also been shown to be inefficient 
when MDSCs are present. Blocking of CSF-1R in this 
model resulted in decreased numbers of MDSCs and 
restored TIL cytotoxic activity [55]. MDSCs have also 
been shown to inhibit the killing ability of engineered 
chimeric antigen receptor T-cells in mice [56]. This effect 
was reversed by reduction of the number of MDSCs with 
all-trans retinoic acid [57]. Several studies have corre-
lated the overall survival of advanced melanoma patients 
treated with ipilimumab (anti-CTLA-4), to the level of 
MDSCs in their circulation. Patients who have elevated 
numbers of MDSCs were less likely to respond to the 
treatment and had significantly shorter survival [58, 

59]. Moreover, the level of HLA-DR−CD33+CD11b+ 
MDSCs in blood samples of melanoma patients pro-
vided more accurate prediction of the response to 
ipilimumab treatment than the classically used lac-
tate dehydrogenase (LDH) measurements [33]. It was 
also shown that a high baseline frequency of MDSCs, 
 Lin−HLA−DRlo/−CD14+CD11b+CD33+ Mo-MDSCs 
and high levels of IL-6 are associated with a reduced 
chance of responding to ipilimumab treatment [60]. Oth-
ers proposed that increased eosinophils and absolute lym-
phocyte count, along with low LDH, MDSCs, Tregs and 
related inflammatory factors as S100A8/A9 and HMGB1, 
can be used as novel, complex predictive markers for 
patients who may benefit from the ipilimumab therapy 
[20, 61].

Hence, screening for immune based markers associ-
ated with chronic inflammation in blood samples taken 
from candidates for immunotherapy, may serves as a 
coherent strategy for determining which patients would 
benefit from such treatments. A routine follow-up of such 
biomarkers during treatment and thereafter could identify 
patients in high risk of disease recurrence.

In Diabetes

Type 2 diabetes mellitus (T2DM) is a complex metabolic 
disorder associated with an increased risk of micro- and 
macro-vascular diseases; its main clinical characteristic 
is hyperglycaemia [62]. Low grade chronic inflammation 
is underlying the pathogenesis associated with T2DM. 
High levels of circulating free lipids, as observed in obe-
sity, lead to adipocyte hypertrophy, activation of resident 
macrophages and release of pro-inflammatory mediators, 
resulting in insulin resistance and related complications 
[6, 63]. Although much progress has been made during the 
years in the identification of risk factors associated with 
T2DM, its healthcare and socioeconomic impact is increas-
ing, mainly because of its associated complications [64]. 
T2DM approximately doubles the risk of a wide range of 
cardiovascular diseases (CVD) and is also associated with 
a wide range of non-vascular diseases, including cancer, 
mental and nervous system disorders, infections and liver 
disease [65].

One of the foremost medical problems related to T2DM 
patients is the inability to predict the related complications 
prior to their diagnosis, as well as the lack of available 
parameters for measuring competency of given therapies. 
Currently, the diagnosis of complications in T2DM patients 
is done upon their appearance. Although the association 
between low grade chronic inflammation and T2DM is 
widely recognized, the issue of causality and the degree to 
which inflammation contributes and serves as a risk factor 
for the development of disease-associated complications 
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remain unresolved. A major part of this uncertainty is due 
to a general lack of sensitive and specific biomarkers of 
low-grade chronic inflammation or alternatively of its con-
sequences [66].

Various biomarkers of inflammation as hs-CRP, TNF-α, 
lipoprotein (a), and sICAM-1, have been associated with 
disease progression and their levels were found to be sig-
nificantly increased in diabetic patients with existing coro-
nary artery diseases [67–69], nephropathy [2, 68, 70, 71], 
and retinopathy. However, these parameters could not serve 
as biomarkers that predict complications nor indicative of 
chronic inflammation or the patients’ immune status. As 
previously reported, conflicting results exist as to the cor-
relation between hs-CRP and diabetes-related micro- and 
macro-vascular complications and its relevance as a bio-
marker of disease progression [72]. Moreover, as hs-CRP 
levels do not distinguish between acute and chronic inflam-
mation and are not indicative of responses to certain anti-
inflammatory medications such as statins and aspirin [69], 
its frequent measurements in diabetic patients might have a 
limited usefulness in the clinic.

A non-inflammatory biomarker that is currently being 
used for the diagnosis and prognosis of diabetes is the 
glycated hemoglobin (A1c). Although this biomarker has 
many advantages, the fact that it represents average results 
of a relatively long period, which is affected for example 
by the change in diet and various treatments or related dis-
eases such as anemia, makes it less relevant for periodic 
examination of the patient’s condition. Arguably, it reveals 
little as to the actual pathologic inflammatory process 
underlying the progression of micro- and macro-vascular 
complications [73, 74].

In light of these studies, more process-specific biomark-
ers of the pathologic inflammation in diabetes are needed. 
Presently, most biomarkers used for evaluation of diabe-
tes severity and progression, rely on metabolic parameters 
and are limited in improving risk stratification regarding 
disease-related outcomes [74]. Identifying pertinent bio-
markers that are linked to the metabolic processes as well 
as the underlying inflammatory process could have a major 
clinical impact on the prediction of disease progression and 
efficacy of therapeutic interventions.

A biomarker that may shed light on the level of chronic 
inflammation and/or its consequence is therefore expected 
to both improve the understanding of the factors contrib-
uting to the progression of complications in diabetes and 
offer a tool for assessing therapeutic efficacy and novel 
therapeutic targets. Our results showing that chronic 
inflammation leads to the generation of MDSCs, which 
induce a bystander T-cell immunosuppression associated 
with CD247 down-regulation, were described in a variety 
of chronic inflammatory diseases [1, 75]. Consequently, 
we hypothesized that the CD247 expression levels in T 

cells that serve as a biomarker sensing chronic inflamma-
tion and associated immunosuppression could be associ-
ated with parameters of disease severity/progression in 
T2DM patients and consequently, predict diabetes related 
complications. Indeed, our studies revealed that CD247 
expression levels in T cells could serve as a sensitive and 
predictive biomarker for CVD and nephropathy in diabetic 
patients, possibly linking glycemic disease processes with 
the inflammatory process [38]. Our study, although con-
founded by its relatively small cohort size and short follow-
up time, presented promising results that depicted a novel 
approach to risk stratification in diabetes.

It is hereby suggested that measurements of CD247 lev-
els in T cells could shed new light on the actual pathologic 
process leading to organ damage, rather than following 
only the typical markers of the diabetic metabolic disorder 
such as glycemia and lipids. Therefore, understanding the 
underlying immunological processes during diabetes devel-
opment and progression could highlight novel treatment 
modalities which will combine therapies directed at the 
metabolic disturbances and at the resultant chronic inflam-
matory processes towards optimizing personalized treat-
ments of T2DM patients.

Concluding remarks

Taken together, the cumulative data summarized in this 
review highlights the critical role of immune networking 
in non-cancerous and cancerous diseases characterized by 
chronic inflammation and their associated complications. 
The susceptibility of patients to developing chronic inflam-
mation is a result of cumulative harmful effects and is 
defined by an imbalanced homeostasis. Importantly, many 
therapeutic treatments employed up to date fail to produce a 
desirable effect, since a permissive immune environment is 
a prerequisite for their proper function. Nowadays, there is 
no doubt that chronic inflammation and associated immu-
nosuppression pose a serious obstacle in the prognostic and 
the therapeutic area, as they both develop with no palpable 
clinical signs, often leading to unforeseeable complications 
and possible unresponsiveness to various therapies.

The biomarkers for immune monitoring described in this 
review are presented as ‘stand-alone’ measurements, which 
correlate with disease severity and response to treatment. 
The ultimate goal is to generate an immune status scoring 
system based on a combinatorial use of such biomarkers. 
More data must be gathered before such a system could 
be established, as so far there are no consensus standards 
to any of these measurements. This will allow stratifica-
tion or dichotomization of patients according to single and 
multiple markers, determining their chance of respond-
ing to treatment and following treatment efficacy. Patients 
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categorized as possible poor responders can then be offered 
treatments to alleviate the chronic inflammation to increase 
their chance of response. Currently, there is already a lim-
ited array of immune biomarkers available to clinicians 
who should start using them in the routine check-ups and 
follow-ups of patients suffering from chronic diseases.

The fact that some of the immune biomarkers are sup-
pressive cells such as MDSCs and Tregs poses them as tar-
gets for ablation, which could relieve the harms of chronic 
inflammation, associated immunosuppression and direct 
support of cancer, to increase treatments’ efficacies. In 
addition, follow-up of patients for the biomarkers’ levels 
will enable the evaluation of the disease progression and 
sense disease recurrence. In non-cancerous conditions, 
such as in T2DM, a follow-up of changes in the immune 
system biomarkers, combined with the convectional glyce-
mic measurements, is expected to have a significant impact 
on the possibility to predict complications’ appearance that 
could be treated a head of time towards a better quality of 
life and the prevention of disease deterioration. The exam-
ples presented in this review are summarized in Table 1.

Thus, although monitoring the recently described 
immune biomarkers is expected to serve as a powerful tool 
in improving the quality of life of patients suffering from 
chronic inflammatory diseases, the discovery of additional 
new biomarkers is necessary to validate and increase the 
certainty of conclusions, regarding the clinical management 
of diseases and the design of new therapeutic strategies.
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