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Abstract The primary rationale for the application of
clinical hyperthermia in the therapy of cancer is based on
the direct cytotoxic effect of heat and the radio-chemo-
sensitization of tumor cells. More recently, additional
attention is given to the observation that heat and heat-
shock proteins can activate the host’s immune system.
The expression of heat-shock genes and proteins pro-
vides an adaptive mechanism for stress tolerance,
allowing cells to survive non-physiologic conditions.
However, the same adaptive mechanism can ultimately
favor malignant transformation by interfering with
pathways that regulate cell growth and apoptosis. Cy-
toprotection and thermotolerance raised the concern that
heat-treated tumor cells might also be resistant to attack
by immune effector mechanisms. Many studies, including
those from our group, address this concern and docu-
ment that heat-exposure, although transiently modulat-
ing sensitivity to CTL, do not hinder CTL attack.
Moreover, there are promising reports of heat-related
upregulation of NK-activating ligands, rendering those
tumors which have lost MHC class I molecules target for
NK cell attack. Heat-induced cytoprotection, therefore,
does not necessarily extend protection from cytotoxic
immune mechanisms. When interpreting the effects of
heat, it is important to keep in mind that thermal effects
on cell physiology are strongly dependent on the thermal

dose, which is a function of the magnitude of change in
temperature and the duration of heat exposure. The
thermal dose required to induce cell death in vitro
strongly varies from cell type to cell type and depends on
microenvironmental factors (Dewey 1994). Therefore, to
dissect the immunological behaviour of a given tumor
and its micro-environment at different thermal doses, it is
essential to characterize the thermosensitivity of every
single tumor type and assess the proportion of cells sur-
viving a given heat treatment. In this review, we sum-
marize the pleiotropic effects that heat exposure has on
tumor cells. In particular, we focus on the effects of heat
on the antigen presentation of tumor cells and their
susceptibility to immune effector mechanisms. We
emphasize that the response to thermal stress is not a
one-time point event, but rather a time period starting
with the heat exposure and extending over several days of
recovery. In addition, the response of tumor cells and
their susceptibility to immune effector cells is strongly
dependent on the model system, on the magnitude and
duration of the thermal stress and on the time of recovery
after heat exposure. Consideration of these aspects might
help to explain some of the conflicting results that are
reported in the field of thermal stress response.

Abbreviations Ag: Antigen Æ APC: Antigen-presenting
cell Æ CTL: Cytotoxic T lymphocytes Æ DC: Dendritic
cells Æ Hsc70: Constitutively expressed heat-shock
protein cognate 70 (Mr 73 kD) Æ HSP: Heat-shock
protein Æ Hsp70: Inducible heat-shock protein 70
(Mr 72 kD) Æ NK: Natural killer cells Æ TCR: T cell
receptor Æ TRAIL: TNF-related apoptosis-inducing
ligand

Hyperthermia as a cancer treatment strategy

The notion that heat above 43�C destroys cancer cells
directly is the principle rationale for the clinical appli-
cation of hyperthermia. During regional hyperthermia,
however, the temperature distribution is heterogeneous
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and varies between 40 and 44�C, leading to the concern
that many areas of the tumor may not actually reach
cytotoxic temperatures. Several clinical studies, how-
ever, documented effectiveness of hyperthermia also at
lower temperature, suggesting that mechanisms other
than cytotoxicity may be involved in the beneficial effect
of hyperthermia [2, 3]. Furthermore, fever-like whole
body hyperthermia with a temperature range between 39
and 40�C also shows efficacy in mouse model tumors
and is being investigated in phase I clinical trials [4].

A detailed assessment of temperature-related effects
revealed that the exposure of tumor cells and tumors
to temperatures below 43�C increased their sensitivity
to cytostatics [5] and radiation [6–8]. Hyperthermic
sensitization depends on the temperature achieved and
the duration of the heating [6]. Mechanistically, an
influence of hyperthermia on DNA damage repair [7–
10], cell cycle regulation [11] and tumor hypoxia [12]
are documented. Other events may also be involved
such as the induction of heat-shock protein gene
expression and protein synthesis [13] and the activa-
tion of immunological processes including the activa-
tion of human leukocytes [14], in particular natural
killer cells [15], and sensitizing tumor cells to immune
effector cells [16].

This review gives an overview on the pleiotropic and
sometimes conflicting results of hyperthermia and heat-
shock proteins on tumor cells. In particular, we focus on
the effects of hyperthermic temperatures on the ‘‘im-
mune phenotype’’ of tumor cells and address the heat-
mediated modulation of antigen expression and pre-
sentation, and the susceptibility of tumor cells to im-
mune effector mechanisms.

Thermal stress-related effects on endogenous antigen
expression and presentation

Cytotoxic T lymphocytes have the potential to specifi-
cally destroy target cells, including tumor cells [17]. A
prerequisite for CTL recognition and attack is that tu-
mor cells express antigens and present them via MHC
class I molecules on their surface. The observation that
downregulation or low MHC class I expression and/or
antigens are often observed in tumors and are associated
with escape of tumors from immune surveillance
underscores the primary importance of MHC class I-
restricted antigen presentation [18].

Several groups currently investigate the immunolog-
ically relevant changes in tumor cell physiology and, in
particular, the antigenicity of tumor cells after heat-
shock treatment. Davies et al. [19, 20] published the first
studies describing effects of hyperthermia on antigen
expression. A heat-related, dose-dependent decrease of
melanoma surface antigens by shedding and masking of
surface antigen was documented. Further studies
showed a decrease in the presentation of exogenous
antigens by MHC II [21] and an abrogation of
co-stimulatory functions in antigen-presenting cells after

heat shock [22]. These studies suggested that heat shock
would induce a state of immunological resistance.

On the other hand, evidence has accumulated that
hyperthermia and the associated heat-shock response
increase the immunogenicity of cancer cells [23, 24].
These changes include the induction of MHC class II-
restricted presentation of endogenous antigens [25] and
the enhancement of MHC class I antigen presentation
via heat-shock proteins expression [26]. Expression of
inducible Hsp70 was also found to be associated with
increased tumor immunogenicity [27–29] and with en-
hanced susceptibility of tumor cells to cytotoxic lym-
phocytes [15, 30, 31]. The results of heat-induced
immunological effects still remain controversial, ranging
from heat-induced immunoresistance to immune stimu-
lation.

We have studied the expression of MHC class I
molecules and two tumor-associated antigens, tyrosinase
and Melan-A/MART-1, as well as their MHC class I-
restricted presentation in human melanoma cell lines
during experimental hyperthermia treatment [16] to ad-
dress the concern that heat-shock treatment of tumor
cells may reduce the presence of tumor antigens, thereby
favoring immune escape. We selected two thermal doses,
one above and one below the breakpoint temperature,
that resulted in the same clonogenic survival rates and
that mimic the clinical situation of heterogeneous tem-
perature distribution within the tumor. The breakpoint
temperature is defined as the critical temperature above
which cells start to die exponentially [1, 32]. Exposure to
thermal doses below this critical temperature is not
cytotoxic, renders cells to become transiently thermo-
tolerant and influences the microenvironment. We
investigated the immunological changes as a function of
time after heat exposure since the heat-shock response is
not a one-time point event, but rather a time-period,
starting from heat exposure and extending over several
days of recovery. The duration of the heat-shock re-
sponse, which has been correlated with the half-life of
one or more HSPs [13, 33], was defined by the induction
profile of Hsp70, one of the most thermosensitive HSPs
[16]. We observed distinct expression profiles for Hsp70,
HLA class I and the tumor-associated antigens, tyrosi-
nase and Melan-A/MART-1, which reflected the ther-
mohistory of the cells [16]. Isothermal doses below the
breakpoint temperature, despite longer duration
(42.5�C/120 min), did not significantly affect HLA class
I or antigen expression. Furthermore, during the heat-
shock response after this exposure, tumor cells induced
antigen-specific CTL clones to secrete similar level of
INF-c to control cells, suggesting that the machinery for
antigen processing was also not affected (Table 1; and
Ref. [16]). In contrast, isothermal doses above the
breakpoint temperature (45�C/22 min) induced multiple
changes such as reduction in MHC class I surface
expression and tyrosinase transcript level (Table 2).
Interestingly, tyrosinase protein level (determined by
Western Blot) increased significantly (data in Ref. [16]).
On the other hand, Melan-A/MART-1 remained un-
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changed at both protein and transcript level [16], sug-
gesting that not all proteins are equally affected by heat.
To determine antigen presentation after thermal expo-
sure, heated tumor cells were co-cultured with antigen-
specific CTLs and the IFN-c secretion was measured. As
shown in Table 2, IFN-c secretion was reduced for the
Melan-A/MART-1 (A42)–specific CTL clones, despite
the fact that Melan-A/MART-1 antigen levels were
unchanged (Table 2 and Ref. [16]). Most likely it is the
reduced HLA-A2 surface expression that limits antigen
presentation in that situation. For the tyrosinase-specific
(TyrF8) CTL clone, IFN-c secretion was also transiently
reduced. At 24 h after 45�C/22 min, TyrF8 stimulation
was still low despite the fact that HLA-A2 expression
had recovered to starting levels (Table 2). Tyrosinase
RNA level, however, was still low. Obviously, for
tyrosinase, the level of mRNA, but not of protein, im-
pacts on antigen presentation [16]. Of importance in this
study was the observation that all changes were tran-
sient, and over time tumor cells maintained immuno-
logical homeostasis and remained susceptible to CTL
recognition.

A reduction in HLA-A2 expression early after heat
shock (4–15 h), which translated into reduced capacity
to stimulate T cells, was observed previously by others
[31, 34]. Other studies, performed in the B16 mouse

model [35], reported an augmentation of MHC class I
and better antigen presentation that correlated with
the level of Hsp70. We observed upregulation of MHC
class I only in those cell lines that had low basal levels
of surface class I. In our model, no correlation to heat-
induced Hsp70 overexpression was detected [16]. One
explanation for the different results could be the dif-
ferent basal level of Hsp70 in human and mouse tumor
cells. Indeed, human tumor cells such as our mela-
noma cell lines expressed high levels of Hsp70 already
at 37�C. Thus, Hsp70, if required for antigen presen-
tation, might not be a limiting factor in human tumor
cells, while in the murine system, induced overexpres-
sion of Hsp70 after transfection may generate B16 cell
clones with higher class I expression and better CTL
susceptibility.

In general, although the cited studies present con-
flicting results, it becomes clear that elevated tempera-
tures induce a pleiotropy of changes on the
immunophysiology of tumors which, however, do not
impact the immunological homeostasis of the tumor
over time. We emphasize that the response of tumor cells
is strongly dependent on the model system (human,
mouse, rat), on the magnitude and duration of the
thermal stress and the time that tumor cells are given to
recover from the exposure.

Table 1 Effects of isothermal dose with temperature below the breakpoint temperature (41.8�C/120 min) on 624.38-MEL

Control Recovery at 37�C

37�C 4 h 15 h 24 h 48 h 72 h

HLA-A2DMFI a 458±92 354±131 437±157 511±165 584±169 669±59
Hsp70 DMFIa 47±27 198±50 265±56 383±67 419±83 385±79
Tyosinaseb 1 0.80±0.12 0.76±0.06 0.96±0.12 1.32±0.06 Nt
IFN-c of TyrF8c 100 71±10 67±9 88±16 85±8 103±13
IFN-c of A42c 100 79±10 86±9 89±11 90±6 97±6

aDMean fluorescence intensities (MFI) were calculated by sub-
tracting the MFI value of the isotype control (MOPC21) from the
MFI value of the specific antibody HB54 (directed against HLA-
A2 molecules) or 6B3 (directed against inducible HSp70 mole-
cules). MFI of isotype control ranged between 3 and 25. Results are
the mean values of DMFI ± SD from four to three independent
experiments
bValues are the fold-change in transcript levels relative to the level
at 37�C, which was set to one (crossing points at 37�C were
approximately 16 for tyrosinase). Values are the mean of 3 inde-

pendent experiments (± SD). The confidence interval in which all
values show a difference of ±1.5 cycles compared to the reference
value at 37�C discriminate between significant overexpression of
transcripts from significant underexpersion (0.35–2.8)
cValues are the % of IFN-c relative to control cells at 37�C, which
was set to 100%. TyrF8 and A42 are two CTL clones that recog-
nize tyrosinase-peptide and Melan-A/MART-1 peptides, respec-
tively. IFN-gamma was measured in supernatants of 24 h-
cocultures of CLT with treated 624.38-MEL

Table 2 Effects of isothermal dose with temperature above the breakpoint temperature (45�C/22 min) on 624.38-MEL

Control Recovery at 37�C

37�C 4 h 15 h 24 h 48 h 72 h

HLA-A2DMFIa 458±92 367±31 385±10 578±109 622±75 620±220
Hsp70 DMFIa 47±27 35±12 265±58 275±65 492±88 430±89
Tyosinaseb 1 0.69±0.06 0.10±0.04** 0.13±0.08** 0.84±0.11 NT
IFN-c of TyrF8 c 100 52±2** 54±3** 56±13** 82±25 110±1
IFN-c of A42 c 100 49±5** 60±6 71±16 85±10 105±3

a, b and c see footnote in Table 1
**P<0.01 in comparison to control group at 37�C
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Thermal stress-related effects on susceptibility
of tumor cells to CTL attack

The cytolytic mechanisms of T effector lymphocytes
involve either the Fas/FasL pathway or cytolytic granule
exocytosis [36]. While many tumor types are resistant to
Fas/FasL-mediated apoptosis, most tumors are readily
susceptible to the granule-mediated lytic pathway in vi-
tro and also in vivo as mice deficient in cytotoxic effector
molecules (perforin and granzyme) are more susceptible
to viral and chemical carcinogenesis, and the develop-
ment of spontaneous lymphomas [37]. Granule exocy-
tosis involves several steps, including the recognition of
the target cell by the CTL, adhesion and formation of a
synapse followed by polarization of lytic granules to-
wards the target cell contact site, and the transfer of lytic
proteins into the target cell [38, 39]. Within the target
cell, degrading enzymes (caspases) are activated result-
ing in target cell apoptosis.

Considering that the CTL killing process is a complex
multi-step process, it is evident that there are many
possibilities for interventions that might be utilized by
tumors cells to protect themselves from CTL-induced
apoptosis. Indeed, there are several reports that tumor
cells are resistant to CTL lysis, even though they express
and present antigens that should be recognized by CTL
[40, 41].

Relating to hyperthermia, cytoprotection of heated
cells is well documented and thought to be associated
with Hsp70 overexpression [42, 43]. However, it has to
be mentioned that one study showed that overexpression
of inducible HSP70 alone is not sufficient to provide
thermotolerance, i.e., the protection at nuclear and cy-
toplasmatic level that yield clonal heat resistance [44].

Recently, interesting observations have been made
with regard to Hsp70’s ability to negatively regulate
various stages of the p53-dependent or independent
pathways, by blocking the activation of caspase 9 and 3
[45–49] or by inhibiting lysosomal membrane permea-
bilization [50, 51]. Mechanistically, Hsp70 appears to
infer with multiple cellular function and cell cycle reg-
ulation, including Cdk4, c-Myc [52] or/and cathepsin
activation conferring survival advantage to tumor cells.
So far, only one study using NK cells showed a novel
perforin-independent, granzyme-B mediated apoptosis
pathway for HSP70 membrane positive tumor cells [53].
Otherwise there are no reports that intracellular Hsp70
expression interferes with the perforin/granzyme path-
way by means of cytotoxic T cells.

As an extension from the documented cytoprotective
role of intracellular heat-shock proteins, the hypothesis
developed that heat also induces a state of immune
protection. Resistance of heated tumor cells to immune
mechanisms has been described for TNF-a-related lytic
processes [54–58] either due to variation of the TNF-a
receptor expression or to its binding affinity or inter-
ference with the intracellular pathway [58]. Heat-asso-
ciated resistance to CTL has also been reported [40, 55,

59]. The notion that this resistance was temperature- and
time-dependent, reversible [55, 59] and dependent on de
novo protein synthesis [55] led to the hypothesis that the
heat-induced heat shock proteins, such as Hsp70 and
grp78, might be involved at some point in this process
[59]. In a murine model using Hsp70 transfectants to
simulate the heat-shock response, Jaattela and col-
leagues reported an involvement of Hsp70 in the pro-
tection from TNF-a-mediated monocyte cytotoxicity
and natural cytotoxic cells [60, 61]. More recently,
however, Dressel and colleagues showed in a rat mye-
loma cell line [62] that heat shock confers resistance to
CTL only in the Hsp70-defective cell line [30]. Further-
more, using a Hsp70-transfectant model, Hsp70 appar-
ently prevented the induction of the resistant phenotype
[31]. From these studies, it is difficult to draw a con-
clusion on the role of Hsp70 in the sensitivity to CTL
attack , since Hsp70-transfection cannot be compared to
the in vivo heat-shock response, which involves further
homeostatic-like mechanisms. Moreover, the mouse and
rat models used in these studies differ substantially from
human tumor models, where Hsp70 is already detectable
at physiological temperatures.

In general, in all of these studies, the mechanisms of
heat-induced resistance to CTL were independent from
the degree of target recognition by the CTL, indicating
that during the heat-shock response, factors other than
antigen expression and presentation are involved. Fi-
nally, some groups showed no impact of heat shock on
the sensitivity of tumor cells to perforin or FAS cyto-
toxic pathways [40].

Many studies, however, support the idea that heat
shock and heat-induced HSPs actually correlate with
enhanced susceptibility of tumor cells to cytotoxic lym-
phocytes [23, 24, 27]. In particular, the expression of the
inducible Hsp70, but not of the constitutive Hsc70, has
been correlated with increased tumor immunogenicity
[27, 28].

In our own experience using heat-treated melanoma
cells as target cells for Melan-A/MART-1 and tyrosi-
nase-specific CTL clones, we observed that melanoma
cells following low-temperature exposure were killed to
similar extent than control cells (Fig. 1a). This is con-
sistent with the observation that antigen and MHC class
I expression were not changed (Table 1) during the heat-
shock response. After exposure to a severe initial tem-
perature, an early resistance to CTL lysis developed
(Fig. 1b) which correlated with insufficient antigen pre-
sentation, as evident in the corresponding diminished
ability of heat-treated cells to stimulate in IFN-c secre-
tion (Table 2 and [16]). At 72 h after heat exposure,
HLA-A/peptide complexes were restored at the cell
surface as indicated by stimulation of IFN-c similar to
control cells (Table 2 and Ref. [16]). However, suscep-
tibility to lysis was not yet fully restored (Fig. 1b).
Currently, the mechanism that is responsible for this
resistance is not known; however, the very high expres-
sion of Hsp70 after high-temperature exposure (Table 2)
might be one explanation.
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Thermal stress-related effects on susceptibility
of tumor cells to NK cells

While the requirements for CTL-mediated tumor rec-
ognition are for the most part well defined, the mecha-
nisms controlling NK cell lytic activity are just now
being unraveled and gain complexity almost by the day.
It is now accepted that the activation of NK killing is a
balancing act of inhibitory and activating signals with
the additional involvement of adaptor molecules and
phosphatases [63, 64].

The ‘‘missing-self’’ hypothesis identified the MHC
class I molecules as the critical inhibitory ligands for NK
cell activity [65]. Therefore, the loss of MHC class I
molecules by tumor cells removing inhibitory signals
should result in their recognition by NK cells. The
missing-self recognition, however, operates only when
the target cells also express ligands for activating
receptors expressed by NK cells. Meanwhile, some
activating ligands are identified. Among those are stress-
induced molecules such as MICA/B [66, 67] and heat-
shock proteins [15, 68–71]. Multhoff et al. provide evi-
dence that hyperthermia and chemotherapeutic agents
upregulate surface expression of Hsp70 on tumor cells
which correlate with enhanced susceptibility to NK cell

lysis [72–74]. Another interesting observation was pre-
sented by Michaelsson et al. [75], who observed that the
presentation of peptides from Hsp60 by HLA-E mole-
cules on stressed cells turned the normally NK-inhibi-
tory HLA-E into an NK-activating signal. These
examples demonstrate that in some instances stress-in-
duced signals correlate with enhanced NK cell activity.
For most studies, however, that documented enhanced
NK cell susceptibility of heated tumor cells [54], the
nature of the heat-induced stimulation of NK-mediated
lysis remained undefined and was independent of MHC
class I/peptide complexes. Despite the lack of in-depth
understanding of a mechanistic level, upregulating of
activating NK ligands on tumor cells by hyperthermia
might hold promise for improving therapeutic benefit,
especially for those patients whose tumor has lost MHC
class I expression and thus escapes CTL recognition.

Heat shock–induced tumor cell necrosis might facilitate
the induction of antitumor immune responses

In the previous sections, those effects of hyperthermia
that impact on events positioned at the executive phase
of an antitumor response were addressed. There are,
however, documented reports that hyperthermia might

Fig. 1 Susceptibility of heat-treated 624.38-MEL melanoma cells to CTL-mediated killing after heat exposure. Effector CTLs were TyrF8
and A42, which recognize the tyrosinase or MART-1/MelanA peptide in an HLA-A2-restricted manner [16]. Target cells were the
melanoma cell 624.38-MEL exposed to two different thermal doses pre-determined by clonogenic survival assays to result in similar cell
survival (isosurvival dosis) [16]. Shown in (a) are the relative lysis values of 624.38-MEL after exposure to low temperature and long
duration (41.8�C/120 min) and in (b) after high temperature and short duration (45�C/22 min) expressed as percentage compared to
control cells at 37�C. Cells were exposed to heat treatment by submerging the sealed flask into a temperature-controlled water bath.
Control flasks were sealed and left at 37�C. After heat exposure flasks were returned to 37�C and humidified at 5% CO2 atmosphere. At
indicated time-points viable cells were harvested, labeled with 51Cr for 1 h and co-incubated with titered effector CTL, TyrF8 and A42, at
a constant cell number of 2,000 cells per well in 96-V bottom plates. Duplicate measurements of four-step titrations of effector were used in
all experiments. Spontaneous and maximum releases were determined by incubating the target cells alone and by directly counting labeled
cells, respectively. After 4 h of incubation at 37�C in a humidified 5% CO2 atmosphere, supernatants were harvested, transferred to
Lumaplate solid scintillation microplates, dried over night and counted on a TopCount microplate scintillation counter (Packard,
Meriden, CT, USA). For each E:T ratio, the percentage of lysis was calculated as follows: % specific lysis = (experimental cpm �
spontaneous cpm/maximal cpm � spontaneous cpm)·100. The summarized results (±STD) of two independent experiments obtained at
an effector to target ratio of 10:1 are shown. Relative lysis values were calculated as the percentage of specific lysis compared to control
cells at 37�C which was set to 100%. Absolute values of specific lysis at 37�C were 19%±5 for A42 and 34%±12 for TyrF8. The
statistical significance of experimental values was assessed by means of independent Student’s t test comparing melanoma cells at 37�C and
after heat-shock treatment. P values of P<0.05 (*) are significant, P< 0.01 (**) are considered as highly significant
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also influence the induction of an antitumor response.
For the priming or induction of effector cells, antigen
presentation in conjunction with costimulation is re-
quired. This process is most efficiently mediated by
dendritic cells (DC) that acquire antigen from the sur-
rounding environment and upregulate costimulatory
molecules and conditioning cytokines. Several reviews
[76–78] including those presented in this issue describe
that Hsp70 and potentially other heat-shock proteins
(gp96, Hsp110, grp170) might play a pivotal role in this
process by providing tumor antigens and maturation
signals to DC. For HSPs to meet DC and perform these
activities, they have to change their cellular localization
from the tumor cell’s interior to the extracellular space.
This may occur during clinical hyperthermia when high
temperatures are locally achieved resulting in tumor
necrosis, thereby delivering HSPs to the extracellular
environment. The immunological activities of extracel-
lular stress-proteins in antigen transfer, DC activation
and induction of T and NK cell responses are discussed
in detail in another review in this issue.

Conclusion

The use of thermal therapy, both for its direct cytotoxic
effect and as a sensitizer of radiation and chemotherapy,
is on the rise. Therefore, a better understanding of the
mechanisms by which it exerts its beneficial effects is
important. Although there are numerous reports on the
effect of heat on tumor cell physiology and immunology,
the results are often conflicting. There are many possi-
bilities that hinder conclusive interpretation of all the
available data. One is the use of different model systems,
including human and rodent systems which differ in
their baseline expression levels of inducible Hsp70. An-
other is the use of different thermal doses and the
analysis at different time-points after exposure. Since the
heat-shock response is a time period starting with the
exposure and extending over the time of recovery, it is
conceivable that different effects are manifested at dif-
ferent time points.

To better understand the effects of hyperthermia on
immunophysiology in vivo during clinical hyperthermia
and dissect the mechanisms which lead to the clinical
response at different temperatures, it is necessary to
rigorously monitor the thermal doses within the tumor
and its microenvironment and to more deeply investi-
gate the interaction between chemotherapy and/or
radiation with heat treatment with regard to their single
and concomitant effects on tumor immunophysiology
and on the patient’s immune system. Moreover, al-
though hyperthermia is mostly applied locally or
regionally at the tumor site, new studies also show effects
for whole body hyperthermia with ‘‘fever-range’’ tem-
peratures, suggesting that low temperatures may display
further systemic effects, including activation of the im-
mune system.
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