
Cancer Immunol Immunother (2008) 57:1579–1587

DOI 10.1007/s00262-008-0505-6

REVIEW

Cancer chemotherapy: not only a direct cytotoxic eVect, 
but also an adjuvant for antitumor immunity

Cédric Ménard · François Martin · Lionel Apetoh · 
Florence Bouyer · François Ghiringhelli 

Received: 13 February 2008 / Accepted: 9 March 2008 / Published online: 28 March 2008
©  Springer-Verlag 2008

Abstract Treatment of metastatic cancer mainly relies on
chemotherapy. Chemotherapeutic agents kill tumor cells by
direct cytotoxicity, thus leading to tumor regression. How-
ever, emerging data focus on another side of cancer chemo-
therapy: its antitumor immunity eVect. Although cancer
chemotherapy was usually considered as immunosuppres-
sive, some chemotherapeutic agents have recently been
shown to activate an anticancer immune response, which is
involved in the curative eVect of these treatments. Cancer
development often leads to the occurrence of an immune
tolerance that prevents cancer rejection by the immune sys-
tem and hinders eYcacy of immunotherapy. Cancer cells
induce proliferation and local accumulation of immunosup-
pressive cells such as regulatory T cells and immature mye-
loid cells, and prevent the maturation of dendritic cells and
their capacity to present tumor antigens to T lymphocytes.
Many anticancer cytotoxic agents interfere with the molec-
ular and cellular mechanisms leading to tumor-induced tol-
erance. They can restore an eYcient immune response that
contributes to the therapeutic eVects of chemotherapy.

These Wndings open a novel Weld of investigations for
future clinical trial design, taking into account the immuno-
stimulatory capacity of chemotherapeutic agents, and using
them in combined chemo-immunotherapy strategies when
tumor-induced tolerance is overcome.
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Introduction

Clinical applications of tumor immunology in the Weld of
cancer chemotherapy are presently limited. The complex
molecular mechanisms involved in cell transformation and
cancer lead to the development of neoantigens and danger
signals on cancer cells, which should give rise to immune
rejection of the tumor (immunosurveillance). However,
cancer cells may escape this rejection by limiting tumor
antigen expression (immunoediting) and mainly by induc-
ing active immune tolerance mechanisms. These mecha-
nisms include the proliferation and local accumulation of
immunosuppressive tolerogenic cells, including regulatory
T cells and immature myeloid cells. This tolerance prevents
cancer rejection by the immune system and blunts
eYciency of immunotherapy.

Treatment of metastatic solid cancers essentially relies
on cytotoxic drugs that kill tumor cells or hinder their pro-
liferation. Considering their toxicity on hematopoietic cells,
chemotherapeutic agents are often considered as immuno-
suppression inducers (reviewed in [1]). Indeed, in vitro,
many drugs used for cancer therapy exhibit direct cytotoxic
eVects on cells of the immune system such as T lympho-
cytes [2, 3]. Moreover, in humans, many cytotoxic drugs
may induce a immunosuppression state: for example,
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temozolomide [4] or Xudarabine [5] may induce lymphope-
nia, causing a T lymphocyte-related immunosuppression
state. Cyclophosphamide and methotrexate are also used as
immune suppressors in the treatment of autoimmune dis-
eases [6, 7] with, however, speciWc administration sched-
ules.

In contrast, some chemotherapeutic agents display some
positive immunological eVect. On the one hand, chemo-
therapy could deplete immunosuppressive cells such as
CD4+ CD25+ regulatory T cells (Treg) and Myeloid-
Derived Suppressor Cells (MDSC) and could enhance
latent antitumor immune response or synergize with a
tumor vaccine [8–10]. On the other hand, chemotherapy-
induced cell death may release tumor antigens that could be
uptaken by antigen presenting cells (APC), processed and
presented to naive T cells. Therefore, the signals released
by killed tumor cells would impact on phagocytosis and/or
antigen processing, or maturation and traYcking of den-
dritic cells.

This review will describe the ability of some chemother-
apeutic cytotoxic agents to eliminate immunosuppressive
cells, and the molecular mechanisms involved in this
immunogenic response.

Modulation of tolerance pathways

Low dosage of cyclophosphamide, as an eYcient 
chemotherapeutic regimen to blunt CD4+ CD25+ 
regulatory T cells?

The DNA alkylating molecule, cyclophosphamide (CPM),
has been used for decades as part of chemotherapeutic regi-
mens in numerous malignancies. The immunomodulatory
eVects of CPM have been discovered 26 years ago by Rob-
ert North’s team [11]. In mouse models, they described a
“suppressor CD4+ T cells” population, which inhibited T
cell-mediated immunity against tumors, and that could be
removed by administration of low dose of CPM [11, 12].
However, the phenotype expressed by these suppressor
cells was CD4+ T cells mainly containing nonsuppressor
cells. “T suppressor cells” were subsequently characterized
by Sakaguchi’s laboratory [13] and renamed “CD4+
CD25+ regulatory T cells” (Treg). Treg are deWned as a
subpopulation of suppressor T cells that mediate immune
tolerance by inhibiting virtually any immune cells [14, 15].
They represent 1–3% of circulating CD4+ T cells in
humans and about 10% of splenic CD4+ T cells in rodents.
Mouse and human Treg were found to express Foxp3, a
speciWc forkhead transcription factor that controls both
their development and function [16]. Treg play key roles in
many physiopathological settings including cancer. During
malignancy development, Treg accumulate in the blood,

draining lymph nodes (LN) and tumors in humans [17, 18]
and rodents [8, 19–21]. In patients with ovarian, breast,
pancreatic carcinoma or glioblastoma, inWltration of tumor
by Treg correlates with a poor prognosis [17, 18, 22, 23].

North’s pioneering studies in the 1980s suggested that
suppressive T cell function may be electively inhibited in
tumor hosts receiving low-dose CPM treatment [11, 24]. To
conWrm these results in the updated light of Treg biology,
we design a strategy for studying the impact of low dosage
of CPM in rodent tumor models. In inbred rats bearing an
established subcutaneous tumor obtained from a syngeneic
colon carcinoma, a single injection of low-dose CPM
(25 mg/kg of body weight) decreased selectively the per-
centage of CD25+ Treg among the CD4+ lymphocytes on
the seventh day following treatment. This allowed a whole
tumor cell vaccine immunotherapy to completely eradicate
established tumor in all treated animals [8], whereas the
tumor vaccine or the CPM alone were unable to cure any.
These results were conWrmed in several mouse tumor mod-
els [25–29] where CPM decreased the Treg number,
restored eVector T cells functions and even restored
eYcacy of dendritic cells vaccine [30]. Several hypotheses
may explain the high sensitivity of Treg to CPM. First, in
tumor-bearing hosts, tumor drives permanently the prolifer-
ation of Treg, a status that could contribute to their selec-
tive sensitivity to CPM [31, 32]. Second, the sensitivity of
Treg to CPM could be linked to their selective Foxp3
expression, which is associated with higher expression of
proapoptotic molecules [33], which sensitize Treg to apop-
tosis. Additionally, forced expression of Foxp3 in a trans-
fected leukemic T cell line increased their sensitivity to
CPM (Ghiringhelli, personal communication).

Low dosing of CPM not only decreased the number, but
also inhibited the suppressive function of the residual Treg
[27, 34]. Treg capacity to inhibit CD8 or CD4 T cells func-
tions was markedly decreased when Treg were obtained
from mice treated with CPM compared to those obtained
from naïve mice [34]. Finally, the in vivo relevance of
CPM-induced Treg depletion was studied by Taïeb et al.
[34], who demonstrated that one injection of low-dose
CPM (100 mg/kg of body weight in mouse) synergized
with an immunotherapeutic regimen consisting of tumor
peptide-loaded exosomes, combined with CpG ODN,
resulted in the regression of established tumors.

In humans, low dosages of CPM (300 mg/m2) adminis-
trated in cancer patients 3–4 days prior to antigen exposure
promoted immune response rather than tolerance as demon-
strated by their capacity to potentiate hypersensitivity
responses assays [35]. The feasibility of combining low
dose of CPM and tumor vaccination has been attempted in
clinical trials, but such studies lacked statistical power [36–
40]. Nevertheless, in a study of 42 metastatic breast cancer
patients receiving a vaccine composed of a synthetic sialyl-Tn
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epitope linked to Keyhole Limpet Hemocyanin (KLH) and
an adjuvant, an intravenous injection of CPM given prior to
vaccination signiWcantly increased median survival from 12
to 20 months [41]. In these studies, the biological eVects of
CPM on eVector and regulatory T cells were not analyzed.

Administration of low dose of CPM at regular intervals
as a “metronomic regimen” in patients bearing metastatic
breast, prostate or ovarian carcinoma demonstrated a clini-
cal eYcacy [42–44]. This eVect was attributed to some anti-
angiogenic properties of metronomic regimen [44]. Taking
into account the immunological eVect of CPM on Treg in
rodent tumor models, we performed a phenotypical and
functional immunomonitoring in ten patients with
advanced metastatic cancers receiving an oral CPM treat-
ment on a metronomic schedule. The number of peripheral
blood Treg decreased dramatically after 1 month of treat-
ment [9]. Moreover, peripheral T cells proliferative capac-
ity and NK cell cytotoxicity were enhanced. Furthermore,
two variants of treatment were tested: some patients
received CPM at 100 mg/day 1 week of 2, while other
patients received twice the CPM dose, that is, 100 mg/twice
a day, 1 week of 2. The precise dosing of CPM was crucial
to selectively deplete Treg, while sparing eVector T cells,
and the speciWcity of Treg depletion was lost at a higher
CPM dose. At a high CPM dose, patients exhibited signiW-
cant decrease in whole lymphocytes, CD4+ T cells and
CD8+ T cells counts. Our results underline that CPM given
at optimal dosing in cancer patients induced a speciWc
depletion of Treg. Moreover, lowering the CPM regimen to
50 mg/day was equivalent to 100 mg/day 1 week of 2 (C
Ménard, unpublished result). The antiangiogenic eVect of
CPM given as a metronomic regimen [44] could potentiate
its enhancing eVect on the tumor immune response as sug-
gested by combined therapy associating an inhibitor of
angiogenic receptor and an immunostimulator protein [45].

Could metronomic CPM regimen improve the eVect 
of immunotherapy ?

In mice bearing B16F10 melanoma, CPM given daily at a
low dosage according to a metronomic regimen enhanced
the eVect of an immunization protocol consisting of injec-
tion of tumor recombinant DNA followed by recombinant
modiWed vaccinia virus Ankara strain [46]. Combining
tumor vaccine with metronomic CPM regimen dramatically
improved the antitumoral activity compared to treatments
administered alone, or to a combinaison of tumor vaccine
with a bolus dose of CPM. In humans, we previously dem-
onstrated that human Treg can use their membranous TGF-
� for blunting NK cell proliferation, cytotoxicity and IFN-�
secretion [32]. In patients treated with CPM metronomic
regimen, Treg depletion should allow NK cell-based immu-
notherapy to be more eYcient by a phenomenom known as

“releasing the brake”. Borg et al. previously described that
imatinib mesylate (IM), a tyrosine kinase inhibitor, in asso-
ciation with its direct antitumor eVect could also stimulate
NK functions in Gastro-Intestinal Stromal Tumor (GIST)-
bearing patients [47]. Consequently, a treatment associating
IM with metronomic CPM was attempted in relapsing
GIST patients, whose tumor became resistant to the direct
cytotoxic eVect of IM. These patients had been treated with
IM for more than 1 year and exhibited tumor progression
under several lines of treatment (IM 400 mg, then 800 mg
daily and ultimately sunitinib). IM was re-administered at
400 mg daily in association with a low dose of CPM. Of
seven treated patients, disease stabilization was achieved
for several months in two of them, and partial response fol-
lowing RECIST criteria was obtained in two other patients
(C Ménard, unpublished data). These data strengthen the
proof of concept that a metronomic regimen of CPM may
be associated with immunotherapy and may enhance its
eYcacy.

Elimination of Myeloid-Derived Suppressor Cells

Myeloid-Derived Suppressor Cells (MDSC) represent a
population of immature myeloid cells including the precur-
sors of macrophage, granulocyte and dendritic cells, which
might suppress T-dependent immune response. In mice,
key phenotypic markers are CD11b and Ly6G/C. MDSC
accumulate in the lymphoid organs of tumor-bearing mice,
thus contributing to tumor-induced immunosubversion [48,
49]. These cells can directly control T cell response, but
induce also the proliferation of Treg through TGF� produc-
tion [50]. Thus, a cytotoxic drug that electively eliminates
MDSC while preserving T cells subset may enhance latent
tumor immunity and tumor vaccine eYcacy. Gemcitabine,
a synthetic pyrimidine nucleoside analog, commonly used
for the treatment of pancreatic, breast and lung carcinoma,
was tested with this aim. Gemcitabine, at 120 mg/kg body
weight, speciWcally reduced the number of MDSC found in
the spleen of BALB/c and C57Bl/6 mice bearing large
tumors, but did not reduce CD4 and CD8 T cells, NK cells,
macrophage and B cells [10, 51, 52]. Interestingly, gemcit-
abine used in association enhanced the treatment eYcacy of
antitumor vaccine, or of intratumoral IFN-� gene therapy
[52] or dendritic cells vaccine [10].

Recently, amino-biphosphonates, commonly used for
treatment of bone metastases, were found to decrease the
total number of MDSC and to inhibit matrix-metallopro-
teinase 9 (MMP9) expression on tumor cells and on
stromal cells. Considering that MMP9 controls availability
of vascular endothelial growth factor (VEGF) to its
receptor [53], and that VEGF is necessary for MDSC
expansion [54], amino-biphosphonates are involved in
MDSC inhibition.
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Molecular mechanisms of immunogenicity of cytotoxic 
drugs

The problem of tumor cell death

Interaction between tumor cell death and immune system is
complex. While apoptotic cell death of normal tissue must
be ignored to avoid the development of autoimmune dis-
eases, apoptosis of virally infected cells has to be consid-
ered. In the setting of solid tumor, dealing with the
immunogenicity of tumor cells death induced by chemo-
therapy seems surprising. Solid tumor growth is generally
associated with the death of many tumor cells, mostly in the
central area of the tumor because of a lack of vasculariza-
tion. Lots of necrotic and apoptotic cells are found in these
tumors. So, it is diYcult to think that the immunological
eVect of chemotherapy is only related to its ability to trigger
cell death and enhance the antigen delivery.

However, the type of cell death induced by chemotherapy
in vivo may be a determinant factor for triggering immuno-
genicity of cell death. High concentrations of various cyto-
toxic agents induce apoptotic cell death of tumors. But, at
pharmacological relevant concentrations, these agents rather
inhibit tumor cell proliferation and induce morphological
and molecular changes characteristic of senescence or
mitotic catastrophes [55–58]. For example, P53-mediated
senescence induces the release of proinXammatory mole-
cules by tumor cells and further the involvment of the
immune system. These cytokines recruit NK cells, neutro-
phils and macrophages, thus leading to tumor eradication
and modulate in a large part T-dependent immune response
[59]. DNA damaging agents used for cancer chemotherapy
such as topoisomerase inhibitors and platinum derivates
stimulate the production of tumor suppressor proteins such
as ATM (Ataxia Telangiectasia Mutated) and p53. The
DNA damage triggers tumor cells to express ligand for
NKG2D, an activating receptor of NK, NKT, ��T cell com-
ponents of the innate immune system that could trigger a
Th1 immune response [60]. Altogether, these data argue for
a potential link between chemotherapeutic induced cellular
senescence and inXammatory response.

Sensitization of tumor cells to immune eVectors through 
modulation of death receptor expression by chemotherapy

The type I transmembrane receptor Fas and DR4/DR5 are
molecules belonging to the tumor necrosis factor/nerve
growth factor receptor family. These receptors are impor-
tant mediators of immunologically mediated cell apoptosis.
Their respective ligands, Fas-L and TRAIL, are expressed
by activated CD8+ T and NK lymphocytes. Subtoxic con-
centrations of chemotherapeutic drugs could restore the
response to Fas-L and TRAIL in cancer cells, which are not

spontaneously sensitive to these cytokines [61, 62]. Thus,
chemotherapeutic drugs such as cisplatin, doxorubicin,
mitomycin C, Xuorouracil, and camptothecin, which exert
direct cytotoxic eVects, also exhibit an indirect cytotoxic
activity by “preparing” tumor cells to their own elimination
by immune cells such as NK or cytotoxic T lymphocytes
using a Fas or TRAIL-dependent pathway.

NonspeciWc activation of macrophage innate immune 
eVector by chemotherapeutic agents

Many reports described that intraperitoneal (i.p.) injection
of chemotherapeutic agents such as anthracycline (doxoru-
bicin) or mitomycin C could enhance the capacity of perito-
neal macrophages to kill tumor cells [63–67], at least in
rodents. Peritoneal macrophage cytotoxicity was dramati-
cally enhanced in diVerent tumor cell lines, 1–4 days after
i.p. injection. In contrast, cyclophosphamide, vincristine,
and methotrexate did not enhance macrophage cytotoxicity
[66], but increased the production of inXammatory cyto-
kines such as IL-1, TNF-� and IFN-� [67, 68]. The mecha-
nisms of macrophage activation remain unclear. Previous
data from our group displayed that peritoneal macrophages
collected 24 h after an i.p. injection of doxorubicin were
cytotoxic against tumor cells, whereas in vitro treated mac-
rophages never exhibited tumoricidal activity. Macro-
phages incubated with doxorubicin in vitro accumulated the
drug in their nucleus, whereas macrophages from animals
receiving doxorubicin in vivo accumulated the drug in
cytoplasmic vacuoles, which were transferred to contiguous
cancer cells and induced their death. Further analyses dem-
onstrated that doxorubicin Wrst concentrated in mast cell
granules and was then released and captured through pino-
cytosis by peritoneal macrophages [64].

Presently, investigations need to assess whether similar
mechanisms involving tumor-associated macrophages, and
perhaps undiVerentiated myeloid cells inWltrating the
tumors, are involved in the eYcacy of chemotherapy using
anthracyclines or mitomycin-C.

Chemotherapy can also enhance the immune response
against cancer by modifying the interaction between tumor
cells and dendritic cells (DC), which play a key role in anti-
gen presentation to T lymphocytes. In addition, chemother-
apy can enhance endocytosis of tumor cells by dendritic
cells. Finally, tumor cells are involved in the production of
“danger signals” that are required for dendritic cell matura-
tion and tumor antigen presentation to T cells [69].

Some “eat-me” signal inducing phagocytosis by dendritic 
cells

To trigger Th1 immunity, dead tumor cells or their frag-
ments (apoptotic bodies) should preferentially undergo
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phagocytosis by dendritic cells rather than by macrophages
or neutrophils that would rapidly degrade tumor antigens,
preventing their capacity to prime T cells [70]. Conven-
tional apoptosis leads to exposure of phosphatidylserine at
the surface of dying tumor cells, which facilitates the
uptake by macrophages rather than dendritic cells, and
enhances the production of immunosuppressive factors
such as TGF-� and IL-10 [71]. Moreover, binding to phos-
phatidylserine stimulates dendritic cells to secrete MFG-
E8, an opsonin that promotes phagocytosis of apoptotic
bodies by dendritic cells and macrophages, but mediates
tolerance by inducing regulatory T cells that inhibit Th1
immune response [72].

On the contrary, other plasma membrane signals may
trigger dying tumor cells to activate dendritic cells induc-
tion of polarized Th1 immune response. Calreticulin, a cal-
cium-binding protein promotes this mechanism in mice
tumor models. Anthracyclines and platinum derivatives
translocate calreticulin from the cytoplasm to the plasma
membrane of dying cells. When combined to a decrease of
CD47 at the cell surface, calreticulin translocation facili-
tates the phagocytosis of dying cells by dendritic cells and
macrophages [73, 74]. Moreover, calreticulin exposure on
the dying cell surface is associated with the development of
a Th1 immune response, suggesting that calreticulin depen-
dent phagocytosis of dying cells in an important event for
the induction of antitumor immune response. Nevertheless,
all experiments assessing the eVect of calreticulin on
phagocytosis have limitations, as they used DC obtained
from naïve animals instead of tolerized dendritic cells iso-
lated from established tumors. Furthermore, the contribu-
tion of calreticulin to chemotherapy immunogenicity in
human tumors remains to be established.

An antigen processing signal: HMGB1

Induction of an eYcient T cell-dependent immune response
requires Wrst that immature dendritic cells collect nominal
antigens, and secondly that they diVerentiate in mature den-
dritic cells capable of activating Th1 cells. Agents inducing
this maturation are frequently exogenous danger signals
that activate receptors at the surface of dendritic cells, such
as components of virus and bacteria signaling through Toll-
like receptors [75]. Recently, Toll-like receptors (TLR)
were also involved in the recognition of endogenous danger
signal provided by dying cells [69]. Chemotherapy immu-
nogenicity may be related to the ability of tumor cell death
to release danger signals that could in turn contribute to the
development of anticancer immunity [76]. Our previous
studies demonstrated that the TLR-4 receptor was involved
in the T cell dependent immunity induced by oxaliplatin
and doxorubicin [77, 78]. In several murine tumor models,
the therapeutic eVect of cytotoxic agents was drastically

hampered in TLR-4-deWcient mice compared with wild-
type mice, thus underlining the requirement of TLR-4
expression to control chemotherapy eYcacy. Interestingly,
TLR-4 expression is only required in DC. TLR-4-deWcient
DC were not impeded in their maturation but only in their
capacities to eVectively present and cross-present tumor
antigen to CD4 and CD8 T cells, respectively. At the
molecular level, TLR-4 signaling delays fusion between
phagosome and lysosome in dendritic cells, thus preventing
antigen degradation and increasing the number of MHC-
tumor antigen peptide complexes expressed on the cell sur-
face of DC [78, 79]. The TLR-4 ligand released by tumor
cells injured by chemotherapy was identiWed as the high
mobility group box 1 (HMGB1) protein, a recently identi-
Wed alarmin. However, since HMGB1 per se does not pro-
mote full-blown DC maturation, signals delivered by dying
tumor cells that engage DC maturation and Th1 polariza-
tion remain to be established. In clinic, analyses of a serie
of breast cancer patients revealed that a loss of function
polymorphism in the TLR-4 gene was an independent fac-
tor of poor prognosis in response to chemotherapy [78].
Thus, clinically used anticancer drugs also seem to mediate
their cytotoxic eVects through the acquired immune system
[80].

Maturation of DC Th1 polarization

In some cases, chemotherapeutic agents could directly acti-
vate the innate immune system. For instance, paclitaxel
binds to mouse TLR4, but not to human TLR4, and so can
mimic bacterial LPS by activating mouse macrophages and
DCs in a MyD88 dependant pathway [81]. Moreover, some
vascular disrupting agents such as DMXAA (5,6-dimethyl-
xanthenone-4-acetic acid) could display positive immuno-
logical eVects: in tumor models, DMXAA promote tumor
bed inWltration by CTL and myeloid cells, probably by acti-
vation of dendritic cells through a Myd88 independent
pathway [82, 83]. In opposite cases, only factors released
by tumor cells are involved in the activation of the innate
immune system. Deposit of uric acid crystals by dying cells
was recently reported to be a danger signal that activates
DC maturation [84]. Depletion of uric acid using allopuri-
nol decreases CD8+ T cells response and inhibits tumor
regression. Tumor regression is associated with high tumor
levels of uric acid, and intratumoral injections of uric acid
accelerates tumor regression [85]. As uric acid could be
released by tumor cells after chemotherapeutic injuries, we
hypothesized that the immune response might only be elic-
ited when uric acid blood level reaches its crystallization
point. In DC, uric acid engages the caspase-1 activating
NALP3 inXammasome, a complex of proteins aimed at
activating caspase-1, thus leading to the cleavage of pro-IL-
1 and pro-IL-18 to bioactive IL-1 and IL-18. Any
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deWciency in one protein involved in the inXammasome in
macrophages blunts their capacity to produce IL-1 [86].
However, a high amount of uric acid released by tumor
cells after chemotherapy mainly occurs in hematological
malignancies rather than solid tumors. Consequently, if
NALP3 inXammasome and IL-1 are involved in the immu-
nogenicity of chemotherapy-induced cell death in solid
tumor, the activator of inXammasome may not be uric acid.

Conclusions

Nowadays, oncologists mainly give credit to anticancer
drugs, which harbor the strongest antiproliferative eVects
against tumor cells, based on the assumption that these
drugs only act via cell-autonomous eVects. Emerging con-
cept focuses on the so-called “targeted therapies”, although
targeted therapies often trigger many signaling pathways
and act through many mechanisms [87]. The discovery that
even “targeted therapies” can have some surprising
bystander eVects oVer a new avenue of investigations of
these bystander eVects for all cancer therapies included
cytotoxic drugs.

Bodies of evidence in literature suggest that, in many
setting, cytotoxic drugs positively inXuence the immune
system (Fig. 1). This side eVect on the tumor immunology
modiWes the clinical response to chemotherapy. We demon-

strated that in breast cancer patients, a constitutive deW-
ciency of the immune system—that is, a loss of function
polymorphism of TLR4—blunts the antitumor eVect of
anthracyclines in an adjuvant setting [77]. Moreover, we
also highlight that T cell inWltration is modiWed by neoadju-
vant chemotherapy in breast cancer patients. Indeed, a good
response to chemotherapy is signiWcantly associated with
inWltration of cytotoxic T cells and disappearance of Treg
in the tumor bed, suggesting that chemotherapy eYcacy
may partially rely on its immunological eVect. Altogether,
these data strongly suggest that the host immune system
reaction to chemotherapy makes a decisive contribution to
the eYcacy of anticancer cytotoxic therapies [88]. In
human colon cancer, gemcitabine, a drug that can eliminate
MdSC, and oxaliplatin, a drug that can induce an immuno-
genic cell death, may be eYciently combined with an
immunotherapy associating granulocyte macrophage
colony-stimulating factor and interleukin-2. Such therapies
induce very high objective response and disease control
rates with a signiWcant reduction in immunosuppressive
regulatory T cells [89, 90].

In the future, selection of more eYcient cancer treat-
ments might rely on associations of cytotoxic drugs, which
allow elimination of immunosuppressive cells, with trigger
activation of eVector components of the immune system.
Such therapies could then be given alone or in association
with a tumor vaccine.

Fig. 1 Multimodal eVects of 
chemotherapeutic agents on the 
immune system
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