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Abstract Tumor immune escape plays a critical role in
cancer, but the mechanisms involved in this process have
still to be deWned. In the recent years, progress has been
made in understanding how peptides presented by MHC
class I molecules were generated, in particular which prote-
ases are involved in this process and how intracellular
pathways inXuence antigen presentation in professional
antigen-presenting cells and in various types of malignan-
cies. DiVerent MHC class I abnormalities have been found
in solid tumors of distinct origin, but also in hematopoietic
diseases. These include structural alterations such as total,
haplotype and allelic loss of the MHC class I heavy chain,
deletions and point mutations, in particular in �2-micro-
globulin and TAP1 as well as dysregulation of various
components of the MHC class I antigen processing
machinery (APM), which could occur at the epigenetic,
transcriptional and posttranscriptional level. The lack or
downmodulation of the expression of single or multiple
components of the MHC class I antigen processing path-
way may avoid the recognition of tumor cells by tumor-
speciWc CD8+ cytotoxic T lymphocytes. This review will
give an overview of the underlying molecular mechanisms
of MHC class I abnormalities in human tumors of distinct
histology, which also might have an impact on the design
of T cell-based immunotherapies.

Keywords Antigen processing · Gene regulation · 
Immune escape · MHC class I · Tumors

Abbreviations
Aa Amino acid
APC Antigen-presenting cell
APM Antigen processing machinery
APN Aminopeptidase N
BLH Bleomycin hydrolase
�2-m �2-microglobulin
LOH Loss of heterozygosity
CSF Colony-stimulating factor
CTL Cytotoxic T lymphocytes
DAC 2�5�Desoxyazacytidine
DC Dendritic cells
ER Endoplasmic reticulum
ERAP ER aminopeptidase associated with antigen 

processing
GM-CSF Granulocyte-macrophage colony stimulating

factor
HC Heavy chain
HNSCC Head and neck squamous cell carcinoma
IFN Interferon
IL Interleukin
LAP Leucin aminopeptidase
LMP Low molecular weight proteins
LOH Loss of heterozygosity
Luc Luciferase
MHC Major histocompatibility complex
NK Natural killer
PA Proteasome activator
PDI Protein disulWde isomerase
PLC Peptide loading complex
RCC Renal cell carcinoma
TAP Transporter associated with antigen processing
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TGF Transforming growth factor
Tpn Tapasin
TPPII Tripeptidyl peptidase II
TSA Trichostatin A
VPA Valproic acid

Introduction

Tumor development is a multifactorial process, which
involves various genetic alterations including the activation
of oncogenes, inactivation of tumor-suppressor genes as well
as modiWcation of immunosurveillance molecules resulting
in an aberrant cell cycle control, instability of genomic integ-
rity and induction of tolerance. Therefore, the tumor host
interaction is regulated by a Wne balance between profes-
sional antigen presenting cells (APC) like dendritic cells
(DC), B cells and macrophages, other immune eVector cells
including T lymphocytes, NK cells, regulatory T cells and
NKT cells as well as tumor cells [13]. Furthermore, the
tumor stroma, in particular endothelial cells, and the tumor
microenvironment play a key role in this process [14, 60].

So far, there exist three lines of evidence of cancer immu-
nosurveillance. These include (1) an increased incidence
of non-viral tumors in immunosuppressed transplanted
patients, (2) a high frequency of immune cell inWltration
within the tumor and (3) the development of innate and
acquired immune responses leading to spontaneous tumor
regression. However, it is noteworthy that the immune sys-
tem has two activities. On one hand the tumor growth could
induce anti-tumor immune responses due to the presentation
of tumor antigens to CD8+ cytotoxic T lymphocytes (CTL),
whereas on the other hand highly eYcient immune
responses could result in cancer progression due to selection
of immune escape variants, which could not be recognized
by immune eVector cells [4, 10, 33, 57].

The complex MHC class I antigen processing pathway

MHC class I molecules display antigenic peptides on the
cell surface, which are monitored by the immune system.
When MHC class I surface antigens present self-antigens,
immune tolerance is induced, whereas presentation of non-
native antigens such as antigens derived from either trans-
formed or viral proteins results in CD8+ CTL-mediated
lysis. Total loss of MHC class I surface antigens caused an
insensitivity of CTLs to recognize and lyse tumor cells,
whereas downregulation of MHC class I surface expression
decreased CTL eYcacy. In contrast, NK cells have the
capacity to eliminate MHC class I-negative tumor cells.
Thus, for a proper T cell recognition, an eVective MHC
class I antigen processing and presentation is required.

The processes relying on MHC class I surface expres-
sion such as T cell development, DC-mediated cross
presentation and NK cell responses are pursued by the
complex MHC class I antigen processing and presentation
machinery (APM), which has been well characterized dur-
ing the last two decades (Fig. 1). It consists of four major
steps: (1) peptide generation/trimming; (2) peptide trans-
port; (3) MHC class I assembly and (4) antigen presentation
[26, 66]. In order to Wt into most MHC class I molecules,
antigenic peptides must have a length of 8–10 amino acids
(aa) [35], although certain MHC class I molecules can
admit peptides with a length of 11 and more aa residues
[46]. It has been established that the multicatalytic protea-
some is responsible for the generation of the majority of
antigenic peptides [17], which is tightly controlled and
plays an important role in protein homeostasis. BrieXy,
endogenously synthesized proteins were ubiquitinated and
then subjected to degradation by the multicatalytic protea-
some complex. In this process in particular, the interferon
(IFN)-�-inducible proteasome subunits, the low molecular
weight proteins (LMP) 2, 7 and 10 are involved. The pro-
teasome yields peptide fragments ranging from 2 to 25 resi-
dues with a correct C-terminus, whereas the N-termini are
further trimmed by peptidases localized in the cytosol.
Indeed, several cytosolic peptidases such as the tripeptidyl
peptidase II (TPPII), the bleomycin hydrolase (BLH), the
puromycin-sensitive aminopeptidase and the IFN-�-induc-
ible leucine aminopeptidase (LAP)3 play a role in trimming
of the N-extended proteasome products [23]. In addition, a
trimming could also occur in the endoplasmic reticulum
(ER) mediated by the ER aminopeptidase associated with
antigen processing (ERAP) 1 and 2 [9, 15, 21, 22, 53].
After cytosolic cleavage of antigens, the peptides are then
transported via the ATP-dependent heterodimeric trans-
porter associated with antigen processing (TAP)1 and
TAP2 into the ER. TAP preferentially transports peptides
with a length of 8–16 residues and is more eYcient in trans-
location N-extended precursors than mature epitopes [18,
61]. In the ER, the MHC class I heavy chain (HC) and
�2-microglobulin (�2-m) assembly occurs, which is coordi-
nated by the chaperones calnexin, tapasin (tpn), calreticu-
lin, protein disulWde isomerase (PDI) as well as the thiol
oxidoreductase ERp57, a member of the PDI protein family
that collectively form the multimeric peptide-loading com-
plex (PLC). tpn, ERp57 and/or PDI are required for the sta-
bilization of TAP and involved in peptide loading onto
MHC class I molecules by regulating the redox state of a
disulWde bound in the peptide-binding groove of the MHC
class I HC [5, 7, 32, 52]. Upon peptide loading, the PLC
dissociates and the trimer consisting of the MHC class I
HC, �2-m and antigen is released and transported via the
trans Golgi to the cell surface and there exposed to the
CD8+ CTL.
123



Cancer Immunol Immunother (2008) 57:1719–1726 1721
Physiological expression and regulation of MHC class I 
APM components

MHC class I antigens and the various APM constituents are
constitutively, but heterogeneously, expressed in all normal
tissues and cell lines, but not expressed in embryonic cells,
testes and ovaries. Under physiological conditions, the
expression of the MHC class I APM components might be
regulated in a tissue-speciWc, diVerentiation-dependent, cell
cycle-controlled manner and modulated by the microenvi-
ronment, thereby altering the repertoire of T cell epitopes
presented. Indeed, an association between MHC class I
APM component expression and cell cycle has been dem-
onstrated for TAP1 and LMP2 mRNA [1], which might be
due to p53 expression [68]. Regarding the diVerentiation
dependence, there exist a distinct APM expression pattern
in immature and mature DC. The LMP subunits were
highly expressed in immature DC when compared to
mature DC. In contrast, an inverse expression was found
for the components mainly involved in antigen presenta-
tion, such as the MHC class I HC, �2-m, tpn and the TAP1/
TAP2 heterodimer, which is more pronounced in the

mature DC than in their immature counterparts [34]. This
was further extended by a distinct expression pattern of
TPPII, BLH and ERAP1 and 2. These data demonstrate
a diVerentiation-dependent APM component regulation,
reXecting the major functional activity of DCs during the
maturation process (Fig. 2). In addition, there exists an
extremely heterogeneous APM component expression in
diVerent embryonal carcinoma (EC) cell lines, which might
be also linked to the distinct diVerentiation status of EC
cells analyzed. Furthermore, the induction of diVerentiation
of tumor cells and/or EC cells by retinoic acid (RA; [63,
64], Seliger, personal communication) as well as modula-
tion of the epigenetic control mechanisms by demethylating
and deacetylating agents, such as valproic acid (VPA) and
trichostatin A (TSA), respectively, are able to alter the
expression of some, but not all, MHC class I APM compo-
nents. Besides the eVect of diVerent substances on the APM
components, stress parameters including heat shock, irradi-
ation and oxidative stress could also modulate their expres-
sion [12, 48].

Furthermore, the major MHC class I APM component
expression could be either upregulated by diVerent cytokines

Fig. 1 Schematic diagram of 
MHC class I antigen processing 
machinery (APM) and steps 
deWcient in tumors. Ubiquitinat-
ed proteins are cleaved into 
peptides by the proteasome and 
further trimmed by cytosolic 
peptidases. The peptides are then 
transported via the TAP hetero-
dimer from the cytosol into the 
ER. In the ER, MHC class I 
heavy chain (HC) and �2-m, 
assisted by the chaperones 
calnexin and calreticulin, are 
stabilized and associate. 
A multimeric peptide loading 
complex (PLC) consisting of the 
TAP subunits, MHC HC, �2-m, 
tpn, calreticulin and ERp57 is 
yielded. Upon peptide loading, 
the PLC dissociates and the 
peptide/MHC class I/�2-m 
complex is transported via the 
trans-Golgi to the cell surface 
(a). The open symbols mark the 
MHC class I APM components, 
which have been found to be 
structurally altered, or 
dysregulated in tumor cells (b)
123



1722 Cancer Immunol Immunother (2008) 57:1719–1726
like IFNs, tumor necrosis factor (TNF)-�, granulocyte mac-
rophage colony stimulatory factor (GM-CSF) and interleu-
kin (IL)-4 or downregulated by IL-10 [19, 20, 44, 67]. The
most potent stimulator of the APM component expression
is IFN-�, which upregulates the expression of the LMP sub-
units, the proteasome activator (PA)28, TAP1, TAP2, tpn,
MHC class I HC, �2-m, ERAP1, ERAP2 as well as LAP3.
So far, no eVect of this cytokine was found on the expres-
sion of calnexin, calreticulin, ERp57 and PDI. It is note-
worthy that there exist also synergistic eVects of treatment
combinations in particular for IFN-� and IFN-�, which
strongly enhanced MHC class I APM component expres-
sion when compared to a single treatment.

Defects of MHC class I antigens and �2-m in tumors

It has been demonstrated that human tumors of distinct his-
tology express low or downregulated MHC class I surface
antigens, which could be due to modulation and/or inhibi-
tion of the expression of various MHC class I APM compo-
nents [2, 6, 58]. The distinct frequency of MHC class I
abnormalities is caused by total HLA class I antigen loss,
HLA class I down-regulation as well as loss or down-regu-
lation of HLA class I allo-speciWcities [5, 40]. However, the
frequency and mode of these defects signiWcantly varied
between the types of tumors analysed and could be associ-
ated in some cases with microsatellite instability [3, 25].
Mutations or deletions in �2-m were detected in colon car-
cinoma (21%), melanoma (15%) and other tumors (<5%)
[58]. So far, no mutations in �2-m have been found in RCC
lesions, bladder and laryngeal tumors despite MHC class I
loss or downregulation [3, 15, 51]. The �2-m mutations
described, in particular in melanoma and colon carcinoma,

were detected on one copy of the gene due to a bp substitu-
tion or deletion, suggesting a hot spot in this region. This
alteration is accompanied by a loss of the second wild-type
gene due a total or partial loss of chromosome 15 [43].
Concerning the haplotype-speciWc loss, this has been asso-
ciated with loss of heterozygosity (LOH) on chromosome
6p21. It has been detected in diVerent tumors and tumor
cell lines, but occur with a diVerent frequency [27]. For
example, haplotype loss was found in head and neck squa-
mous cell carcinoma (HNSCC) with a frequency of 36%,
whereas in renal cell carcinoma (RCC) LOH only occurs in
approximately 12% of tumor lesions analyzed [36]. Since
mainly total tumor lesions have been examined, the fre-
quency of LOH might be underestimated. Using a combina-
tion of immunhistochemistry with molecular analyses and
microdissection allowed the proper detection of such altera-
tions [45]. The locus-speciWc MHC class I downregulation,
which results in lack of the sensitivity to HLA-restricted
CTL-mediated lysis, has been demonstrated in colorectal
carcinoma, cervical and laryngeal carcinoma as well as in
melanoma. It could be caused by the loss of transcription
factor binding due to oncogenic or viral transformation by
HPV16 E6, ras, HER-2/neu and myc, respectively [3, 49].
Allele-speciWc loss of MHC class I antigens in tumors can
be mediated by structural alterations in the MHC class I
HC, in particular in HLA-A11, -A2, -A42 and HLA-B15
and have been mainly described in colon carcinoma, mela-
noma and cervical cancer.

Altered MHC class I APM component expression

Besides abnormalities of MHC class I antigens, downregu-
lation of APM components such as LMPs, TAP and tpn
could result in deWcient MHC class I surface expression.
Whereas for example MHC class I HC and �2-m is not
aVected in RCC, a strong downregulation of LMP2, LMP7,
TAP and tpn was found in this tumor entity. Furthermore,
the frequency of APM deWciencies diVered between the
RCC subtypes analyzed and was more pronounced in meta-
static lesions when compared to the primary tumor [54, 55].
In some cancers, MHC class I deWciencies correlated with
increased disease stage and/or a reduced survival rate of
patients suggesting that APM abnormalities are of clinical
relevance [38, 39, 47, 65]. These defects are further associ-
ated with a diminished sensitivity to CTL-mediated lysis,
but lack of destruction by NK cells. In most cases, this
phenotype is IFN-� inducible.

Concerning chaperones, only little information is avail-
able regarding the expression pattern of tpn, calnexin,
calreticulin, ERp57 and PDI in human tumors compared to
the normal counterpart. This could be reXected by either the
lack of analyses of these components or by the low

Fig. 2 DiVerential APM component expression during the diVerentia-
tion process of DC and its functional association. Protein from imma-
ture and mature DCs was extracted and subjected to Western blot
analysis using anti-APM component-speciWc antibodies [24]. A dis-
tinct APM component expression was found in immature and mature
DCs
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LMPs
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frequency and signiWcance of such deWciencies. So far,
calreticulin and PDI expression appeared to be unaltered in
all tumor samples analyzed, whereas loss or downregula-
tion of calnexin has only been detected in cervical carci-
noma [49]. Monitoring of ERp57 has not yet been
performed. A downregulation of tpn was detected in RCC,
melanoma, neuroblastoma, hepatocellular carcinoma as
well as in HNSCC.

Underlying molecular mechanisms of MHC class I 
APM component abnormalities

The molecular mechanisms underlying the MHC class I
APM component downregulation could occur at diVerent
levels including structural alterations and dysregulation due
to epigenetic control, and transcriptional and posttranscrip-
tional modulation. So far, with the exception of the MHC
class I HC and �2-m, structural alterations have been
detected in the TAP1 subunit in small cell lung carcinoma,
melanoma and cervical carcinoma [11, 56, 58], but appear
to be a rare event. In addition, we have recently identiWed
mutations in tpn and/or LMP subunits in neuroblastoma
and in melanoma (Seliger et al., unpuplished data). These
mutations were either point mutations or bp deletions.
Based on the low frequency of sequence abnormalities, it
has been suggested that APM components are mainly regu-
lated at the epigenetic, transcriptional and/or posttranscrip-
tional level in human tumors. In this context, it is also
noteworthy that there can exist a loss of MHC class I APM
inducibility by IFN, which could be caused by diVerent
defects in the IFN signal transduction cascade [50]. In order
to determine the diVerential regulatory mechanisms of het-
erogeneous APM component expression, a number of dis-
tinct strategies were employed. First, the various APM
promoters were cloned and hooked to the luciferase (luc)
reporter gene (Fig. 3). These APM promoter luc constructs
were then transiently transfected into human tumor cell
lines of distinct origin. Heterogeneous APM promoter
activities were detected in the tumor cell lines analyzed
suggesting a transcriptional and/or a posttranscriptional
regulation of APM component expression depending on the
tumor cell line analyzed. This is representatively shown for
the dual TAP1/LMP2 promoter activity in selected mela-
noma cell lines (Fig. 4). The diVerential promoter activity is
in line with the downregulation or lack of APM component
mRNA and/or protein expression. In addition, in some
esophageal squamous cell carcinoma, colon carcinoma,
RCC and melanoma cell lines, epigenetic changes like
methylation and histone deacetylation of APM components
and/or tumor antigens was found, which could be reverted
by treatment with DAC or histone deacetylase inhibitors
[31, 37, 42, 59] (Seliger, unpublished). Methylation of the

tpn and/or TAP2 promoter has been demonstrated in mela-
noma and RCC cell lines. However, treatment of RCC and
melanoma cells with DAC enhanced or even reconstituted
not only TAP2 and tpn, but also TAP1 mRNA and protein
expression suggesting that transcription factors regulating
the TAP1 promoter activity become demethylated, but
these factors still have to be deWned.

Fig. 3 Strategy used for determination of APM promoter activity.
Upon cloning of the APM promoters, they were linked to the luciferase
(luc) gene (APM-luc), and these APM promoter luc constructs were
then transiently transfected into the respective tumor and/or control
cell lines. The cells were either left untreated or treated with IFN-�
before the luciferase activity was determined. The results were
expressed as luc activity
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Fig. 4 Transcriptional and posttranscriptional regulation of the TAP1/
LMP2 promoter activity in distinct melanoma cells The dual TAP1/
LMP2 promoter was transfected into diVerent melanoma cell lines and
the TAP1/LMP2 promoter activity was determined. A heterogeneous
promoter activity was found in the melanoma cell lines tested
exhibiting either a coordinated or discordant regulation of the TAP1/
LMP2 activity. The striped bars represent the LMP2 ! TAP1 pro-
moter activity; the open bars the TAP1 ! LMP2 promoter activity
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Association of peptidase expression with HLA class I 
surface expression

It has been recently suggested that peptidases, in particular
amino- and ectopeptidases, modulate the anti-tumor T cell
responses. These peptidases could be found in the cytosol,
in the ER as well as at the cell surface. A failure to custom-
ize the peptide MHC class I repertoire has profound immu-
nological consequences [26]. A distinct expression pattern
of both cytosolic as well as ER-resident peptidases have
been described in some tumors, but so far only a few tumor
samples and/or tumor cell lines have been analyzed [16].
The aberrant expression of these peptidases might have an
inXuence on the antigen repertoire presented by MHC class
I surface expression. Therefore, we determined the expres-
sion pattern of BLH, TPPII, THOP1, ERAP1 and ERAP2
in a large series of RCC as well as melanoma cell lines. A
heterogeneous mRNA and/or protein expression proWle of
these peptidases was detected in the diVerent tumor cell
lines analyzed, but the role and the underlying molecular
mechanisms of their diVerential expression pattern are still
to be determined. Concerning the membrane-bound amino-
peptidases, the expression of aminopeptidase N(APN)/
CD13 in the context of MHC class I association was moni-
tored. Besides its distinct expression in many human
tumors [28–30, 41, 62], overexpression of APN in MHC
class I-negative colon carcinoma cells results in an
increased MHC class I surface expression, which is directly
associated with the increase of the transcription and transla-
tion of the major APM components including MHC class I
HC, �2-m, TAP1, TAP2, tpn as well as the LMP subunits
(Seliger, personal communication). Furthermore, this APN-
mediated upregulation of MHC class I surface expression
was associated with an enhanced recognition by CD8+

CTL.

Perspectives

As summarized in this article MHC class I abnormalities
occur at a high frequency in human tumors and were often
associated with the metastatic potential of disease and with
patients’ survival. This might be due to a reduced host anti-
tumor immune response based on the resistance of tumor
cells to T cell-mediated lysis. The underlying molecular
mechanisms of such deWciencies are diverse and include
structural alterations and/or dysregulation, which could
occur at each diVerent step of the MHC class I APM. The
data suggest that the assessment of the structure, expression
and/or regulation of MHC class I APM components might
identify patients at risk for metastatic dissemination and
might allow the proper selection of patients undergoing
speciWc immunotherapies. Therefore, prospective studies

have to be performed to validate the prognostic value as
well as the study inclusion criteria of patients selected for
immunotherapies for MHC class I abnormalities. However,
this might be diYcult to perform since in most studies the
patients� follow-up is often not available and only small
numbers of tumor samples have been analyzed in this con-
text, minimizing the statistical power of such approaches.
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