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subpopulation that co-expressed also PD-1. Ectonucleoti-
dase expression was also up-regulated in CD4+ and CD8+ 
T cells upon activation. In addition, these ectoenzymes 
were largely found to be expressed on memory T cell com-
partment (in particular, on effector memory cells). Our data 
suggest that extracellular adenosine produced by regulatory 
T cells (Tregs) and MDSCs can suppress T cell effector 
functions through paracrine signaling. Another mechanism 
involves its production also by effector T cells and an inhi-
bition of their anti-tumor reactivity via autocrine signaling 
as a part of the negative feedback loop. This mode of aden-
osine signaling could be also used by Tregs and MDSCs to 
enhance their immunosuppressive activity.

Keywords Immunosuppression · Adenosine · Myeloid-
derived suppressor cells · T cells · Melanoma · PIVAC 13

Introduction

Malignant melanoma is an extremely aggressive form of 
skin cancer characterized by a rapid growth and metasta-
sis to regional lymph nodes and distant organs [1–3]. Its 
incidence and death rates have been increasing in differ-
ent countries faster than those of other cancers [1, 2]. The 
observed immunogenicity of melanoma has made this dis-
ease a preferred target for application of various immuno-
therapeutic approaches, dealing with tumor antigen-specific 
and -nonspecific immunostimulation or adoptive transfer of 
melanoma-specific activated T lymphocytes [4–6]. How-
ever, despite some positive reports, the overall results of 
immunotherapeutic clinical studies are not satisfactory. 
These paradoxical observations could be due to a pro-
found immunosuppression mediated by tumor and stroma 
cells and strongly supported by chronic inflammation 
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developing in the tumor microenvironment and accelerat-
ing tumor progression [7–11]. In addition to the expansion 
and recruitment of various immunosuppressive cells in the 
tumor microenvironment such as regulatory T cells (Tregs) 
[12, 13], myeloid-derived suppressor cells (MDSCs) [14, 
15], tumor-associated M2 macrophages (TAMs) [16], 
Tie2-expressing monocytes [17], tumor-associated N2 neu-
trophils (TANs) [18] and regulatory/tolerogenic dendritic 
cells (DCs) [19], tumor and stroma cells secrete a variety 
of soluble immunosuppressive factors and metabolites. 
These include tumor necrosis factor (TNF)-α, transform-
ing growth factor (TGF)-β, interleukin (IL)-1β, IL-6, vas-
cular endothelial growth factor (VEGF), cyclooxygenase-2 
(COX-2), prostaglandin E2, lactate, glutamate and adeno-
sine [20–24].

Adenosine is a purine nucleoside produced via enzy-
matic hydrolysis of extracellular ATP by the nucleoside 
triphosphate diphosphohydrolase CD39 and the ecto-
5′-nucleotidase CD73 localized on cell surface. The key 
role of adenosine in lymphocyte development and regula-
tion was initially highlighted by the discovery of inherited 
deficiency of adenosine deaminase (ADA) that resulted 
in the most profound depletion of T, B, and natural killer 
(NK) lymphocytes found in any form of severe combined 
immunodeficiency disease [25, 26]. Potential mechanisms 
of such defects have been linked to the ADA substrate 
adenosine generated in large amounts from apoptotic cells 
in the thymus, bone marrow and lymph nodes [27]. More 
recently, adenosine has been described to be produced by 
Tregs and to mediate their ability to inhibit the activity of 
various immune cell subpopulations both in vitro and in 
vivo [28–30]. Moreover, adenosine can be also generated 
by tumor cells, strongly contributing to the immunosup-
pressive pattern of the tumor microenvironment [31, 32]. In 
this review, we discuss the role of extracellular adenosine 
metabolism in different immune cells during melanoma 
progression and its possible involvement in the autocrine 
regulation of activities of non-regulatory T cells in the 
tumor microenvironment.

Adenosine as an immunosuppressive metabolite

Adenosine is normally present in body fluids at low con-
centrations [33]. It is produced from pro-inflammatory ATP 
in a two-step process: CD39 hydrolyses ATP or ADP into 
AMP and CD73, in turn, cleaves AMP yielding adeno-
sine. Interestingly, other extracellular enzymes adenylate 
kinase and nucleoside diphosphate kinase can phosphoryl-
ate AMP and ADP, respectively, thus antagonizing CD39 
activity [34]. It has been demonstrated that adenosine can 
be accumulated in hypoxic tissues, including the tumor 
microenvironment [35–37], through a strong activation of 

the ectonucleotidase pathway and inhibition of adenosine 
kinase [38]. Furthermore, an ATP release from dying tumor 
cells together with high ectonucleotidase activity on the 
surface of tumor and infiltrating immune cells favors addi-
tional adenosine accumulation [34].

Adenosine interacts with four distinct cell surface 
G-protein-linked receptors: A1, A2A, A2B and A3 [39]. 
A1 and A3 adenosine receptors are coupled to the Gi/o 
subunit, and their activation leads to the inhibition of ade-
nylate cyclase, cyclic AMP (cAMP) production, and as a 
consequence to the protein kinase A activation [39, 40]. 
Stimulation of A2A and A2B receptors has been reported 
to be accounted for immunosuppressive effects of adeno-
sine [40]. A2A receptors (A2AR) are expressed on a vari-
ety of immune cells, including T lymphocytes, NK cells, 
DCs, macrophages and granulocytes [39, 41]. The A2AR-
triggered cAMP elevation inhibits effector functions of all 
these cell populations. In T cells, adenosine mediates the 
blocking of the NF-κB pathway [42] that results in a potent 
suppression of (1) cell proliferation [43, 44]; (2) synthesis 
of cytokines IL-2 IFN-γ and TNF-α [45, 46]; (3) expres-
sion of perforin and CD95 ligand [47, 48]; (4) cytotoxic T 
cell adhesion to tumor target cells and granule exocytosis 
[47, 49]; and cell survival [23, 50]. Moreover, adenosine 
inhibits some of the earliest steps in T cell activation asso-
ciated with signal transduction through the T cell receptor 
and costimulatory CD28 molecules [35].

Adenosine has also been demonstrated to restrain the 
maturation and proinflammatory cytokine production by 
DCs, impairing their ability to stimulate T cells [51]. Fur-
thermore, it could impede the phagocytic and antigen-pre-
senting capacity of macrophages as well as induce the dif-
ferentiation of immunosuppressive alternatively activated 
macrophages [52]. Similar to T cells, adenosine has been 
reported to decrease cytotoxic functions of NK cells and 
their IFN-γ production [35, 39, 53].

Ectonucleotidases and adenosine metabolism in the 
tumor microenvironment

Ectonucleotidases CD39 and CD73, which are expressed 
on various immune cell populations as well as on tumor 
cells, have been reported to be responsible for adenosine 
accumulation outside the cell [54]. In contrast to many 
other enzymes, both CD39 and CD73 lack regulatory 
domains. Therefore, their net activity depends on their 
expression and the concentrations of the substrate, product 
and bivalent cations [55, 56]. Interestingly, CD73 is inhib-
ited by high concentrations of ATP or ADP, underscoring 
the highly coordinated action of CD39 and CD73 [57]. 
Ectonucleotidases play an important role in the regula-
tion of the balance between the proinflammatory ATP and 
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immunosuppressive adenosine in the tumor microenviron-
ment. It has been clearly demonstrated that the inhibition 
of adenosine production and signaling significantly reduces 
the tumor progression by enhancing anti-tumor immune 
responses [23, 55, 58–61]. For example, the deficiency 
of A2AR promoted the rejection of established immuno-
genic tumors, and the administration of A2AR antagonists 
resulted in the CD8 T cell-mediated inhibition of tumor 
growth and metastasis [23]. Furthermore, in a transplant-
able mouse model of breast cancer, Stagg et al. [59] dem-
onstrated an efficient suppression of tumor development 
and metastasis upon the administration of anti-CD73 mon-
oclonal antibodies (mAbs). This study together with sev-
eral other reports [23, 60] showed an importance of CD73 
expressed on cells in the tumor microenvironment in hin-
dering the anti-tumor immune reactivity.

Moreover, it has been demonstrated that CD73-defi-
ciency enhanced anti-tumor immune responses and resist-
ance to experimental metastasis in four different trans-
plantable mouse tumor models [58]. This anti-tumor effect 
was associated with an expansion of antigen-specific 
IFN-γ-producing CD8 T cells in the peripheral blood 
and tumor microenvironment. Experiments with the bone 
marrow chimeras indicated that CD73 expressed on both 
hematopoietic and non-hematopoietic cell populations 
non-redundantly contribute to the tumor immune escape. 
In addition, CD73 expression at least partially accounted 
for the tumor-promoting effects of Tregs. Another pub-
lication reported that the enzymatic activity of CD73 on 
non-hematopoietic cells hindered leukocyte migration 
into the tumor site, whereas CD73 on hematopoietic cells 
suppressed a systemic anti-tumor T cell expansion and 
their effector functions [55]. Both groups demonstrated 
anti-tumor and anti-metastatic effects of the CD73 target-
ing using its selective inhibitor α,β-methylene adenosine 
diphosphate or respective mAbs [55, 58]. Moreover, Wang 
et al. [55] showed that anti-CD73 mAbs could signifi-
cantly augment the efficacy of adoptive T cell therapy in 
tumor-bearing mice. The translational significance of these 
findings is underscored by the fact that various adenosine 
receptor antagonists are already used in clinical settings 
for other indications [62].

Role of CD39 and CD73 in the function 
of immunosuppressive cells

It has been well documented that Tregs coexpress ectoen-
zymes CD39 and CD73 and can produce adenosine in the 
tumor-bearing hosts strongly contributing to their immu-
nosuppressive activity [13, 29, 30, 34, 40, 63, 64]. Under 
physiological conditions, Tregs has been shown to play a 
critical role in the maintenance of peripheral tolerance by 

suppressing immune responses against “self” antigens [65]. 
However, in tumor-bearing hosts, these cells have been 
described as one of the key mediators of tumor resistance 
against effector immune cells [12, 13, 29, 30, 66]. Impor-
tantly, adenosine producing Tregs have been shown to 
inhibit not only the proliferation of effector cells but also 
their activities [29, 64].

The significance of ectonucleotidases was underlined 
by the observation that Tregs from CD39-deficient mice 
failed to suppress effector T cell proliferation [50]. Fur-
thermore, in CD73−/− mice, activated CD4 T cells pro-
duced increased amounts of pro-inflammatory cytokines 
(IFN-γ, IL-2 and TNF-α), and Tregs displayed no suppres-
sive activity [67]. It has been suggested that CD73-derived 
adenosine ensures a tonic inhibition of NF-κB in CD4+ T 
cells, limiting thereby the development of effector T cell 
responses [67]. Therefore, CD39 and CD73 expressed on 
Tregs can play an important role in regulating the balance 
between the pro-inflammatory ATP and immunosuppres-
sive adenosine (Fig. 1).

Myeloid-derived suppressor cells are considered as 
other key players mediating immunosuppression in the 
tumor microenvironment. This heterogeneous popula-
tion consists of immature myeloid cells that fail to termi-
nally differentiate into granulocytes, macrophages or DCs 
upon chronic inflammatory conditions in tumor-bearing 
hosts [14, 68, 69]. In mice, MDSCs express both CD11b 
and Gr1 markers and can be divided on two major sub-
sets: granulocytic CD11b+Ly6G+Ly6Clo and monocytic 
CD11b+Ly6G−Ly6Chi cells [14, 69, 70]. In human MDSCs, 
granulocytic subpopulation is defined as Lin−HLA-DR−/

loCD11b+CD33+CD14−CD15+ and monocytic one as 
CD11b+CD14+HLA-DR−/lo [14, 15, 68]. MDSCs derive 
from bone marrow hematopoietic precursors due to the 
altering of myelopoiesis by chronic inflammatory media-
tors [10, 14]. They can remarkably inhibit anti-tumor reac-
tivity of T and NK cells by the deprivation of arginine and 
cysteine, increased production of nitric oxide and reactive 
oxygen species, an expression of membrane-bound TGF-β 
and a down-regulation of the TCR ζ-chain expression [10, 
14, 68, 71, 72].

It has been recently demonstrated that the frequency and 
function of MDSCs could be modulated by extracellular 
adenosine through the receptor A2B [73]. Furthermore, the 
authors detected high CD73 levels on the surface of granu-
locytic MDSCs and showed that the MDSC immunosup-
pressive activity in vitro was enhanced in the presence of 
AMP. This suggests that adenosine produced by MDSCs 
contributes to their suppressive properties by the paracrine 
modulation of other cells (e.g., the inhibition of effector 
T cell anti-tumor activities). On the other hand, autocrine 
adenosine production can increase the numbers and immu-
nosuppressive activity of MDSCs (Fig. 1).
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To elucidate the role of CD39 and CD73 on MDSCs, we 
studied their expression on these cells isolated from tumor-
bearing ret transgenic mice and on CD11b+Gr1+ immature 
myeloid cells (IMCs) from healthy animals. This transgenic 
model mimics human melanoma with respect to etiology, 
tumor genetics, histopathology and clinical development 
[74, 75]. Animals develop spontaneously skin melanoma 
metastasizing to lymph nodes and distant organs. We 
observed that both MDSCs and IMCs constitutively express 
CD39, indicating the capacity of these cells to hydrolyze 
ATP [76]. This is in agreement with reports describing 
an important role of CD39 in myeloid cell migration and 
function [54, 77, 78]. In contrast, CD73 expression showed 
considerable heterogeneity. Analyzing the granulocytic 
subset of CD11b+Gr1+ cells, we found that IMCs from the 
spleen and bone marrow contained a substantial popula-
tion of CD73-expressing cells [76]. Moreover, granulocytic 
MDSCs from respective lymphoid organs and melanoma 
lesions harbored distinctly higher percentages of CD73+ 
cells. This could be linked to the observed MDSC expan-
sion in this tumor model [79]. Although only a minor pro-
portion of monocytic MDSCs expressed CD73, the number 
of CD73-positive cells was elevated in melanoma lesions 
[76]. Since TGF-β alone [80] or in combination with IL-6 
[81] has been shown to induce CD73 expression on T cells 
through the down-regulation of the transcription factor 
Gfi-1 [81], the up-regulation of CD73 on MDSCs could 
also be mediated by these factors that were accumulated in 
the tumor microenvironment of ret transgenic mice [82].

Why is the expression of ectonucleotidase up‑regulated 
on activated T cells?

Interestingly, ectonucleotidase expression has been found 
not only on immunosuppressive cells but also on non-regu-
latory T cells. We observed that conventional CD4+FoxP3− 
(Tcons) and CD8+ T cells infiltrating melanoma lesions 
of ret transgenic mice were distinctly enriched in 
CD39+CD73+ subpopulation. Moreover, these cells co-
expressed also PD-1 suggesting that similar to CTLA-4 
and PD-1 molecules, ectonucleotidases can represent an 
immune checkpoint maintaining tolerance and regulating 
the duration and intensity of the immune response [83]. In 
line with this assumption, we found that the CD25+ subset 
of Tcons, presumably representing activated T cells [84], 
contained significantly higher frequencies of CD39+ and 
CD73+ cells than the resting CD25− counterpart both in 
lymphoid organs (bone marrow, spleen, lymph nodes) and 
skin tumors.

To analyze the impact of T cell activation on the expres-
sion of ectonucleotidases, we stimulated splenocytes from 
healthy mice through the engagement of CD3 and CD28. 
It was found that the frequencies of CD39+ cells among 
CD4+ and CD8+ T cells significantly increased upon acti-
vation that is in agreement with the previous report, which 
demonstrated also a TGF-β-dependent up-regulation of 
CD73 expression on activated CD8+ T cells displayed [80]. 
Moreover, we found that CD4+ and CD8+ T cells that rap-
idly produced IFN-γ upon stimulation contained a higher 

Fig. 1  Two mechanisms of adenosine signaling. a Paracrine signal-
ing. Extracellular adenosine, which is produced via ectonucleotidases 
CD39 and CD73 expressed on Tregs, MDSCs or tumor cells can 
interact with A2A receptors (A2AR) on non-regulatory T cells (Teff). 
This stimulates the synthesis of cAMP in Teff leading to a significant 
suppression of their proliferation and effector functions. b Auto-
crine signaling. A pronounced up-regulation of the ectonucleotidase 

expression on activated Teff results in an autocrine adenosine signal-
ing and the cAMP accumulation. This can limit the activation of T 
cells and induce their anergy. In addition, an increased expression of 
CD39 and CD73 on Tregs and MDSCs enable an autocrine adenosine 
signaling in these cells, which might serve to sustain or enhance their 
immunosuppressive activity
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frequency of ectonucleotidase expressing cells as com-
pared to the subset unable to produce IFN-γ. Activated T 
cells have been demonstrated to release increased ATP 
amounts, promoting thereby their activation through auto-
crine purinergic signaling [54, 85]. The TCR stimulation 
resulted in the release of cellular ATP through pannexin-1 
channels, which provides an autocrine positive feedback 
loop amplifying T cell activation [86]. On the other hand, 
high concentrations of extracellular ATP may induce T 
cell apoptosis [39]. Therefore, a rapid induction of CD39 
upon the T cell activation may provide an effective tool 
for controlling extracellular ATP levels and preventing T 
cell apoptosis. Furthermore, CD73 induction in activated 
T cells may dampen their function through the accumula-
tion of extracellular adenosine. Interestingly, a recent study 
on Jurkat T cell line in vitro has demonstrated that upon 
activation, adenosine could be produced also through the 
CD38/CD203a/CD73 ectoenzymatic pathway, bypassing 
the canonical catabolic pathway mediated by CD39 [87].

Comparing naïve and memory T cells, we demonstrated 
that the ectonucleotidase expression in T cells was largely 
associated with the memory compartment. Moreover, the 
effector memory subset contained a higher frequency of 
ectonucleotidase expressing cells than the central memory 
counterpart since effector memory cells are known to dis-
play a rapid effector function [88] and their inappropriate 
activation should be more strictly controlled. Thus, mem-
ory T cells might constitutively produce extracellular aden-
osine from ATP to prevent their adverse activation through 
autocrine adenosine signaling (Fig. 1).

Conclusion

Taken together, extracellular adenosine produced through 
the two-step hydrolysis of extracellular ATP by ectonucle-
otidases CD39 and CD73 is involved in the limitation of 
excessive T cell-mediated immune responses. Ectonucle-
otidases play a crucial role in the regulation of the balance 
between the proinflammatory ATP and immunosuppres-
sive adenosine. However, this mechanism can be hijacked 
by tumors (including melanoma) to subvert an anti-tumor 
immune reactivity, leading to the tumor progression. Dur-
ing the last decade, it has been well documented that Tregs 
coexpress CD39 and CD73 and produce extracellular 
adenosine in the tumor-bearing mice and cancer patients, 
representing one of the key mechanisms of Treg immuno-
suppressive activity. Moreover, it has been reported that 
MDSCs (another cell population critically contributing 
to the immunosuppression developing in tumor-bearing 
hosts) can also produce adenosine via ectonucleotidases 
expressed on their surface. This leads to an inhibition of 
T cell functions and an increase in MDSC frequencies and 

activities in the tumor microenvironment. Furthermore, 
recent observations on the up-regulation of ectonucleoti-
dase expression on CD4+ and CD8+ T cells upon activa-
tion and on those cells infiltrating melanoma lesions in ret 
transgenic mice indicate a previously unappreciated role 
of ectonucleotidases expressed on effector T cells in the 
limitation of anti-tumor immune reactions through auto-
crine adenosine signaling mechanisms. We thus suggest 
two possible modes of adenosine signaling in the tumor 
microenvironment: (1) extracellular adenosine produced 
by CD39 and CD73 expressed on Tregs and MDSCs can 
inhibit proliferation and effector functions of non-regu-
latory T cells via paracrine signaling; (2) adenosine pro-
duced by ectonucleotidase on tumor-infiltrating T cells 
suppresses their activities and induces their anergy through 
negative feedback mechanisms. In addition, an enhance-
ment of Treg and MDSC immunosuppressive function can 
be also achieved by the autocrine adenosine signaling in 
these cells (Fig. 1).
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