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Experimental design  This phase I trial was conducted to 
test whether vaccine EMD640744, a cocktail of five HLA 
class I-binding survivin peptides in Montanide® ISA 51 
VG, promotes anti-survivin T-cell responses in patients 
with solid cancers. The primary objective was to compare 
immunologic efficacy of EMD640744 at doses of 30, 100, 
and 300  μg. Secondary objectives included safety, toler-
ability, and clinical efficacy.
Results  In total, 49 patients who received ≥2 EMD640744 
injections with available baseline- and ≥1 post-vaccination 
samples [immunologic-diagnostic (ID)-intention-to-treat] 
were analyzed by ELISpot- and peptide/MHC-multimer 
staining, revealing vaccine-activated peptide-specific T-cell 
responses in 31 patients (63 %). This cohort included the 
per study protocol relevant ID population for the primary 
objective, i.e., T-cell responses by ELISpot in 17  weeks 
following first vaccination, as well as subjects who discon-
tinued the study before week 17 but showed responses to 
the treatment. No dose-dependent effects were observed. 
In the majority of patients (61 %), anti-survivin responses 
were detected only after vaccination, providing evidence 
for de novo induction. Best overall tumor response was 
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stable disease (28  %). EMD640744 was well tolerated; 
local injection-site reactions constituted the most frequent 
adverse event.
Conclusions  Vaccination with EMD640744 elicited 
T-cell responses against survivin peptides in the major-
ity of patients, demonstrating the immunologic efficacy of 
EMD640744.

Keywords  Survivin · EMD640744 · Cancer vaccines · 
Cancer immunotherapy

Abbreviations
AE	� Adverse event
evELISpot	� Ex vivo ELISpot
evMMS	� Ex vivo multimer staining
FMO	� Fluorescence minus one
ID	� Immunologic-diagnostic population
ID-ITT	� Immunologic-diagnostic intention-to-treat 

population
ITT	� Safety/intention-to-treat population
ivsELISpot	� ELISpot following in vitro stimulation of 

PBMC
ivsMMS	� Multimer staining following in vitro stimula-

tion of PBMC
PBMC	� Peripheral blood mononuclear cells
TEAE	� Treatment-emergent adverse event

Introduction

Survivin fulfills major criteria to be considered a prime 
target antigen for anti-cancer vaccination with broad appli-
cability: (1) tumor cells depend on its actions, (2) expres-
sion is strong in multiple tumors but rarely detectable 
in normal tissues, (3) immunogenicity has been demon-
strated in patients with different cancers, and (4) peptides 
restricted by different HLA molecules are known. Survivin 

is expressed in the majority of tumor cells at all stages, 
from premalignant to metastatic lesions, solid tumors, 
and hematopoietic malignancies, and is the fourth most 
abundantly expressed gene in melanomas and cancers of 
the colon, lung, brain, and breast [1–4]. It is involved in 
apoptosis evasion and molecular pathways driving unre-
stricted proliferation and angiogenesis in tumor cells [5, 6]. 
Survivin expression is a marker of poor prognosis and/or 
resistance to therapy in multiple cancers [7, 8].

In patients with a variety of cancers, adaptive cellular 
as well as humoral survivin-specific responses have been 
shown, demonstrating its immunogenicity [9–15]. Pre-
clinical and clinical experiences of vaccination against 
survivin suggest that survivin vaccines can induce immune 
responses and do not raise substantial safety concerns 
[16–29].

Recently, multiple HLA class I-binding peptides and one 
HLA class II-binding peptide of survivin have been identi-
fied. Some have been shown to induce immune responses 
in clinical trials, but these trials tested only single survivin 
peptides associated with a restricted number of common 
HLA alleles [13, 30–32].

We report a multicenter, open-label, parallel-group, 
randomized first-in-man phase I study with EMD640744, 
a cocktail of survivin-derived, partially modified HLA 
class I-restricted peptides in Montanide® ISA 51 VG. 
The aim was to compare three dosages of EMD640744 
with respect to immunologic efficacy (using ELISpot and 
pHLA-multimer staining), safety, tolerability, and clini-
cal activity in patients with different types of metastatic or 
locally advanced solid tumors (Clinical trials.gov identifier 
NCT01012102).

Materials and methods

The reporting of the methods has been aligned with the 
MIATA guidelines (please see the Supplementary MIATA 
information) [33].

Study design and treatments

This was a multicenter, parallel-group, open-label, rand-
omized phase I trial to determine the immunologic activity, 
safety and tolerability, and clinical activity of EMD640744 
in Montanide® ISA 51 VG in subjects with advanced solid 
tumors, conducted in five centers in Switzerland (Clinical 
trials.gov identifier NCT01012102).

EMD640744 is a cocktail of equal quantities by weight 
of five short peptides based on the amino acid sequence of 
different regions of the survivin protein, which were previ-
ously shown to bind HLA-A1, HLA-A2, HLA-A3, HLA-
A24, or HLA-B7 (Supplementary Table  1). These five 
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peptides were chosen based on the following criteria: (1) 
T-cell stimulatory activity, (2) ability to formulate a sta-
ble lyophilizate, and (3) distribution of HLA types (with 
the aim of maximizing the number of patients that could 
benefit). EMD640744 was reconstituted and emulsified 
with an equal volume of Montanide® ISA 51 VG, and 1 ml 
administered subcutaneously into the left or right thigh 
(alternating).

The trial consisted of a preliminary safety evaluation 
phase in two subjects treated sequentially at the lowest 
planned dose (30  μg), followed by a randomized phase 
contingent on adequate safety observations in the first two 
subjects. In the randomized phase, subjects were allocated 
to one of the 3 doses of the treatment (1:1:1; 30, 100, or 
300 μg peptide) using a central randomization procedure. 
Treatment was planned for 11-week initiation therapy (8 
treatments), followed by 13-week maintenance therapy 
(4 weekly treatments) (Fig. 1). Patients with clinical ben-
efit (complete response, partial response, or stable disease) 
could continue until tumor progression or unacceptable 
toxicity.

Main eligibility criteria

Eligible patients (Supplementary Table 2) expressed at least 
one of the alleles HLA-A1, HLA-A2, HLA-A3, HLA-A24, 
or HLA-B7 according to local typing procedures. They 
were ≥18-year old, with an ECOG performance status 
≤1 and histologically or cytologically documented meta-
static or locally advanced survivin-expressing solid tumors, 
for which no established therapy existed. Main exclusion 
criteria were previous radiotherapy, chemotherapy, sur-
gery (excluding diagnostic biopsy), immunotherapy, or 
any investigational drug within 30 days before start of the 

study treatment and any previous treatment with an inves-
tigational anticancer vaccine. Patients were not required to 
have progressive disease at the time of enrollment. Patients 
with rapidly progressive disease (tumor lysis syndrome) 
were excluded.

Populations analyzed

The safety/intention-to-treat (ITT) population consisted 
of all subjects who received  ≥  1 dose study medication 
(Supplementary Figure  1). The immunologic-diagnostic-
ITT analysis set (ID-ITT) consisted of all subjects of the 
safety/ITT population with available blood samples for 
ELISpot at baseline and ≥1 blood sample after first vac-
cination. The ID analysis set consisted of all subjects of the 
safety population who were not replaced according to the 
following criteria:

•	 subjects received <6 vaccinations during the initiation 
phase

•	 subjects omitted the vaccinations in weeks 7 and 8
•	 subjects without available blood samples for ELISpot at 

baseline and subjects without ≥1 sample in weeks 12, 
16, or 17.

Study objectives

The primary objective of this trial was to compare three 
subcutaneous doses of EMD640744 in Montanide® ISA 51 
VG with regard to immunologic efficacy. The primary end-
point was immune response as assessed by ELISpot before 
and until week 17 after the beginning of the study treat-
ment. Secondary objectives comprised assessment of safety 
and tolerability and clinical efficacy.

Fig. 1   Vaccination and 
immunomonitoring schedule. 
Strength of arrows indicates 
priorities of analyses. EOS, 
end-of-study sample; ID-ITT, 
immunologic-diagnostic intent-
to-treat population; ID popula-
tion, immunologic diagnostic 
population
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Immunologic analysis

For each patient, not all five single peptides were analyzed, 
just those that matched that particular patient’s HLA group.

Peptide-specific T-cell responses were analyzed directly 
ex vivo (evELISpot and evMultimer staining; evMMS) 
and following short-term in vitro stimulation of periph-
eral blood mononuclear cells (PBMC) with EMD640744 
or specific peptides (ivsELISpot and ivsMultimer stain-
ing; ivsMMS). Combination of these approaches facilitated 
detection of peptide-specific T cells at frequencies ranging 
from 10−4 to ~10−6.

PBMC sample collection and preparation

PBMC samples were prepared in laboratories located at 
five study sites. PBMC from blood or leukapheresis were 
prepared by Ficoll density gradient centrifugation. Cells 
were frozen in 90 % FCS with 10 % DMSO.

Peptides

Control peptides used for immunomonitoring were >90  % 
pure (control CE peptide mix, JPT Peptide Technologies, Ber-
lin, Germany). Single survivin peptides were purchased from 
Bachem (Bubendorf, Switzerland) and were >95 % pure.

IFNγ ELISpot assays

evELISpot assays were performed according to guide-
lines established in international proficiency panels [34]. 
After thawing and overnight resting, the number and qual-
ity of PBMC were determined by trypan blue staining and 
flow cytometry. After standard preparation of the ELIS-
pot plates, 5 × 105 PBMC per well of the 96-well ELIS-
pot plates were seeded and pulsed with 2  μM of single 
survivin peptides or 10  μM of the EMD640744 peptide 
cocktail. Controls were unstimulated PBMC, PHA (Murex 
Biotech)—stimulated PBMC and PBMC challenged with 
a cocktail of 11 hCMV—and EBV-B-derived peptides 
(CE-Mix, JPT; 5  μM). The assay medium was AIM V 
(Invitrogen) w/o serum. Reactions were tested in tripli-
cates. After 48-h incubation, assays were developed as 
described by Britten et al. [35] and analyzed using the KS 
ELISpot Automated Reader System and analysis software 
KS ELISpot 4.9 (Carl Zeiss, Goettingen, Germany).

For evELISpot assays, a positive response was defined 
by a spot number ≥10 and twofold higher than background 
(PBMC only) and twofold higher than the standard devia-
tion of all combined negative values. For significance test-
ing, the Student’s t test was applied to calculate p values.

ivsELISpot was developed to facilitate detection of pep-
tide-specific T cells at frequencies below the evELISpot 

detection limit. Thawed PBMC were seeded in 96-well 
plates after overnight resting and counting. Based on the 
previous flow cytometry analyses, PBMC numbers were 
adjusted to give 1x104 CD8+ T cells per well in AIM 
V supplemented with 10  % pooled human serum from 
healthy donors. They were stimulated on days 0 and 7 with 
EMD640744 (10  μM) and tested on day 12 for peptide-
specific T-cell responses. Target cells were COS-7 cells 
transiently transfected with the HLA alleles of interest and 
pulsed with single survivin peptides and the peptide cock-
tail. Control cells were HLA transfectants without peptides.

For ivsELISpot assays, responses of microcultures were 
scored positive when spot numbers were greater than or 
equal to twofold higher than the average values of the back-
ground control plates (COS-7/HLA transfectants).

See Supplementary Figure 2 for representative example 
control data for evELISpot and ivsELISpot.

Peptide/HLA‑multimer staining

For ex vivo peptide/HLA-multimer stainings (evMultimer), 
3.4–9 million thawed and washed PBMC were used. Cells 
were stained with the dead-cell stain Live/Dead aqua (Inv-
itrogen) and then stained with PE-labeled peptide-HLA-
tetramers for HLA-A1, HLA-A2, or HLA-A3 (Beckman 
Coulter) or PE-labeled peptide-HLA-dextramers for HLA-
A24 and HLA-B7 (Immudex). After 20 min at room tem-
perature, surface-staining antibodies (CD8, CD45RA, 
CD3, CD4, CCR7, and CD14) were added for an additional 
20 min. The cells were washed, fixed, and permeabilized. 
Intracellular staining was performed with GranzymeB-anti-
body for 25 min, after which the cells were washed again 
and resuspended in PBS.

To control the antibody panel and staining conditions, 
control cells as external reference samples were used for 
each round of staining. To determine basic fitting of gates, 
FMO (fluorescence minus one) controls were used. Sup-
plementary Figure 3 presents examples of stainings and the 
gating strategy.

The standard cut-off criteria for a positive response by 
pHLA-multimer staining were detection of ≥50 cells in 
the multimer gate and a minimum percentage of 0.03 % of 
the CD8+ T cells. However, in 8 patients, smaller numbers 
of pHLA-multimer positive cells were seen in evMultimer 
analysis, just below the detection threshold. In these cases, 
when looking at the distribution of cells within the FACS-
dot plots, the number of cells needed to represent a trust-
able result was set lower, provided that the pHLA-multimer 
positive cells formed a population clearly separate from 
the pHLA-multimer negative population. In 7 of these 8 
patients, the existence of survivin-specific T cells below 
the regular detection limit was also confirmed by detection 
after in vitro expansion.
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For the in vitro stimulated peptide/HLA-multimer stain-
ings (ivsMultimer), PBMC were thawed, washed, and 
seeded in a 12-well plate (2–4 million cells/ml) in MLPC 
Medium (RPMI1640 with 10  % human pooled serum 
(Lonza), gentamycine, pyruvate, and nonessential amino 
acids) and stimulated with the corresponding peptide or 
EMD640744 peptide mix (10 μg/ml). The next day IL2 
(5  U/ml, Roche, Mannheim, Germany) and IL7 (10  ng/
ml, TEBU-bio, Offenbach, Germany) were added. Over 
the next 12–14 days, half the medium was replaced every 
3–4 days with fresh MLPC medium containing IL2 (5 U/
ml). After the in vitro stimulation, cells were harvested, 
washed, and stained with peptide/HLA-multimers as 
described above.

Assessment of safety and clinical efficacy

Physical examination (including vital signs) was performed 
weekly during the first 8  weeks, thereafter 4 weekly cor-
responding to the vaccination visits, and at the end-of-study 
visit 28 days after last vaccination. Injection-site reactions 
and extent of exposure to EMD640744 in Montanide® ISA 
51 VG were assessed at the vaccination visits. ECG and 
fundoscopy were performed at screening, weeks 8 and 16 
(ECG) or week 12 (fundoscopy), week 24, every 12 weeks 
thereafter, and at the end-of-study visit.

Adverse events (AEs) were graded according to the 
National Cancer Institute common criteria (3.0). Treat-
ment-emergent AEs (TEAEs) were defined as AEs that 
either emerged or worsened within the treatment period, up 
to 28 days after the last dose of study drug, relative to the 
pre-treatment state.

For those cases in which disease was not measurable by 
RECIST [36, 37], tumor response was assessed by imaging, 
physical examination, nuclear scanning, and/or serum tumor 
markers established for the given tumor entity. Assessments 
were listed at screening and in week 11 (with the exception 
of tumor markers, assessed in week 12), in week 24, every 
12 weeks thereafter, and at the end-of-study visit.

Statistics

It was planned that 24–36 subjects were recruited into the 
study to have 8 evaluable subjects per treatment group. 
Assuming a true T-cell response rate of ≥50 % of subjects 
in this population, 3 or more responders of 8 treated sub-
jects were to be seen with a probability >80  % based on 
binomial distribution assumption. The sample size was not 
based on test power considerations.

Safety analyses were performed on the safety/ITT popu-
lation and primary immunologic efficacy analyses on the 
ID population. Secondary immunologic efficacy analyses 
were performed on both the ID and ID-ITT populations. 

No analysis on a per-protocol population was foreseen, and 
the study was not designed to examine differences between 
the ITT, ID-ITT, and ID populations.

All efficacy and safety data were reported in a descrip-
tive manner. No formal inferential statistical analyses were 
planned for efficacy or safety analyses. For tumor response, 
best overall response was presented by subject and for 
treatment groups. Progression-free survival time and over-
all survival time were listed by subject. No summary analy-
sis was performed. A formal analysis to correlate clinical 
and immunologic efficacy was not planned.

Ethical considerations

This trial was conducted in accordance with the protocol 
and protocol amendments, the International Conference on 
Harmonization guideline for good clinical practice, appli-
cable local regulations, and the declaration of Helsinki, and 
was approved by independent ethics committees and by 
Swiss Medic. Written informed consent was received from 
participants.

Results

Study population and treatment

A total of 104 cancer patients were pre-screened for inclu-
sion between December 2007 and July 2009. Sixty-six 
subjects expressing ≥1 of the alleles HLA-A1, HLA-A2, 
HLA-A3, HLA-A24, or HLA-B7 underwent screening, and 
of these, 53 received ≥1 dose trial medication (51 rand-
omized to three treatment groups plus 2 subjects in the pre-
liminary safety phase who received 30 μg; Supplementary 
Figure  1 and Supplementary Table  3). The ID population 
comprised 38 subjects, the ID-ITT population 49 subjects, 
and the safety population 53 subjects. The cutoff for clini-
cal and safety data analyses was October 2009, 17 weeks 
after randomization of the last subject.

All subjects were of Caucasian origin, 59 % were male, 
and the median age was 57.7 years. Baseline demographic 
characteristics and HLA genotypes were well-balanced 
between treatment groups (Supplementary Tables  4, 5). 
The most common HLA allele observed was HLA-A2 in 
34 (64 %) subjects overall.

Patients had a wide range of advanced solid tumors, 
including cancers of the ovary, colon, kidney, rectum, 
breast, testicle, and lung, as well as melanoma and meso-
thelioma. The most frequent tumor entities were colorectal 
carcinoma (19  %), ovarian carcinoma (17  %), and mela-
noma (17  %). Detailed listings of patient demographics, 
HLA type, dose group, and tumor entity are provided in 
Supplementary Table 6.
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The mean treatment duration in the safety population 
was 13.1 weeks (30 μg group), 11.7 weeks (100 μg group), 
and 13.8 weeks (300 μg group), and the median treatment 
duration was 8.0 weeks in each group. The median number 
of vaccinations was 8.0 in each group. The number of vac-
cinations received ranged from 2 to 19. The most common 
reason for trial discontinuation was progressive disease: 12 
subjects (63 %) with 30 μg study treatment, 9 (53 %) with 
100  μg, and 11 (65  %) with 300  μg. Four discontinued 
due to death [3 (15.8 %), 30 μg group; 1 (5.9 %), 100 μg 
group], and one subject per group discontinued due to AE 
(5.3, 5.9, and 5.9  %, respectively). The longest treatment 
duration until data cutoff was 53 weeks.

Primary endpoint analysis

Analysis of the primary endpoint was performed in the ID 
population (N = 38; Table 1). Overall, 14 patients (37 %) 
displayed detectable survivin-specific T-cell responses in 
the 17 weeks following vaccination according to evELIS-
pot and/or ivsELISpot: 4 subjects (33 %, 30 μg), 4 subjects 
(31 %, 100 μg), and 6 subjects (46 %, 300 μg). The major-
ity of observed responses were directed against the A2 and 
A3 peptides; in the ID population, no responses to the A1 
or B7 peptides were observed (although 4 responses to the 
A1 peptide were observed in the broader ID-ITT popula-
tion, discussed below).

Overall immune responses to the vaccine

The immunomonitoring data reported here are derived 
from the ID-ITT population, which provided a more com-
prehensive data set than the ID population.

Ex vivo ELISpot assays were performed for all 49 
patients of the ID-ITT group. They revealed a pre-existing 
response (to Sur96-104) at baseline in just one patient, 
while responses in post-vaccination samples were detect-
able in 7 of the 49 patients (14  %). In vitro stimulation 
assays increased the detection sensitivity and showed treat-
ment-related responses in 13 of 18 patients tested (72  %, 
Fig. 2a).

Vaccination-induced survivin-specific T cells were also 
detected ex vivo by pHLA-multimer staining in 15 of 42 
patients (36 %) and in 28 of 35 patients (80 %) after short 
in vitro stimulation with specific peptides, confirming ex 
vivo responses in 12 of 14 patients (Fig. 2b).

Overall, 31 of 49 patients (63 %) displayed detectable 
ex vivo and/or in vitro stimulated survivin-specific T-cell 
responses post-vaccination, as detected by ≥1 assays. 
Just 8 of these 31 responding patients showed detect-
able pre-existing immune responses, which, however, 
significantly increased upon vaccination. In 19 of the 
31 responders (61 %), specific responses were detected 
only after vaccination. In four responders, correspond-
ing baseline samples were only available for ex vivo 

Table 1   Summary of T-cell responders according to ELISpot until week 17 (primary analysis) combining evELISpot and ivsELISpot data—ID 
analysis set

The denominators indicate the total number of subjects assessed within each dose group at any of weeks 4, 8, 12, 16, and 17. The numerators 
provide the number of subjects with a positive response. Responses against the cocktail but not to any of the single (expected) peptides within it 
(e.g., patient 0001–0013) can be explained by responses to other, unexpected peptides presented by one of the patient’s HLA alleles. Conversely, 
a response to a single peptide in the absence of a response against the cocktail can be explained by competition among cocktail peptides for 
HLA binding (0001–0009)

Dose groups Response type

30 μg 100 μg 300 μg

evELISpots 0001–0009 Sur96-104/M2

0001–0013 EMD640744

0003–0009 Sur96-104/M2

0003–0019 Sur96-104/M2

0004–0015 Sur96-104/M2 + EMD640744

0005–0011 Sur20-28 + EMD640744

0005–0014 Sur96-104/M2 + EMD640744

ivsELISpots 0001–0007 Sur18-27/K10 + Sur18-27 + EMD640744

0001–0012 Sur96-104/M2 + Sur96-104 + EMD640744

0001–0016 Sur96-104/M2 + EMD640744

0001–0035 Sur96-104/M2 + Sur96-104 + EMD640744

0002–0004 Sur18-27/K10 + EMD640744

0003–0005 Sur96-104/M2

0003–0014 Sur96-104/M2 + Sur96-104 + EMD640744

N 4/12 4/13 6/13
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ELISpot assay but not for the more sensitive in vitro 
stimulation assays. Since post-vaccination responses 
in those patients were detected after in vitro stimula-
tion, the presence of pre-existing responses cannot be 
excluded (Fig. 3).

In the ID population, 29 of 38 patients (76 %) displayed 
detectable survivin-specific T-cell responses post-vaccina-
tion (Fig. 3).

Time course of promotion and duration of immune 
responses

In 23 patients with a survivin-specific T-cell response, 
PBMCs from at least time points 4, 8, and 12 weeks after first 
vaccination were analyzed by pHLA-multimer stainings. Of 
those, four patients had a pre-existent survivin-specific T-cell 
response. Of the remaining 19 patients, seven showed a first 

Fig. 2   a Frequencies of spot-forming cells (SFC) per 105 CD8+ 
T cells as determined by ex vivo ELISpot assays (evELISpots) and 
ELISpots after short-term in vitro stimulation (ivsELISpots) for all 
patients who showed responses to survivin peptides. b Frequencies 

of pHLA-multimer-stained cells (as  % of vital CD8-positive T cells) 
analyzed ex vivo (evMultimer) or after in vitro stimulation (ivsMul-
timer) for all patients with available PBMC samples
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vaccine-induced T-cell response at week 4, eight patients 
responded first at week 8, and four patients at week 12. Dur-
ing the course of vaccination, the T-cell frequencies further 
increased, and from the first detectable response to the peak, 
there was a mean 12-fold increase (median = 4.6). No cor-
relation of the onset of vaccine-induced responses with the 
dose, patient HLA type, the number of HLA-matching pep-
tides, or tumor entity was observed.

Figure 4 presents representative time courses of promo-
tion and duration of vaccine-specific immune responses 
measured with two of the four assays employed (4A: evEL-
ISpot and 4B: ivsMMS).

Immunogenicity of the different peptides and dose 
dependency

Immune responses were detected against the vaccination 
peptide mix EMD640744 and against the single candidate 

peptide(s) corresponding to the patients’ HLA. In some 
cases (e.g., patient 0005–0011, Fig. 4a), responses against 
EMD640744 were even stronger than against the respec-
tive single peptide, suggesting peptide binding and immune 
responses beyond the expected peptide/HLA combinations. 
Similarly, in some cases (e.g., patient 0001–0013), there 
was a response against the cocktail but not to the tested 
single peptides matching the patients’ HLA (Table 1). This 
might be due to responses to peptides within the cocktail 
not matching patients’ HLA and therefore not tested, since 
unexpected. In some patients, for example, patient 0001–
0009, there was a response against a single peptide but not 
against the cocktail. This may be attributed to competition 
among cocktail peptides for HLA binding.

Survivin-specific T cells were best activated by HLA-
A2-binding peptides (Sur96-104/M2, 66 %; 19 of 29 HLA-
A2 positive tested patients) and HLA-A3-binding peptides 
(Sur18-27/K10, 77  %; 10 of 13 tested patients), whereas 

Fig. 3   Summary of all T-cell responses detected by ELISpot and pMHC-multimer staining
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only 24 % (4 of 17) of the A1-positive patients and 33 % (2 
of 6) of the A24-positive patients showed vaccine-specific 
responses to their cognate HLA-binding epitopes (Sur93-
101/T2 and Sur20-28, respectively; note that, these results 
pertain to the broader ID-ITT population: No response to 
the HLA-A1-binding peptide Sur93-101/T2 was observed 
in the ID set). No responses against the B7-binding peptide 
(Sur6-14) were detected (9 patients tested). Even the low-
est dose of EMD640744 (30 μg) promoted good responses, 
and no evidence of a dose-dependent effect of EMD640744 
with regards to immunologic efficacy was found.

Recognition of native peptides by modified 
peptide‑activated T cells

Three peptides contained in EMD640744 were modi-
fied to carry anchor amino acids facilitating binding to the 
respective HLA proteins (Sur93-101/T2, Sur96-104/M2, 
and Sur18-27/K10; Supplementary Table 1). The modified 

peptides were previously shown to activate T cells capable 
of recognizing their respective native counterparts [13, 38].

Herein, responses against modified peptides were 
accompanied by native peptide recognition in 1 of 8 
responders tested by evELISpots, and 7 of 13 responders 
tested by the more sensitive ivsELISpot assays (see exam-
ples in Fig.  5). Responses against native peptides were 
lower than those against modified peptides.

Assessment of clinical efficacy

Since objective clinical response rates are generally low 
after cancer vaccination, clinical efficacy can only be rea-
sonably assessed in an appropriately designed trial with a 
time-to-event endpoint. Therefore, a formal analysis to cor-
relate clinical efficacy with immunologic efficacy was not 
planned. The best overall response per patient is presented 
in Fig. 3, and the best overall response within dose groups 
is presented in Supplementary Table  7. It is important to 

Fig. 4   a Response course of 
patient 0005-0011 determined 
by ex vivo ELISpot analysis. 
The HLA-A24-positive patient 
showed responses to the vaccine 
cocktail (EMD640744) and to 
the HLA-A24-restricted peptide 
Sur20-28. b Response course of 
patient 0004–0015 to the HLA-
A2-binding peptide Sur96-104/
M2 by pHLA-multimer staining 
after in vitro stimulation with 
the corresponding peptide
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note that, as progressive disease was not an inclusion cri-
terion, stable disease as best response cannot be interpreted 
as clinical benefit.

Safety assessments

All subjects experienced ≥1 TEAE, as expected in this 
population with advanced cancers. The most commonly 

reported TEAEs (Supplementary Tables 8 and 9) were gen-
eral disorders and administration site conditions (79, 77, 
and 88 % of subjects, respectively) and gastrointestinal dis-
orders (58, 53, and 59 %).

The only TEAEs reported in ≥20 % of subjects in any 
treatment group were injection-site induration (29  % of 
subjects in the 300-μg dose group) and injection-site reac-
tion, in 21 and 29  % of subjects in the 30 and 100  μg 

Fig. 5   a ELISpot in patient 
0004–0015. Responses to the 
HLA-A2-associated peptides 
Sur96-104 (native epitope) 
and Sur96-104/M2 (modi-
fied epitope) were detected by 
evELISpots in weeks 16, 24, 
and 60 but not at time points 
in between (not shown). b 
ivsELISpots on week 36- and 
end-of-study samples in the 
same patient (0004–0015) 
confirmed these responses by 
showing specific T cells at 
frequencies below the evEL-
ISpot detection limit. c Patient 
0001–0007 showed a response 
to the A3-modified peptide with 
concurrent reactivity to the 
native peptide. (Counts were 
set to >500 when a significant 
proportion of spots were conflu-
ent, and the reader system was 
unable to count them as separate 
spots. **p < 0.001; SFC, spot-
forming cells)
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treatment groups respectively (Supplementary Table  8). 
Typically, these TEAEs slowly resolved over several 
months. Two subjects experienced Grade 3 TEAEs: One 
report of thrombosis in the 100 μg group and a granuloma 
with concomitant Grade 3 injection-site induration in the 
300 μg group. Additionally, two related serious AEs were 
reported: an episode of enthesitis in the 100 μg group and 
renal failure in the 300 μg group.

The frequencies of TEAEs by systemic organ class were 
similar between the three treatment groups (Supplementary 
Table 8). Overall, the trial treatment was well tolerated with 
local injection-site reactions being the most frequent AE.

Discussion

The literature provides a small number of active immuno-
therapy trials that use survivin peptides as target antigens 
and show the induction of specific T cells in restricted 
numbers of patients [17, 21, 29]. Very recently, a phase-II 
vaccination trial in melanoma patients reported prolonged 
overall survival in the subgroup of patients (13/41) who 
mounted a survivin-specific T-cell response as shown by ex 
vivo ELISpot analysis [16]. Patients were vaccinated with 
modified survivin peptides binding to HLA-A1, HLA-A2, 
and HLA-B35, also partially contained in EMD640744.

All these trials tested particular survivin-peptide/HLA 
combinations in single tumor entities. In contrast, the pre-
sent study analyzed a set of five different peptides restricted 
by five of the most common HLA alleles in the Caucasian 
population in a heterogeneous cancer patient cohort. This 
strategy allowed us to test the immunogenicity of different 
doses of survivin peptides in different tumor settings with 
coverage of about 80 % of Caucasian patients eligible for 
the treatment.

Application of two immunologic assays (ELISpot and 
pHLA-multimer staining) has yielded convincing results 
that vaccination with the survivin-multipeptide vaccine 
EMD640744 promotes CD8+ responses in a high propor-
tion of patients, with no dose effect observed. Even the 
lowest dose (30 μg per single peptide, 150 μg combined) 
activated T cells as efficiently as the highest dose (300 μg, 
1.5 mg), and on the other hand, the latter proved to be safe 
as well. Taking the results of ELISpot- and multimer assays 
together, 63  % (31 of 49) of vaccinated patients showed 
survivin-specific T-cell responses ex vivo and/or following 
in vitro stimulation. Importantly, every post-vaccination 
response detected by ELISpot was confirmed with pHLA-
multimer staining, suggesting that both assays detected the 
same T cells. The fact that multimer stainings found higher 
frequencies of responders (76  %) than ELISpots (37  %) 
is probably due to the higher material requirements of the 
ELISpot assays: After having performed the evELISpot 

assays in 49 patients, there were only sufficient PBMC left 
to conduct ivsELISpots in 18 patients (Fig. 3). Availability 
of more PBMC for the more sensitive ivsELISpot in fur-
ther patients would most likely have increased the number 
of responders as detected by this assay as well. In addition 
to frequency analyses, it would have been important to test 
whether different vaccine doses caused qualitatively differ-
ent T-cell responses. Here again, the unique and restricted 
patient material was not sufficient for avidity- or affinity 
analyses of survivin-specific T cells or to test the lympho-
cytes against target cells endogenously expressing survivin 
(autologous tumor cells were not available). Nonetheless, 
detection of positive responses with both functional and 
multimer-staining assays provides robust evidence that 
these individuals were true responders.

In 61 % of the responding patients (19 of 31, Fig. 3), we 
found evidence for de novo induction of survivin-specific 
CD8+ T cells by vaccination. T cells responding to modi-
fied peptides were able to recognize the corresponding 
native peptides in 1 of 8 samples identified by evELISpot 
and in 7 of 13 samples identified by ivsELISpot assays. 
Consistent with previous reports [31] showing this cross-
reactivity for the HLA-A2-binding Sur96-104/M2 and its 
native counterpart, to the best of our knowledge, this study 
is the first to confirm this phenomenon for Sur93-101/
T2 (HLA-A1)- and Sur18-27/K10 (HLA-A3)-responsive 
T cells as well. Overall, responses to the native epitopes 
were generally weaker when compared to modified peptide 
responses. However, we are unable to draw any conclu-
sions from this finding with respect to clinical implications.

Two lines of evidence argue against survivin as appro-
priate target antigen for immunotherapy: (1) Schendel et al. 
have reported that endogenous survivin expression in acti-
vated T cells can affect survivin-specific T cells due to frat-
ricide [39]. However, our data clearly show that vaccination 
in vivo and stimulation in vitro expanded survivin-specific 
T cells. (2) While most normal, terminally differentiated 
adult tissue cell types do not express survivin, some spe-
cialized normal cells do; these include thymocytes, CD34+ 
bone marrow-derived hematopoietic progenitor cells, 
basal colonic epithelial cells, and activated epithelial cells. 
Pisarev et  al. [40] induced survivin multiepitope-specific 
CTLs that recognized tumor cells but did not affect the 
function of hematopoietic progenitor cells. In our study, 
the induction of survivin-specific T-cell responses neither 
led to clinically apparent autoimmune side effects nor did it 
recognizably affect the hematopoietic or vascular system in 
vaccinated patients. EMD640744 was generally well toler-
ated, with injection-site reactions constituting the bulk of 
reported TEAEs.

Hailemichael et  al. recently reported that oil emulsion 
adjuvants may promote persistence of antigen at the vac-
cination site with T-cell sequestration and dysfunction, 
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findings that call for caution to be exercised with monta-
nide-formulated vaccines. The survivac vaccine elicited 
high response rates associated with a favorable safety pro-
file. Nonetheless, investigation of injection-site-infiltrating 
lymphocytes would be desirable in future studies [41].

Due to the limitations of this phase I study design—
a small study population precluding formal statistical 
comparison between the three doses, a formal analysis 
to correlate clinical efficacy with immunologic efficacy 
was not planned [42]. Future studies may examine com-
binations with standard therapy or maintenance vaccina-
tion of patients who responded to the standard treatment. 
The recently reported correlation of prolonged survival in 
melanoma patients and development of immune responses 
to modified survivin peptides [16], partially contained in 
EMD640744, argue for a clinically relevant immunopo-
tency of the vaccine and warrant further study.

In aggregate, the presence of antigen-specific T cells in 
63 % of patients—and in particular the supportive evidence 
for de novo induction in 61 % of responders—is remark-
able for a tumor vaccination trial and clearly supports the 
concept of using survivin as a relevant target for cancer 
immunotherapy in tumor entities expressing survivin.
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