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Understanding how B cell responses in cancer are related 
to the effectiveness of the overall anti-tumour response is 
likely to aid in the development of new therapeutic inter-
ventions against cancer.
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Abbreviations
Breg	� Regulatory B cell
CXCR3	� CXC chemokine receptor 3
DMBA	� 7,12-Dimethylbenz[a]anthracene
FcR	� Fc receptor
FcεRI	� High affinity IgE receptor Fc epsilon RI
FcεRII	� Low affinity IgE receptor Fc epsilon RII
Flt3L	� FMS-like tyrosine kinase 3 ligand
GRP	� Gastrin-releasing peptide
HSV1-TK	� Herpes simplex virus 1 thymidine kinase
MCA	� Methylcholanthrene
PSA	� Prostate-specific antigen
SCC	� Squamous cell carcinoma
SEREX	� Serological identification of antigens by 

recombinant expression cloning
Th1	� T helper type 1
TILs	� Tumour-infiltrating lymphocytes
TPA	� Tetradecanoyl phorbol acetate
VCAM-1	� Vascular cell adhesion protein 1

Clinical evidence

Correlations between the presence of tumour-infiltrating B 
cells and patient survival have been extensively reviewed 
recently [1], and only a brief summary will be provided 
here. Most studies demonstrate a positive association. It is 

Abstract  The primary immune role of B cells is to pro-
duce antibodies, but they can also influence T cell function 
via antigen presentation and, in some contexts, immune 
regulation. Whether their roles in tumour immunity are 
similar to those in other chronic immune responses such as 
autoimmunity and chronic infection, where both pro- and 
anti-inflammatory roles have been described, remains con-
troversial. Many studies have aimed to define the role of B 
cells in antitumor immune responses, but despite this con-
siderable body of work, it is not yet possible to predict how 
they will affect immunity to any given tumour. In many 
human cancers, the presence of tumour-infiltrating B cells 
and tumour-reactive antibodies correlates with extended 
patient survival, and this clinical observation is supported 
by data from some animal models. On the other hand, T 
cell responses can be adversely affected by B cell produc-
tion of immunoregulatory cytokines, a phenomenon that 
has been demonstrated in humans and in animal models. 
The isotype and concentration of tumour-reactive antibod-
ies may also influence tumour progression. Recruitment 
of B cells into tumours may directly reflect the subtype 
and strength of the anti-tumour T cell response. As the 
response becomes chronic, B cells may attenuate T cell 
responses in an attempt to decrease host damage, similar to 
their described role in chronic infection and autoimmunity. 
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not clear from the clinical observations if this association 
is specifically related to beneficial effects of B cell func-
tions such as antigen presentation, antibody production, or 
a combination of both. B cells may also be recruited into 
tumours in response to IFN-γ production [2, 3] and thus 
serve as a surrogate marker of an effective T cell-mediated 
anti-tumour response.

Associations between B cell infiltration and patient 
survival

Immunohistochemical analysis has indicated that B cell 
density in tumours and/or lymph node metastases correlates 
with an improved prognosis in melanoma [4], head and 
neck cancer [5] and ovarian cancer [6]. In general, fewer 
B cells are present in visceral metastases [7]. Interestingly, 
CD20+ tumour-infiltrating lymphocytes (TILs) are often 
colocalised with CD8+ TILs, which may reflect a micro-
environment rich in IFN-γ, recently reported to serve as a 
B cell tissue attractant via upregulation of CXC chemokine 
receptor 3 (CXCR3) [2] and/or vascular cell adhesion pro-
tein 1 (VCAM-1) [3]. This interpretation is consistent with 
the improved prognosis for ovarian cancer infiltrated with 
both B and T cells, compared with T cells alone [6] and the 
positive effects of intratumoural injections of recombinant 
human IL-12, a driver of IFN-γ production and switching 
to Th1-associated serum antibodies such as human IgG1 
[8]. An alternative explanation is that the presence of CD4+ 
and CD8+ T cells and B cells, often organised into tertiary 
lymphoid structures, reflects the chronic nature of the anti-
tumour immune response, and is analogous to that seen in 
chronic infectious and autoimmune diseases [9]. This inter-
pretation is supported by the oligoclonal nature of B cell 
infiltrates and the presence of isotype switched, somatically 
mutated Ig transcripts, suggesting that tumour-infiltrating B 
cells have been selected for specific recognition of tumour 
antigens [6].

Bioinformatic analysis quantifying transcripts associated 
with B cells has proven effective in predicting prognosis 
in some breast cancer subtypes [10]. Thus, the combina-
tion of a “high B cell and low IL-8 gene signature” derived 
from a metagene expression prediction analysis was associ-
ated with a good prognosis in a subgroup of triple nega-
tive breast cancer patients [10]. B cell gene expression 
signatures identified using mRNA sequencing in primary 
breast cancer tissue also correlated with increased metas-
tasis-free and progression-free survival in basal-like and 
HER2-enriched breast cancer, as well as in immunoreac-
tive ovarian cancer [11]. In another study, expression of 
the immunoglobulin kappa C gene was as effective as the 
entire B cell metagene in predicting improved metastasis-
free survival in a large series of breast, non-small cell lung 
carcinoma and colorectal cancer patients [12]. In cases in 

which B cell receptor or antibody diversity was examined, 
the presence of isotype switching and somatic hypermu-
tation indicated that B cells within the tumour microen-
vironment had received CD4+ T cell help [6, 11]. Taken 
together, these studies suggest that B cell involvement in 
the tumour response is a positive clinical indicator, either 
as a reflection of a type I T cell response, or via intrinsic B 
cell functions.

Effects of B cell depletion

While B cell-depleting antibodies such as rituximab are 
commonly used as cytotoxic agents in human B cell-related 
malignancies, few studies have targeted human B cells as a 
means of modulating the immune response against non-B 
cell tumours. Studies in renal cell carcinoma, melanoma 
[13] and colorectal carcinoma [14] reported no major clini-
cal benefit. In a study in which B cells were depleted as an 
adjunct to chemotherapy for B cell lymphoma, overall sur-
vival was increased despite a concurrent increase in the rate 
of secondary solid tumour development in B cell-depleted 
patients [15]. The long-term effects of B cell depletion 
remain to be established definitively.

Mouse models examining the role of B cells 
in anti‑tumour immunity

T cell anti‑tumour responses in B cell‑deficient mice 
(Table 1)

Studies conducted in B cell-deficient mice have generally 
suggested that B cells inhibit rather than enhance sponta-
neous anti-tumour immunity. Early studies using chronic 
administration of anti-mouse IgM to deplete B cells 
reported suppression of the growth of subcutaneous meth-
ylcholanthrene (MCA)-induced T-10 tumour cells [16], as 
well as a longer time to tumour development in the MCA-
induced skin carcinogenesis model [17]. Subsequent stud-
ies using genetically manipulated B cell-deficient mice 
such as μMT−/− (also known as Igh-6−/−) and JH−/− con-
firmed that the absence of B cells restricted tumour growth 
in a variety of tumour models. These included TS/A, an 
implantable mammary adenocarcinoma, J558L, a plasma-
cytoma, and CMS-5, a fibrosarcoma, all of which were 
rejected by μMT−/− but not wild-type mice vaccinated 
with irradiated tumour cells [18]. Increased proliferation of 
CD4+ T cells and cytotoxic activity of CD8+ T cells from 
μMT−/− mice was observed in response to immunisation 
with irradiated TS/A cells in this study, and the effect could 
be inhibited by adoptive transfer of B cells but not immune 
serum, suggesting direct effects of T-B collaboration on 
T cell function [18]. Vaccination with adenoviral vectors 
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expressing melanoma antigens prevented the growth of 
B16 melanoma in μMT−/− but not wild-type mice and was 
associated with increase in the magnitude and longevity 
of the tumour-specific effector T cell response [19]. Shah 
et  al. [20] showed that the growth of MC38 colon carci-
noma, EL4 thymoma and B16 melanoma was retarded in 
unvaccinated μMT−/− mice, and once again the effect was 
abrogated by adoptive transfer of B cells. Increased gran-
zyme B and IFN-γ expression and increased cytotoxic 
activity against MC38 targets were observed in T cells 
from μMT−/− tumour-bearing mice in this study [20]. The 
inhibitory effect of B cells on the T cell response to MC38 
tumour was dependent on B cell expression of OX40L, 
suggesting a role for T-B collaboration and Th2 differ-
entiation in the suppression of T-dependent anti-tumour 
effects [21]. Adoptive transfer of wild-type B cells also 
reversed inhibition of EMT-6 mammary tumour growth in 
μMT–/– mice [22]. In this case, the effect was associated 
with recruitment of regulatory T cells (Tregs) and B cells to 
the tumour and was independent of IL-10 [22]. In contrast, 
Inoue et  al. [23] concluded that IL-10 production by B 
cells was a major cause of decreased IFN-γ production and 
increased growth of EL-4 gag thymoma and D5 melanoma, 
but not MCA304 sarcoma, in wild type compared with 
μMT−/− mice. Finally, growth of 2 orthotopic squamous 
cell carcinoma (SCC) cell lines was reduced in JH−/− mice 
and correlated with increased CD8+ T cell infiltration [24].

In contrast to anti-tumour responses, T cell responses to 
immunisation with protein antigens are reduced in μMT−/− 
mice [25–27], and the effect is most pronounced for Th2 
differentiation [28]. Reduction in priming to tumour anti-
gens in chronically B cell-depleted animals has been shown 
for a Friend leukaemia virus-induced leukaemia [29].

Abnormalities in B cell‑deficient mice

While the field has gained a greater understanding of T cell 
and B cell tumour biology using the μMT−/− mice sys-
tem, it is important to remember that, from a clinical per-
spective, B cell-deficient mice do not model the situation 
in patients, whose B cell compartment remains relatively 
intact prior to and during cancer progression. Mice ren-
dered genetically deficient in B cells manifest several sec-
ondary immune abnormalities that may contribute to their 
tumour-resistant phenotype. Dendritic cell production of 
the T helper type 1 (Th1) cell-stimulating cytokine IL-12 
is increased in μMT−/− mice [30]. In addition to the direct 
Th1-augmenting effects of IL-12 on T cells, enhanced 
IL-12 production may decrease B cell germinal centre reac-
tions, reducing antibody affinity and the effect of normal B 
cell transfer into μMT−/− mice [31]. T cell receptor diver-
sity is also substantially reduced in μMT−/− mice, reflect-
ing the loss of thymic B cells [32]. B cell-deficient mice 
also have defects in myeloid cell subsets, including specific 
macrophage populations within the spleen [33].

B cell depletion models (Table 2)

Given the immune abnormalities in mouse models with 
lifelong B cell deficiency, it may be more useful to assess 
the roles of B cells in anti-tumour immunity using acute B 
cell depletion. The majority of such models use antibody 
depletion, often combined with chemotherapy or vaccina-
tion, and suggest that B cells make a positive contribution 
to tumour clearance in a therapeutic setting. In a B16F10 
melanoma model, acute B cell depletion using an anti-
CD20 mAb before tumour challenge decreased the number 

Table 1   Enhanced anti-tumour responses in B cell-deficient mice

Role of B cells Model Type of deficiency Immune response References

Negative T-10 fibrosarcoma Chronic depletion Spontaneous [16]

Negative MCA-induced carcinogenesis Chronic depletion Spontaneous [17]

Negative TS/A mammary carcinoma
J558L plasmacytoma
CMS-5 fibrosarcoma

Genetic knockout Vaccinated with irradiated tumour cells [18]

Negative B16 melanoma Genetic knockout Vaccinated with adenovirus expressing tumour antigen [19]

Negative EL4 thymoma
MC38 colon carcinoma
B16 melanoma

Genetic knockout Spontaneous [20]

Negative EL4 thymoma
MC38 colon carcinoma
EMT6 breast carcinoma

Genetic knockout Spontaneous [21]

Negative EMT-6 breast carcinoma Genetic knockout Spontaneous [22]

Negative D5 melanoma
EL4gag thymoma

Genetic knockout Spontaneous [23]

Negative PDSC5 and WDSC SCC lines Genetic knockout Spontaneous [24]
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of CD4+ and CD8+ T cell effector memory cells and the 
production of TNF-α and IFN-γ, while subcutaneous 
tumour burden and lung metastases were increased [34]. A 
second study in the B16 model used anti-CD20-mediated 
B cell depletion to demonstrate that tumour regression in 
response to inhibition of CD73 was at least partly B cell 
dependent [35]. In the orthotopic GL26 model of glioblas-
toma in which tumour-protective T cell responses were 
induced by treatment with an adenovirus vector encoding 
the cytotoxic molecule herpes simplex virus 1 thymidine 
kinase (HSV1-TK) plus the cytokine FMS-like tyrosine 
kinase 3 ligand (Flt3L), overall survival was reduced by 
anti-CD20 depletion of B cells or anti-CD49d/anti-LFA 
depletion of marginal zone B cells [36]. Survival of mice 
that rejected primary tumours was severely affected if B 
cells were depleted prior to secondary challenge, indi-
cating the importance of B cells for memory responses 
[36]. In addition, tumour control was also decreased in 
μMT−/−mice, in contrast to the results described above. It 
is possible that this difference is due to different effects of B 
cells in spontaneous anti-tumour responses, compared with 
those resulting from vaccination. By using Prdmflox/floxCD-
19Cre/+ mice in which antibody-secreting B cells expressing 
Blimp-1 are absent, Candolfi et  al. elegantly showed that 
B cell enhancement of the response to vaccination was not 
dependent on antibody production and was thus likely to 
reflect antigen presentation by B cells. In a model of Friend 
murine leukaemia virus-induced leukaemia, chronic B cell 
depletion via an anti-μ mAb decreased CD4+ and CD8+ 

T cell priming and cytotoxicity in response to vaccination 
with irradiated tumour cells or vaccinia virus-encoded anti-
gen [29]. However, survival of tumour-bearing mice after 
treatment with cyclophosphamide and adoptive transfer of 
T cells from tumour-vaccinated mice was unaffected by the 
presence of B cells, suggesting that B cell involvement was 
limited to the priming phase of the vaccination response. 
This positive effect of B cells was reproduced in μMT−/− 
and CD19−/− mice vaccinated with tumour antigen-loaded 
exosomes [37].

In contrast to the studies described above, acute B cell 
depletion with an anti-CD20 mAb was reported to improve 
control in multiple tumour models by Kim et al. [38]. The 
effect was greater when B cell depletion was combined 
with vaccination with an adenovirus encoding a tumour 
antigen.

B cells with regulatory function (Table 3)

Over the last decade, researchers have gained a greater 
understanding of the regulatory roles of B cells in 
chronic inflammation, autoimmunity and cancer. Reg-
ulatory B cell (Breg) function has been extensively 
reviewed previously [39], and only those aspects rel-
evant to anti-tumour responses will be discussed briefly 
below. The ability of Breg cells to interfere with protec-
tive anti-tumour immune responses has been shown to 
involve production of IL-10 in a chemical carcinogenesis 
(7,12-dimethylbenz[a]anthracene/tetradecanoyl phorbol 

Table 2   Modification of anti-tumour responses by B cell depletion

Role of B cells Model B cell manipulation Immune response References

Positive B16 melanoma Acute anti-CD20 Spontaneous [34]

Positive B16 melanoma Acute anti-CD20 Therapeutic inhibition of CD73 [35]

Positive GL26 glioblastoma Acute anti-CD20 depletion before tumour challenge AD-TK + Flt3L vaccination [36]

Positive FBL leukaemia Chronic anti-IgM Transfer of immune T cells [29]

Negative AB12 mesothelioma
TC1 and LKR lung cancer
EL4 thymoma

Acute anti-CD20 Spontaneous [38]

Negative TC1 lung cancer Acute anti-CD20 Ad.E7 vaccination [38]

Table 3   Evidence for 
regulatory B cells

Role of B cells Model B cell manipulation References

Negative DMBA-/TPA-induced carcinogenesis Genetic knockout [40]

Negative BL3750 lymphoma (CD20+) in WT or CD20−/− hosts Acute anti-CD20 [41]

Negative 4T1 breast carcinoma Genetic knockout [42]

Negative TRAMP prostate tumour B cell transfer [43]

Negative TRAMP prostate tumour
Myc-CaP prostate cancer

Genetic knockout [45]
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acetate (DMBA/TPA)) model of SCC [40] and in the 
BL3750 lymphoma model [41]. TGFβ-dependent, IL-
10-independent induction of Foxp3 expression in CD4+ 
T cells was dependent on Bregs in the 4T1 model of 
murine breast cancer [42].

Secreted products from B cells that do not have a Breg 
phenotype may also have effects on tumour growth in vivo. 
In the case of prostate cancer, promotion of castration-
resistant progression is at least partly dependent on a spe-
cific response of prostate epithelial cells to lymphotoxin 
derived from B cells [43, 44]. A recent report also impli-
cated TGFβ-dependent B cells (plasmablasts) expressing 
PD-L1 and secreting IgA and IL-10 in resistance of pros-
tate cancer to oxaliplatin chemotherapy [45]. These studies 
suggest that many different tumour-promoting mechanisms 
may be utilised by B cells in tumour models.

Summary of B cell studies

B cell infiltration in human cancer is generally associated 
with an improvement in prognosis. Many mechanisms have 
been postulated but little direct functional evidence is avail-
able. A negative effect of B cells on spontaneous T cell 
responses in tumour-bearing animals has been convincingly 
demonstrated, whereas B cells enhance the anti-tumour 
response in many murine studies of therapeutic vaccina-
tion. Overall, acute B cell depletion models may reflect 
human disease and therapeutic approaches more accurately 
than models reliant on lifelong genetic deficiency of B 
cells.

Antibodies in tumour immunity

Differences in the arrangement of the IgH locus 
in humans and mice

Human and mouse antibody isotypes differ in both their 
chromosomal arrangement and function. In the human 
IgH locus, the constant region genes (in order moving 
distally from the V, D and J segments) encode IgM, IgD, 
IgG3, IgG1, IgA1, IgG2, IgG4, IgE and IgA2. The cor-
responding order in mice is IgM, IgD, IgG3, IgG1, IgG2b, 
IgG2a, IgE and IgA. Because isotype switching removes 
all upstream C regions, sequential gamma chain switch-
ing in response to persistent antigen in humans will result 
in production of IgG4, an isotype that has been linked to 
regulatory effects [46]. In contrast, the most distal murine 
gamma chain gene is IgG2a, one of the most pro-inflamma-
tory isotypes [47]. This may be an important consideration 
when comparing chronic anti-tumour responses in mouse 
and man, along with the much shorter time frame in animal 
models.

Correlations between serum antibody isotype 
distribution and patient survival

Human IgG4+ B cells were reported to accumulate in 
melanoma tissue and their presence correlated with local 
IL-10 production, but not with a change in patient survival 
[48]. However, a relative increase in total (not tumour spe-
cific) serum IgG4 in patient serum was shown to correlate 
with decreased survival in this study, while there was a 
trend towards a positive correlation between serum IgG1 
(essentially equivalent to murine IgG2a in its functions) 
and increased survival [48]. IgG4 was also shown to inhibit 
IgG1-dependent monocyte killing of tumour cells in vitro 
[48]. In a second study, an increase in total serum IgG4 was 
seen in metastatic melanoma compared to primary disease, 
and high titres were more likely in advanced disease [49].

There is also evidence that IgE may be involved in 
tumour clearance. In patients with pancreatic cancer, 
serum IgE was significantly increased and specific anti-
body-dependent cytotoxicity against pancreatic cancer 
cells could be demonstrated in  vitro [50]. Enhanced sur-
vival of patients with glioma has also been associated with 
increased serum levels of IgE [51]. IgG4 has been shown 
to inhibit IgE-dependent pro-inflammatory functions 
mediated via IgE receptor Fc epsilon RI (FcεRI) and IgE 
receptor Fc epsilon RII (FcεRII) [52], suggesting a possi-
ble mechanism for the poor outcomes associated with high 
serum IgG4.

Effects of human tumour‑reactive antibodies

Numerous reports have identified tumour-specific antibod-
ies in the serum of cancer patients [53]. Most anti-tumour 
antibody detection methods, including serological iden-
tification of antigens by recombinant expression cloning 
(SEREX), were designed to detect switched IgG antibod-
ies, indicative of CD4+ T cell involvement and possibly 
Treg induction directed against the same tumour antigen 
[54]. Relatively few studies have attempted to assess the 
effects of spontaneous tumour-specific antibody responses 
on patient survival. In a study of pancreatic cancer, the 
serum titre of antibodies specific for MUC1, a membrane-
tethered mucin glycoprotein whose glycosylation is fre-
quently altered in tumour cells, served as a prognostic 
marker of increased survival, independent of tumour stage 
[55]. In melanoma, no association between prognosis and 
antibody to at least one of a large panel of tumour antigens 
was found, although for a minority of individual tumour 
antigens, the prognosis was worse for patients with detecta-
ble serum antibody, excluding those with metastatic disease 
[56]. In colorectal carcinoma patients who had undergone 
complete resection, a correlation between tumour-spe-
cific antibody and worse prognosis was reported [57]. In 
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contrast, serum Abs produced by infiltrating B cells could 
not be detected in ovarian cancer [6]. In advanced mela-
noma patients treated with the CTLA-4-reactive mAb ipili-
mumab, antibodies specific for the tumour testis Ag NY-
ESO-1 correlated with clinical benefit, although the effect 
could not be separated from that of enhanced CD8+ T cell 
involvement [58].

Tumour‑reactive antibodies in mouse models (Table 4)

To pinpoint the precise effects of tumour-specific anti-
bodies, as opposed to tumour-specific B cells, hybridoma 
technology has been used to generate mAbs for adminis-
tration in murine tumour models. Early studies using ther-
apeutic administration of TA99, a mouse IgG2a isotype 
mAb specific for the melanoma Ag gp75, demonstrated 
positive effects against subcutaneous and metastatic 
B16F10 tumours [59]. Subsequent studies comparing 
the effect of antibodies of the same specificity but differ-
ent isotypes indicated that IgG2a, and to a lesser extent 
IgG2b, protected mice from lung metastases after intra-
venous tumour cell inoculation, while IgG1 and IgG3 did 
not [60]. This phenomenon is due to the intrinsic func-
tions of different Fc receptors (FcR) and has recently 
been reported to involve neutrophil-mediated cytotoxic-
ity [61]. In addition, mAbs directed to tumour Ags may 
have different effects in vivo compared to in vitro due to 
changes in Ag expression. For example, gp75 is poorly 
expressed on the surface of cultured B16 cells, but is 
highly expressed in vivo [62].

Tumour-specific antibodies are particularly effective 
in metastasis models. These include the commonly used 
B16F10 melanoma model [60], MCA 205 fibrosarcoma 
and D5 melanoma [63] and a human HCC-97H hepatocel-
lular carcinoma in nude (T cell-deficient) mice [64]. Sev-
eral laboratories have also reported efficacy of antibodies 
against subcutaneous tumours. When combined with adju-
vanted peptide vaccination, administration of TA99 was 
able to eradicate a proportion of subcutaneous B16F10 
melanomas [65]. A vaccine against gastrin-releasing pep-
tide (GRP) protected against growth of GRP-expressing 
RM-1 prostate cancer subcutaneous tumours and lung 
metastases, and immune serum could transfer partial pro-
tection [66]. In immunodeficient animal models, adminis-
tration of purified anti-tumour antibodies was able to inhibit 
the growth of human pancreatic and colorectal cancer lines 
[67] and human ovarian cancer xenografts [68]. Recent 
studies of the anti-tumour effects of human IgE have made 
use of transgenic mice expressing the human high affinity 
FcεRI required for IgE isotype-dependent functions [69]. 
A human IgE specific for prostate-specific antigen (PSA) 
slowed the growth of CT26 prostate cancer cells expressing 
human PSA [70].

In many cases, the effects of B cells and antibody in 
mouse models have not been separated using techniques 
such as serum transfer or specific inactivation of antibody 
production. Studies that demonstrated an effect against 
metastases include that of Sorrentino et  al., who showed 
that growth of B16F10 lung metastases was enhanced 
in μMT−/− mice, as were concentrations of IL-10 and 

Table 4   Evidence for tumour antigen-specific antibody effects

Role of antibody Model Antibody isotype Additional therapy Reference

Positive B16 melanoma IgG2a Nil [59]

Positive B16 melanoma IgG2a > IgG2b (not IgG1, IgG3) Nil [60]

Positive B16 melanoma IgG2a Nil [61]

Positive B16 melanoma IgG2a Anti-VEGF receptor [62]

Positive MCA205 fibrosarcoma
D5G6 melanoma

IgG2b Chemotherapy or irradiation [63]

Positive HCC-97H human hepatocellular  
carcinoma

Unspecified Nil [64]

Positive B16 melanoma IgG2a Peptide vaccine [65]

Positive RM1 prostate carcinoma (GRP- 
dependent growth)

Unspecified GRP-vaccine [66]

Positive AsPC-1 human pancreatic carcinoma Human IgG1 Nil [67]

Positive Human ovarian carcinoma IgE (not IgG1) Transfer of human lymphocytes [68]

Positive TSA-LACK mammary carcinoma Human IgE Vaccination, humanised FcεRIα-
transgenic

[69]

Positive CT26 prostate carcinoma expressing 
human PSA

Human IgE Vaccination, humanised FcεRIα-
transgenic

[70]

Negative K14-HPV16 transgenic SCC IgG1, IgG2a Nil [76]

Negative K14-HPV16 transgenic SCC IgG1, IgG2a Nil [77]
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TGFβ in bronchoalveolar lavage [71]. Adoptively trans-
ferred B cells were protective, especially after activation 
with CpG–ODN [71], and this effect was also seen in T 
cell-deficient hosts [36]. In the 4T1 breast cancer model, 
tumour-specific IgG antibody produced after in vitro stim-
ulation of in  vivo primed B cells was shown to mediate 
in vitro complement-dependent tumour cell lysis [72]. In 
a second mammary carcinoma model, targeting human 
HER2/neu to B cells via a CD19 single chain variable 
fragment led to mixed IgG1, IgG2a and IgG2b antibody 
responses capable of activating complement and inhibiting 
human breast cancer cell growth in vitro [73]. Administra-
tion of the B cell-targeted fusion protein also inhibited the 
in vivo growth of subcutaneous D2F2/E2 mammary carci-
noma cells expressing human HER2/neu [73]. In a second 
study in the D2F2/E2 model, administration of a human 
anti-HER2/neu IgE mAb prolonged survival of mice 
expressing the appropriate human Fc receptor, FcεR1α, 
after intraperitoneal administration of D2F2/E2 tumour 
cells [74].

Recently, it has been suggested that the in  vivo con-
centration of tumour-reactive antibodies may significantly 
affect whether they contribute to tumour progression or 
clearance [75]. These studies in the MC38 colon carci-
noma model showed that polyclonal antisera specific for 
the Neu5Gc tumour Ag enhanced tumour growth at low 
concentrations but were inhibitory at higher concentrations. 
Higher avidity antibodies required lower concentrations for 
inhibitory effect.

Antibody effects during cancer initiation

In a well characterised mouse model of virally induced 
SCC, immune complexes containing viral antigen were 
shown to be the primary drivers of chronic inflammation, 
which in turn strongly predisposed to malignancy [76]. 
Malignant transformation was dependent on the presence 
of both antibody and FcRγ, which contributed directly to 
chronic skin inflammation [77] and a shift in macrophage 
phenotype from M2 to the more pro-inflammatory M1 
[78]. Interestingly, the predominant isotype deposited 
in pre-neoplastic skin was mouse IgG1, which is poorly 
bound by activating FcγRs, and is not generally regarded 
as a pro-inflammatory isotype. Thus, the lower amounts of 
highly pro-inflammatory mouse IgG2a may be the major 
drivers of carcinogenesis in this model. While antibod-
ies have a clear role in progression in this mouse model 
of SSC, B cell infiltration of tumours was not observed, in 
contrast to human head and neck SSC where the presence 
of peritumoural B cells correlated with increased survival 
[8]. Whether this difference is related to differences in spe-
cies, oncogenic drivers or the stage of cancer progression 
remains to be determined.

Summary of antibody studies

Overall these data suggest that tumour-specific antibodies 
may have diverse roles in anti-tumour immunity. The rela-
tive amounts of each antibody isotype and their affinity, the 
stage of tumour progression and the tumour cell surface Ag 
expression are all factors that should be considered when 
evaluating the efficiency of antibody protection in tumour 
models. Antibody-dependent effects may also be influenced 
by the number and type of in situ FcR-expressing cells.

It is likely that the isotype and concentration of tumour-
specific antibodies reflect the strength and status of the 
CD4+ T cell response. Antibody may play an atypical role 
in driving malignant transformation in some cancers, but 
at the later stages of cancer progression, antibodies appear 
to have similar effects to those in other chronic immune 
responses.

Conclusions

At first glance, it appears that B cells play fundamen-
tally different roles in spontaneous anti-tumour immunity 
in mouse and man. They are generally associated with 
improved outcomes in clinical disease, and yet often pro-
duce worse outcomes in mouse models. Many hypoth-
eses have been advanced to explain this apparent paradox, 
including differences between human and mouse immune 
systems, differences between the responses to naturally 
occurring and transplantable tumours and the artificiality of 
genetically modified mouse models that affect B cell via-
bility and function.

Our view is that the differences between the conclusions 
drawn from human and mouse studies can be accommo-
dated within a single model if the problem of anti-tumour 
immunity is considered from the wider perspective of how 
normal immune responses are regulated (Fig.  1). Despite 
the current emphasis on distinct types of immune response 
(Th1, Th2, Th17) and on responses involving only a sin-
gle arm of the adaptive response (CD4+ vs CD8+ T cells, 
CD8+ T cells vs B cells), most natural immune responses 
include a mixture of cell types, cytokines and differentia-
tion states. It is highly unusual to see immune responses 
that do not simultaneously involve antigen-specific 
responses by CD4+, CD8+ and B cells (although not all 
may contribute equally to pathogen clearance, autoim-
munity or tumour control). When patients make spontane-
ous immune responses to their tumour, it is highly likely 
that all three cell types are involved. Whether or not all cell 
types are then recruited into primary tumour or metastases 
is not necessarily a direct reflection of their initial involve-
ment in the anti-tumour response. Indeed, the presence of 
CD4+, CD8+ and B cells within tertiary lymphoid follicles 
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in tumours such as melanoma is likely to reflect chronicity 
of response, which is also associated with the presence of 
ectopic lymphoid tissue in chronic anti-pathogen responses 
and autoimmunity [79]. Not only is the immune response in 
most mouse tumour models of much shorter duration, but 
laboratory studies usually measure the functional immune 
response in lymph nodes and spleen, rather than document-
ing infiltration of different immune cells into the tumour.

Mouse models in which B cells are present when T cells 
are first primed against the tumour usually show detectable 
immune deviation away from the type 1 response that is 
highly effective in clearing most tumours. This phenom-
enon is not restricted to anti-tumour responses, but is a gen-
eral property of T cell priming in the context of active T-B 
collaboration in both mouse and man. Published reports 
have focussed on those examples where this degree of 
immune deviation has significant effects on tumour growth 
in mice. However, this does not imply that effective anti-
tumour immune responses cannot also be mounted by nor-
mal immune systems containing B cells—only that they 
may have been even more effective had B cells been artifi-
cially absent during priming.

In patients who have already made an anti-tumour 
response at presentation, the question of whether the 
response would have been stronger if B cells had not been 
present is not clinically relevant. How preclinical stud-
ies of B cells inform therapeutic options at this stage then 
involves two questions: are B cells currently exerting a 
positive or negative effect in patients who have already 

mounted an anti-tumour response and will B cells exert a 
positive or negative effect in relation to future therapy?

Interestingly, in mouse models in which anti-tumour 
responses are modulated by vaccination, most studies have 
shown that B cell depletion has a negative effect, which 
may be related to enhanced B cell-dependent presenta-
tion of vaccine rather than naturally tumour-derived anti-
gen. Acute B cell depletion during chronic anti-tumour 
responses is also detrimental in most cases. While this 
appears to run counter to the concept of Breg effects in 
cancer, B cell depletion removes both positive and negative 
effects of different B cell subsets. It is not yet clear whether 
targeted depletion of regulatory but not conventional B 
cells would be more beneficial and whether this will be 
possible in the clinic.

The effects of anti-tumour antibody in both mouse and 
man are dependent on isotype and rely on the same immune 
components, including FcRs and accessory cells such as 
neutrophils, monocytes and macrophages. The major spe-
cies difference is that repeated isotype switching within 
IgG subclasses in humans generates IgG4, an isotype with 
regulatory function rather than the pro-inflammatory IgG2a 
isotype generated in mice. However, the relative impor-
tance of this difference in tumour immunity is unclear, par-
ticularly as IgG4 is a relatively minor component of human 
serum IgG.

In summary, there is little evidence to support B cell 
depletion as an immunoenhancing therapy in human non-B 
cell cancer. While priming of type 1 immune responses that 

Fig. 1   Mechanisms by which B 
cells affect tumour growth Blood

Antibodies associated
with tumour clearance
•Human IgG1
•Mouse IgG2a

Antibodies associated 
with regulatory effects
•Human IgG4

B cell

B

B

T

Tumour Tissue

Positive prognosis 
associated with B cell 
infiltration into human 
tumours

Possible mechanisms:
•Local antibody 
production
•Antigen presentation
•Marker of IFNγ
production

B T

B

T
B

T

T

Secondary Lymphoid Organs 

Presence of B cells during T 
cell priming attenuates Type 1 
response – mechanism 
unknown

Regulatory cytokines
• IL-10
• TGFβ
• Lymphotoxin

B

B T

T



893Cancer Immunol Immunother (2016) 65:885–896	

1 3

produce IFN-γ and cytotoxic function is more efficient in 
the complete absence of B cells, evidence from many dif-
ferent models indicates a positive role for B cells in main-
taining and enhancing anti-tumour immunity in both mouse 
and man.
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