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Abstract Recent clinical data support ideas of Pro-
grammed death receptor-ligand 1 (PD-L1; also
called B7-H1, CD274) playing an important role in
immune evasion of tumor cells. Expression of PD-L1
on tumors strongly correlates with the survival of
cancer patients. PD-L1 on tumors interacts with the
co-inhibitory molecule Programmed death receptor-1
(PD-1, CD279) on T cells mediating decreased TCR-
mediated proliferation and cytokine production. In
animal tumor models, blockade of PD-L1/PD-1
interactions resulted in an improved tumor control.
In addition, exhausted T cells during chronic viral
infections could be revived by PD-L1 blockade.
Thus, targeting PD-L1/PD-1 interactions might improve
the eYcacy of adoptive cell therapies (ACT) of
chronic infections as well as cancers. Obstacles for a
general blockade of PD-L1 might be its role in medi-
ating peripheral tolerance. This review discusses the
currently available data concerning the role of PD-
L1 in tumor immune evasion and envisions possibili-
ties for implementation into ACT for cancer
patients.

Introduction

Cancer immunotherapies, either based on vaccination
with tumor associated antigens (TAA) or adoptive cell
therapies (ACT) using TAA-speciWc T cells, have
attracted immunologists as a possible alternative or as
an addition to conventional therapies (surgery, chemo-
therapy and radiation). Despite suYcient homing to
tumor sites [1], tumor associated antigen (TAA)-spe-
ciWc T cells so far seldom control tumor growth in a
clinical setting [2–4].

The reason for this is the generally accepted notion
that the tumor microenvironment can protect tumor
cells from immune destruction. Soluble factors as well
as membrane-bound molecules, including transforming
growth factor � (TGF-�), interleukin (IL)-10, prosta-
glandin E2, FAS, CTLA-4 ligands and tumor necrosis
factor related inducing ligand (TRAIL) have been
found to be expressed by tumors and have been postu-
lated to mediate immune evasion [5–7].

Recently, various molecules have been identiWed,
that can modulate TCR signals [8, 9]. These include
besides the well known CD28 and CTLA-4, the
recently described molecules PD-1, ICOS and BTLA.
Except the latter one, all interact with B7 family
ligands. Besides B7-1 and -2, PD-L1 (B7-H1), PD-L2
(B7-DC), ICOS-L (B7-H2, B7 h), B7-H3 and B7-H4
(B7x, B7-S1) have been identiWed so far.

Within this group of molecules, PD-L1 and B7-H4
are thought to predominately mediate inhibitory
signals towards T cells. The strong expression of PD-L1
on various tumors led us and other groups to the
hypothesis of this ligand playing an important role in
immune evasion of cancer cells [7, 10–12]. Support for
our ideas evolves from recent clinical data on long-term
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follow-up of renal cell carcinoma (RCC) patients [13],
and data from esophageal, gastric and breast cancer
patients indicate a correlation of the prognosis with an
increased expression of PD-L1 on the cancer cells [14–
16]. Thus, a PD-L1/PD-1 blockade might revert the
immuno-compromised state of TAA-speciWc T cells
allowing an increase in the eYcacy of ACT.

PD-1 and PD-L1/PD-L2

PD-1 is a transmembrane receptor of the Ig superfam-
ily that lacks the relevant motif for binding to B7-1 and
B7-2 [17]. It is found to be expressed on thymocytes
[18, 19], mature T and B cells following activation [8,
17, 20] and on myeloid cells [18]. Compared to the
restricted expression of CTLA-4, this wide expression
of PD-1 suggests a broader role in immune regulation
[21, 22].

Two ligands for PD-1 (CD279), both belonging to
the B7 family, have been identiWed: PD-L1 (B7-H1,
CD274) and PD-L2 (B7-DC, CD273) [23, 24]. Interac-
tion of PD-1 with PD-L1 or PD-L2 has been described
to negative regulate cytokine production and prolifera-
tion of T cells [23, 25–27]. This inhibitory eVect has
been shown for CD4+ as well as for CD8+ T cells [23,
26]. Whereas Carter et al. found that murine CD8+ T
cells are more susceptible to PD-L1 inhibition, we
found human CD4+ T cells transfected with TAA-spe-
ciWc TCR more susceptible compared to the CD8+
counterparts [28]. In addition, some other reports iden-
tiWed co-stimulatory functions of these ligands, possibly
mediated via an unidentiWed receptor diVerent from
PD-1 [29–33]. The discordant signaling eVects might
result from diVerences in the surface expression of
PD-1, a diVerent yet unidentiWed receptor, or from
interfering signals from PD-L2 that has been also
shown to mediate inhibitory or co-stimulatory eVects
[24, 30, 32, 34]. In addition, PD-1 is known to induce
tolerance by resting dendritic cells [35]. Whereas many
of the tumor models examined the direct interaction of
the T-cell with the tumor, recent data indicate that the
blockade of PD-L1 also led to improved control of the
tumor growth in the presence of antigen presentation
by DCs [12].

The cytoplasmatic tail of PD-1 contains an immuno-
receptor tyrosine-based inhibitory motif (ITIM) and an
immunoreceptor tyrosine switch motif (ITSM).
Whereas the former is thought to mediate inhibitory
signals, mutational studies indicate that the latter motif
is responsible for signaling after PD-1 ligation [36].
This result opens a second explanation for the con-
trary results after PD-L1/PD-1 interaction. As the

ITSM-motif has been shown to be capable of mediat-
ing co-stimulatory as well as co-inhibitory signals,
depending on the presence or absence of another
adaptor molecule (SH2D1A), PD-1 signals might
depend on the activation status of the T cell. Indeed,
we found WT CD8+ T cells to be superior to PD-1
gene-deWcient CD8+ T cells concerning cytokine pro-
duction in a naïve but not activated status (Blank et al.
unpublished data), which, however, does not exclude
the theory so far of a second receptor signaling early in
activation.

At least in vivo, the status of the antigen-presenting
cell (APC) will also alter the outcome of the TCR liga-
tion, as it seems that the inhibitory eVects of PD-L1 are
mediated predominantly from resting or virus-treated
DC, but not from activated DC [35, 37], which might
reconcile at least some of the contrary Wndings.

In vivo models examining the graft survival and dia-
betes onset using either PD1¡/¡ NOD mice, PD-L1Ig
in islet transplantation or PD-L1tg over-expression in
pancreatic islets resulted in discordant conclusions [33,
38, 39]. Besides the discussed diVerent activation set-
tings of the T cells in those models, diVerent strain
background of the animal models could also play a role
for the discordant Wndings [40].

The variable expression of PD-1 on the T-cell sur-
face, the restricted availability of agonistic PD-1 mono-
clonal antibodies and the low aYnity of the ligand
fusion protein hinders so far deWnitive experiments
to delineate the co-stimulatory and/or co-inhibitory
eVects.

PD-L1 and peripheral tolerance/autoimmunity

The co-inhibitory eVects of PD-1 were initially sug-
gested because PD-1-/- mice developed, depending on
the strain background, spontaneous autoimmune dis-
eases, such as lupus-like glomerulonephritis, arthritis,
gastritis or dilatative cardiomyopathy [41–44]. The
eVect of PD-L1/PD-1 interaction on immunological
tolerance has been examined in 2C and HY TCR trans-
genic mice. It was found that over-expression of PD-1
inhibits, or in the absence of PD-1 increases, the posi-
tive selection [45, 46]. In contrast, we found that on an
RAG¡/¡ background, the absence of PD-1 altered the
percentage of death by neglect allowing increased
numbers of DN T cells to occur in the periphery, but
also increased the negative selection, which was not
observed in the H–Y system [19]. Using PD-1¡/¡ mice
crossed to PD-L1¡/¡ or PD-L2¡/¡, clearly demon-
strated the role of PD-L1/PD-1 interaction during
thymic maturation. The perception that the total
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numbers of 2C T cells is not changed on an autoreac-
tive background by PD-1 deWciency leads to the con-
clusion of a normal central tolerance in PD-1 suYcient
mice [37]. Under the light of the above-mentioned data
showing alterations of the positive selection, the nega-
tive selection and death by neglect by PD-1, the previ-
ous conclusion needs to be examined further.

Independent of these considerations, the main func-
tion of the PD-L1/PD-1 pathway seems to be the regu-
lation of peripheral tolerance [18]. This notion is
supported by the various autoimmune diseases found
in PD-1 gene-deWcient mice. In addition, the observed
expression of PD-L1 on human and murine endothelia
[47–49], at sites of inXammation in experimental auto-
immune encephalomyelitis [50] and in muscle biopsies
from patients with inXammatory myopathies [51], sup-
ports its postulated role in regulation of peripheral tol-
erance. The absence of PD-L1 indeed increased the
induction of experimental autoimmune hepatitis [52],
which could be mediated by the absence of PD-L1, not
only on Kupfer cells and monocyte-derived cells within
the liver [11, 53], but also by PD-L1 on the liver parec-
hym itself [54]. A deWnitive proof of the role of periph-
eral tolerance is the role of PD-L1 in the feto-maternal
tolerance. It has been earlier shown that PD-L1 is
strongly expressed at this immunological important
barrier [55], but just recently data proved the func-
tional relevance in preventing abortion in a mouse
model [56].

PD-L1 and T-cell exhaustion during chronic viral 
infections

During chronic viral infections, functional virus-spe-
ciWc T cells are induced; however, they gradually lose
their function during the course of the infection. IFN-�
is a key player in host defences against viral infections,
but also has been shown to up-regulate PD-L1 expres-
sion predominantly on non-lymphoid tissues, due to
the PD-L1 promotor region containing several IFN-�-
responsive elements [11, 49].

Thus, it has been self-evident to examine the role of
the PDL-1/PD-1 pathway during chronic viral infec-
tions. Recently, R. Ahmed et al. elegantly showed that
antiviral immune functions could be restored in vivo by
a blockade of PD-L1 in the LCMV infection model. By
doing so, they also proved that PD-L1/PD-1 interac-
tion plays a pivotal role during CD8+ T-cell exhaustion
from chronic antigenic stimuli [57].

This mechanism might be extended to other chronic
viral infections in humans, such as human immunode-
Wciency (HIV). Indeed, PD-L1 has been shown to be

up-regulated during HIV-infection [58] and several
recently published studies suggest a role for the PD-1-
PD-L1 pathway in exhaustion of virus-speciWc CD8+
T cells during HIV infection [59–61]. In addition, these
groups could show that the PD-1 expression correlates
with disease progression and blockade of PD-L1/PD-1
pathway could restore immune functions of the T
cells.

It seems that there is a distinct hierarchy of exhaus-
tion, as that with the duration of the infection, the level
of antigen exposure increases, the CD4 help decreases
and PD-1 expression on antigen-speciWc T cells
increases [62]. Whether these ideas also could be trans-
ferred on chronic antigen exposure during ACT in can-
cer patients needs to be further evaluated.

PD-L1 and immune evasion of tumor cells

Whereas the initial broad detection of PD-L1 was
based on mRNA levels, its surface expression was
detected only on T- and B-cells, dendritic cells, macro-
phages, endothelia, epithelia, cardiac myocard, pancre-
atic islet cells, glial cells, inXamed muscle, keratinocytes
and the feto-maternal barrier [20]. Interestingly,
PD-L1 surface expression can also be found on almost
all tumor entities. It has been detected by immunohis-
tochemistry, for example, on the surface of human can-
cers of larynx, lung, stomach, colon, breast, cervix,
ovary, renal cell, bladder, liver, glioma and melanoma
[11, 25, 63]. In vitro experiments indicate that many
tumor cell lines also express PD-L1 and/or up-regulate
PD-L1 surface expression upon exposure to IFN-� [11,
20, 63]. This expression is in strong contrast to the
expression to B7-1 and B7-2, which are seldom found
on tumors. The attributed inhibitory eVect of PD-L1/
PD-1 interaction earlier led to the hypothesis that
tumors escape from the host immune system by negative
attenuation of tumor-speciWc T-cell responses via the
PD-L1/PD-1 pathway [7, 64].

In vitro experiments using PD-L1 over-expressing
murine tumor cell lines and blocking antibodies against
PD-L1 and PD-1 clearly demonstrated that PD-L1 on
tumor cells suppresses the cytolytic activity of CD8+ T
cells [7, 12]. In addition, others and we could show that
endogenous PD-L1 expression on tumor cells are also
capable of suppressing T-cell functions, e.g., prolifera-
tion and cytokine production [11, 20].

Transfers to in vivo experiments using blocking anti-
bodies of PD-1, PD-L1 or TCR-transgenic mice
crossed to PD-1¡/¡ mice revealed accelerated tumor
eradication in the absence of PD-L1/PD-1 interaction
[7, 12, 20, 65]. In addition, PD-L1 blockade has been
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shown to suppress tumor metastasis using melanoma
or colon cancer cell lines [66].

Similar to murine studies, others and we recently
found PD-L1 to be expressed on human tumor tissues
and human tumor lines and to be up-regulated upon
IFN-� exposure. Over-expression of human PD-L1 or
interference using anti-PD-L1 blocking antibodies
support the notion of tumor-expressed PD-L1 being
capable of suppressing T-cell immune functions
[11, 28, 63, 67].

Whereas some studies did not indicate a signiWcant
relevance of PD-L1 expression for the patients’ prog-
nosis in non-small lung cancer [68] or even did not
detect PD-L1 at all on acute myeloid leukemia [69], we
found in contrast to the latter, frequent expression of
PD-L1 on leukemic blasts (Blank et al. unpublished
data). Furthermore, a recent paper revealed prognostic
value of PD-L1 expression for breast cancer [16], eso-
pgageal cancer [14] and gastric carcinomas [15]. The
strongest correlation between cancer patients’ survival
and tumor-associated PD-L1 expression has been
shown within a group of over 300 patients that under-
went nephrectomy for clear cell renal carcinoma [13,
70]. Survival rates at 1, 5 and 10 years post-nephrec-
tomy in patients expressing PD-L1 within the primary
tumor (compared to PD-L1 negative tumor, in brack-
ets) were 77.3% (94.6%), 41.9% (82.9%) and 36.7%
(77.4%). Univariate analysis of these data indicate that
patients with a PD-L1-positive tumor nearly four times
more likely die from RCC compared to patients with a
PD-L1-negative tumor [13].

Based on these in vitro data and the correlation of
the clinical prognosis of patients with PD-L1 expres-
sion in the tumor microenvironment, it is very likely
that the PD-1/PD-L1 pathway plays a pivotal role in
tumor-immune evasion from the endogenous immune
system, as well as from adoptively transferred tumor-
speciWc or vaccination-induced T cells.

Considerations concerning PD-L1 blockade and ACT

Tumor-speciWc T cells have been shown to be dysfunc-
tional or anergised [71] and just recently Blankenstein
et al. have elegantly shown that immunogenic tumors
indeed induced T-cell anergy allowing immune evasion
[72]. Continuous exposure to antigen in tumor patients
might therefore exhaust T cells, similar to chronic viral
infections [57]. Despite diVerences between chronic
antigen stimulation during viral infections and malig-
nancies (tumors seldom express very immunogenic
antigens, IFN-� induction is more likely during viral
infections, connective tissues barriers in tumors, etc.) it

is tempting to speculate that immunogenic tumors
might induce anergy of tumor-speciWc T cells by
expressing PD-L1 on their surface [37]. In the light of
many immunotherapy protocols aiming at induction of
a type-I immune response [73, 74], even IFN-�-induced
PD-L1 up-regulation on tumor cells might be account-
able for the so far often disappointing outcome of
tumor immunotherapies. The blockade of the PD-L1/
PD-1 pathway might therefore either revert an
immuno-compromised state of the cancer patients or
prevent inhibition of adoptively transferred T cells
during ACT and allow the immune system to eradicate
the tumors.

Interfering into the PD-L1/PD-1 pathway by, e.g., an
anti-PD-L1 monoclonal antibody has been even in our
considerations [10]. However, PD-L1’s broad expres-
sion on endothelia and its important role in regulation
of peripheral tolerance and thus prevention of autoim-
munity [18, 37, 75] will require a more speciWc block-
ade of the PD-L1/PD-1 pathway or at least extensive
testing of binding to normal tissues before in vivo
applications.

In addition, the diVerence between PD-L1 and
PD-L2, which share many features, but with contrary
outcomes resulting from their blockade, is still poorly
understood. Thus, it could be problematic blocking
selectively PD-L1 and in doing so allowing an
unrestricted PD-L2-mediated, possibly co-stimulatory
pathway to act on a broad range of resting peripheral T
cells.

Therefore, we would attribute a preference for the
blockade of PD-1 on selected tumor- or virus-speciWc T
cells. However, in this case, in advance of such
approaches, the bidirectional roles of PD-1 toward
co-stimulatory versus co-inhibitory eVects have to be
dissected clearly.
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