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Abstract: Biological sex affects the pathogenesis of type 2 and type 1 diabetes (T2D, T1D) including the 
development of β cell failure observed more often in males. The mechanisms that drive sex differences in β cell 
failure is unknown. Studying sex differences in islet regulation and function represent a unique avenue to 
understand the sex-specific heterogeneity in β cell failure in diabetes. Here, we examined sex and race 
differences in human pancreatic islets from up to 52 donors with and without T2D (including 37 donors from the 
Human Pancreas Analysis Program [HPAP] dataset) using an orthogonal series of experiments including single 
cell RNA-seq (scRNA-seq), single nucleus assay for transposase-accessible chromatin sequencing (snATAC-
seq), dynamic hormone secretion, and bioenergetics. In cultured islets from nondiabetic (ND) donors, in the 
absence of the in vivo hormonal environment, sex differences in islet cell type gene accessibility and expression 
predominantly involved sex chromosomes. Of particular interest were sex differences in the X-linked KDM6A 
and Y-linked KDM5D chromatin remodelers in female and male islet cells respectively. Islets from T2D donors 
exhibited similar sex differences in differentially expressed genes (DEGs) from sex chromosomes. However, in 
contrast to islets from ND donors, islets from T2D donors exhibited major sex differences in DEGs from 
autosomes. Comparing β cells from T2D and ND donors revealed that females had more DEGs from autosomes 
compared to male β cells. Gene set enrichment analysis of female β cell DEGs showed a suppression of 
oxidative phosphorylation and electron transport chain pathways, while male β cell had suppressed insulin 
secretion pathways. Thus, although sex-specific differences in gene accessibility and expression of cultured ND 
human islets predominantly affect sex chromosome genes, major differences in autosomal gene expression 
between sexes appear during the transition to T2D and which highlight mitochondrial failure in female β cells. 
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Introduction 

Type 1 and type 2 diabetes (T1D, T2D) are heterogeneous diseases and biological sex affects their 

pathogenesis.  In the context of T2D, sex affects the development of adiposity, insulin resistance, and 

dysfunction of insulin-producing β cells of pancreatic islets.1,2 For example, ketosis-prone diabetes is a form 

of T2D with acute β cell failure and severe insulin deficiency predominantly observed in black men.3-5 A 

missense mutation in the β cell-enriched MAFA transcription factor is found in subjects with adult-onset β cell 

dysfunction, where men are more prone to β cell failure than women.6 Similarly, T1D is the only common 

autoimmune disease characterized by a male predominance1,7-9, and males who develop T1D during puberty 

have lower residual β cell function than females at diagnosis.10 Furthermore, among T1D subjects receiving 

pancreatic islet transplantation, recipients of male islets exhibit early graft β cell failure when compared to 

recipients of female islets.11  The mechanisms that drive preferential β cell failure in males, however, is 

unknown. Studying sex differences in islet biology and dysfunction represent a unique avenue to understand 

sex-specific heterogeneity in β cell failure in diabetes.2  

Female- and male-specific blood concentrations of the gonadal hormones estradiol and testosterone produce 

differences in islet function in vivo.12-20  However, the sex-specific and cell autonomous factors that influence 

islet function outside the in vivo hormonal environment are unknown. These differences could be due to sex 

chromosome gene dosage, or epigenetic programming caused by testicular testosterone during development 

in males.1,21,22  The Genotype-Tissue Expression (GTEx) project analysis of the human transcriptome across 

various tissues revealed that the strongest sex bias is observed for X-chromosome genes showing higher 

expression in females.23 In the pancreas, the majority of genes with sex-biased expression are on the sex 

chromosomes and most sex-biased autosomal genes are not under direct influence of sex hormones.24 In human 

pancreatic islets, DNA methylation of the X-chromosome is higher in female than males.25 Thus, the cell 

autonomous influence of sex chromosome genes may impact sex-specific islet biology and dysfunction and 

diabetes pathogenesis.  

Here, we examined sex and race differences in human pancreatic islets from up to 52 donors with and without 

T2D using an orthogonal series of experiments including single cell RNA-seq (scRNA-seq), single nucleus assay 

for transposase-accessible chromatin sequencing (snATAC-seq), and dynamic hormone secretion and 
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bioenergetics. Our studies establish biological sex as a genetic modifier to consider when designing experiments 

of islet biology. 

Results  

Human islet cells show conserved autosomal gene expression signatures independent of sex and race. 

We performed scRNA-seq on pancreatic islets from age- and BMI-matched non-diabetic donors across race and 

sex (Tulane University Islet Dataset, TUID, n=15), which we combined with age- and BMI-matched non-diabetic 

donors and donors with T2D from the HPAP database26,27 (n=37) to create an integrated atlas of islet cells (Fig. 

1a and Extended Data Fig. 1a-b). To obtain high-quality single cell signatures, we used a series of thresholds 

including filtering, ambient RNA correction, and doublet removal, resulting in 141,739 high-quality single cell 

transcriptomes, with TUID showing optimal sequencing metrics (Extended Data Fig. 1c and 1d). We identified 

17 cell clusters, which we annotated based on marker genes with differential expression (DEGs) correlating to 

known transcriptional signatures of islet cells (Fig. 1b).28 Cell clusters showed even distribution across sex, race, 

disease, and library of origin (Fig. 1c). Consistent with a prior analysis26, all islet cell clusters except for 

lymphocytes and Schwann cells were identified in HPAP data (Extended Data Fig. 1b). Notably, we observed 

greater variability in total cell number within each donor library in HPAP compared to TUID (Fig. 1d). We 

observed a high degree of correlation between cell-specific gene expression and cell clusters across donors 

(Extended Data Fig. 1e). As expected, sex chromosome-specific transcripts were expressed across male and 

female cell types (Extended Data Fig. 1f).  

We more broadly examined DEGs across clusters by creating sample ‘pseudo-bulk’ profiles for each cell type to 

control for pseudo-replication of cells being repetitively sampled from a fixed donor.  For example, each β cell 

per donor was aggregated into one profile, enabling us to control for the disproportionate β cell numbers across 

donors (Fig. 1d).  Autosomal genes with expression specific to each cell cluster were consistent across sex and 

race. In endocrine cell types, we found 5,481 β (INS, MAFA), 7,395 α (GCG, ARX), 71 δ (HHEX, SST), 3 ε 

(GHRL), 12 γ (PPY) and 159 cycling endocrine (TOP2A, MKI67) DEGs (Fig. 1e-f and Extended Data Fig. 1g). 

In non-endocrine cell types, we found 821 ductal (CFTR, TFF1), 1,093 Acinar (PNLIP, AMY2A), 117 quiescent 

stellate (PTGDS, DCN), 935 activated stellate (RGS5, FABP4), 616 endothelial (PECAM1, VWF) 64 lymphocyte 

(CCL5, CD7), 405 macrophage (SDS, FCER1G), 48 mast cell (TPSB2, TPSAB1) and 36 schwann cell (SOX10, 
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CDH19) DEGs (FDR<0.1) (Fig. 1f and Extended Data Fig. 1g). Using cell type-specific DEGs, we next identified 

upregulated cell type-specific pathways across sex and race using the gene ontology database (FDR<0.2).29 

Endocrine cells were enriched in peptide hormone secretion independent of sex and race (Fig. 1g and 1h). 

Other cell types showing upregulated cell-type specific pathways included cycling endocrine cells (mitotic cell 

cycle transition, organelle fission), ductal cells (organic anion transport, branching morphogenesis), acinar cells 

(digestion, alcohol metabolism), quiescent stellate cells (collagen fibril organization, muscle cell differentiation), 

activated stellate cells (cell proliferation, cell chemotaxis), endothelial cells (endothelial cell migration, 

angiogenesis), lymphocytes (immune receptor signaling, T-cell selection), macrophages (antigen processing 

and presentation, cell chemotaxis), mast cells (immune response, mast cell activation) and schwann cells (CNS 

myelination and axon development) (Fig. 1g). Cell network analysis confirmed segregation of endocrine 

pathways from exocrine and immune cell type pathways (Extended Data Fig. 1h). Taken together our data 

demonstrate that canonical gene networks are conserved across endocrine and non-endocrine cell types 

independent of sex and race (Fig. 1e-h, Extended Data Fig. 1h).  

Sex differences in islet cell transcriptomes from non-diabetic donors predominantly affect sex 

chromosome genes. 

We performed two sets of analysis comparing changes in gene expression in biological variables of sex and race 

across groups. To study transcriptional differences across donors, we generated principal component analysis 

(PCA) plots of islet ‘pseudo-bulk’ transcriptional profiles across all 52 donors. Donors did not cluster based on 

sex, race, disease status, or origin of donor (Fig. 2a). We next segregated donors by cell type, and the resulting 

PCA showed clustering of samples based on cell type (Fig. 2b). Both whole islet ‘pseudo-bulk’ and individual 

cell type ‘pseudo-bulk’ sample profiles showed no clustering based on sex or race. This suggests that human 

islets likely do not have major differences in cell type transcriptional profiles across either race or sex.   

Focusing on non-diabetic donors, we examined genes with differences in expression between sexes using cell 

type ‘pseudo-bulk’ analysis. Most sex-associated genes were related to sex chromosomes (FDR<0.1). In β cells, 

60% of genes with increased expression in females were linked to the X chromosome and 70% of genes 

increased in males were linked to the Y chromosome (Fig. 2c and Extended Data Fig. 2a). Similarly, in α cells 

50% of male- and 57% of female-enriched genes were linked to the X or Y chromosome, respectively (Fig. 2d 

and Extended Data Fig. 2a). In α/β cells, X-inactive specific transcript (XIST) and lysine demethylase 6A 
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(KDM6A) were upregulated in females, while ribosomal protein S4 Y-linked 1 (RPS4Y1) and lysine demethylase 

5C (KDM5D) was upregulated in males (Fig. 2c and 2d). We only observed significant race differences in DEGs 

between hispanic and white β and α cells (Extended Data Fig. 2c). 

Next, we identified sex-specific changes in pathways related to sex chromosome genes using gene set 

enrichment analyses (Fig. 2e and Extended Data Fig. 2b). Female β cells were enriched for pathways for X-

chromosome inactivation and histone lysine demethylation, whereas male β cells were enriched for pathways 

for Y-chromosome genes, histone lysine demethylation, and male sex determination (Fig. 2e).  Female α cells 

were enriched for histone lysine demethylation, X-chromosome inactivation, and mitochondrial transcription, 

while male α cells were enriched for histone demethylase activity (Fig. 2f). Similar effects were observed in other 

cell types (Extended Data Fig. 2b). Race differences in islet cells are shown in Fig. 2e and 2f as well as 

Extended Data Fig. 2c and 2d. Of note, black male β cells showed higher cytokine signaling compared to white 

males, suggesting black male β cells may exhibit a higher inflammatory response (Fig. 2e). 

Accessible chromatin landscape across islet cells  

To examine the effect of sex on the epigenome, we performed snATAC-seq on all non-diabetic donors of the 

TUID. To confirm library quality, we filtered and evaluated single nuclei across all 15 donors for TSS enrichment, 

fragment of reads in promoters, and fragment reads in accessible peaks (Extended Data Fig. 3a and 3b), as 

well as sample specific sequencing metrics (Extended Data Fig. 3c and 3d). We then clustered the 52,613 

filtered profiles resulting in 11 distinct cell clusters which, like gene expression data, were evenly distributed 

across sex, race, and donor (Fig. 3a-c). To determine the identity of each cluster, we used label transfer to 

annotate each snATAC-seq cell cluster using our integrated scRNAseq islet cell atlas as a reference. We 

observed a high degree of correlation between genes with differential accessibility in snATAC-seq and genes 

with differential expression scRNAseq (Fig. 3d). Cell types also showed a high degree of correlation between 

RNA expression, chromatin accessibility, and predicted RNA expression (Extended Data Fig. 3e-g). We further 

examined the cell type annotations using the activity of cell type-specific genes. This validated clusters 

representing β (INS-IGF2), α (GCG), δ (SST), γ (PPY), acinar ductal (CFTR), (PRSS1), endothelial (ESM1), 

macrophage (SDS), stellate PDGFRA) and lymphocyte (CD3D) cells by comparing gene accessibility with 

predicted RNA expression (Fig. 3e and 3f, Extended Data Fig. 3h).  
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To characterize regulatory programs across each cluster, we identified candidate cis-regulatory elements 

(cCREs) in each cell type resulting in 404,697 total cCREs across all 11 cell types. We next identified cCREs 

with activity specific to each cell type, resulting in 55,710 cell type-specific cCREs (Fig. 3g). We identified genes 

in proximity to cell type-specific cCREs, resulting in a list of putative gene targets of cell type-specific regulatory 

programs. Evaluating these gene sets for enrichment of gene ontology terms revealed cell type-specific 

processes, and which were similar to those identified in cell type-specific gene expression (Fig. 3h). Using 

chromVAR30, we identified transcription factor (TF) motifs enriched in the accessible chromatin profiles of each 

cell type using the JASPAR 2020 database.31 In-depth analysis of these motifs revealed cell type-specific TF 

motif enrichment patterns (Fig. 3i). For example, we observed enriched motifs for ISL1 in endocrine cells, PDX1 

in β and δ cells, and SOX9 in ductal and acinar cells (Fig. 3i and j). These accessible motifs also paralleled cell 

type specific TF expression in scRNA-seq (Fig. 3j). Similar to previous studies32-35, hierarchical motif clustering 

highlighted that the regulatory programs of β and δ cells are more related, as with α and γ cells (Fig. 3g). Select 

motifs highly enriched for a cell type (fold enrichment>1.5, -log10 FDR>50) included PAX4, RFX2, NKX6-2 and 

PDX1 in β cells, NKX6-2, NKX6-1, PDX1, and MEOX1 in δ cells, MAFB, FOXD2 and GATA2-5 in α cells, and 

KLF15 and NRF1 in γ cells (Extended Data Fig. 3i). Non-endocrine cells motif enrichments are also provided 

in Extended Data Fig. 3i.  

Sex differences in chromatin accessibility of islet cells from non-diabetic donors predominantly affects 

sex chromosomes 

To assess sex differences in chromatin accessibility, we identified sex-associated cCREs using logistic 

regression. As expected, β cells exhibited sex differences in chromatin accessibility at sex chromosome genes 

including KDM6A, XIST and KDM5D (Fig. 4a). Males exhibited more differentially accessible regions (250 in β, 

565 in α) than females (203 in β, 553 in α). Next, we identified genes in a 100 kb proximity to sex-associated 

cCREs and interrogated their RNA expression. We found that Y-linked genes (SRY, RPS4Y1, UTY, TTTT14) in 

males and X-linked genes (KDM6A, XIST, DHRSX) in females were proximal to sex-associated cCREs (Fig. 

4b). Accordingly, when comparing gene expression and cCREs with sex-specific association, we predominantly 

observed sex-chromosome genes (Fig. 4c). Gene ontology analysis of this subset of genes revealed enrichment 

in pathways regulating epigenetic control and X chromosome dosage compensation in females, and histone 

modification in males (Fig. 4d). Notably, the histone demethylase X-linked gene KDM6A and the long non-coding 
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RNA XIST were more accessible in female islet cells, while the histone demethylase Y-linked gene KDM5D was 

more accessible in males (Fig. 4e). We examined sex differences in TF-specific motif accessibility in α/β cells. 

Notably, females exhibited a greater number of TF-specific accessible motifs (511 in β, 376 in α) compared to 

males (33 in β, 74 in α) (Fig. 4f). Upon interrogating differentially expressed TF across cell types, MAFA, SIX3, 

PDX1, and RXRG were upregulated in β cells while ARX, FEV, STAT4 and ISL1 were upregulated in α cells 

irrespective of sex (Fig. 4g). We applied Pando36 to scRNA-seq and snATAC-seq data to infer relationships 

between target gene expression, TF activation, and TF binding and define gene regulatory networks (GRNs) in 

male and female β and α cells. The GRNs provide sets of regulated target genes and cCREs for expressed TFs. 

Irrespective of sex, MAFA, BHLHE41, MEIS2 and MLXIPL in β cells, and PAX6 and SOX5 in α cells, exhibited 

a high degree of centrality and revealing many associated genes within these TF GRNs (Fig. 4h). In males, 

PDX1, NKX6-1 and, RXRG exhibited higher centrality in β cells, and ARX exhibited higher centrality in α cells, 

compared to females (Fig. 4h). 

Sex and race differences in β cell function  

We performed dynamic insulin and glucagon secretion assays in TUID islets for non-diabetic donors. We 

observed no significant difference in insulin secretion across sex and race using classical insulin secretagogues 

(Extended Data Fig. 4a-d) or an ascending glucose concentration ramp (Extended Data Fig. 4e-h). However, 

we observed a decreased insulin response to high glucose and IBMX (a phosphodiesterase inhibitor which raises 

intracellular cAMP) in black male compared to white male islets (Extended Data Fig. 4a and b). We observed 

no difference of race (Extended Data Fig. 4i and j) or sex (Extended Data Fig. 4k and l) on α cell function 

during conditions reflecting hypoglycemia and inhibition of insulin secretion (1.7mM Glucose + 1uM Epinephrine). 

We also examined the effects of sex and race on islet bioenergetics by quantifying oxygen consumption rate 

(OCR) (Extended Data Fig. 4m-p) and extracellular acidification rate (ECAR) (Extended Data Fig. 4q-t) during 

a glucose challenge in TUID islets. Female islets exhibited greater ATP mediated respiration and coupling 

efficiency than male islets (Extended Data Figure 4n and 4p), suggesting more efficient mitochondria. There 

was no difference in ECAR between male and female islets. 

Dysregulation of β and α cell transcriptomes from non-diabetic compared with T2D donors suggests sex 

differences in T2D pathogenesis. 
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We examined the effect of sex on islet hormone secretion using the HPAP islet perifusion database matched for 

donors we sequenced in this study. Islets from male and female donors with T2D exhibited decreased insulin 

secretion in response to high glucose, incretin and KCl compared to islets from non-diabetic donors (Extended 

Data Fig. 5a and 5b), without evidence for sex difference. T2D islets exhibited no difference in α cell function in 

hypoglycemic conditions compared to non-diabetic donors (Extended Data Fig. 5c and 5d). 

We compared the transcriptional profile of male and female HPAP donors with T2D. In contrast with non-diabetic 

donors, where most sex-associated genes were related to sex chromosomes (Fig. 2c and 2d), islets from T2D 

donors exhibited multiple sex-specific differences in DEGs from sex chromosomes and autosomes (Fig. 5a). 

When comparing DEGs in β and α cells from male and female T2D donors, the largest and most significant 

changes were restricted to sex-linked genes (Fig. 5b). We next compared the transcriptional profile of male and 

female HPAP donors with T2D to that of non-diabetic TUID and HPAP donors (Extended Data Fig. 1a). Notably, 

in comparison of T2D vs. non-diabetic β cells, females exhibited more DEGs from autosomes (721 upregulated 

and 1164 downregulated) than males (111 upregulated and 99 downregulated), with only 5.2% of DEGs shared 

across sex (Fig. 5c and 5d). Similarly, in comparison of T2D vs. non-diabetic α cells, females exhibited more 

DEGs from autosomes (589 upregulated and 1552 downregulated) than males (14 upregulated and 6 

downregulated), with only 0.28% overlap (Fig. 5c and 5f). When comparing T2D vs. non-diabetic donors in other 

cell types, females also exhibited more autosomal DEGs than males (Fig. 5c). We determined enrichment of 

gene ontology terms in these genes, and female β and α cells exhibited reduced mitochondrial function and 

respiration pathways in T2D (Fig. 5e and 5g) while male β cells exhibited reduced hormone and insulin secretion 

pathways in T2D (Fig. 5e). Enrichment of ontology terms for other islet cells in females and males are shown in 

Extended Data Fig. 6.  

Discussion 

Our study provides a single cell atlas of sex-specific genomic differences in pancreatic islet cell types in subjects 

with and without T2D. In non-diabetic islet cells, sex differences in sex-linked genes predominate. In females, 

XIST and its negative regulator TSIX are upregulated across all islet cells, suggesting a role of X-chromosome 

dosage compensation37 in human islet function. Similarly, the Y-linked ubiquitin specific peptidase USP9Y38 and 

S4 ribosomal protein RPS4Y139 genes are expressed exclusively in all male cells, also suggesting a role for 

these genes in male islet function. Most genes on one X chromosome of XX cells are silenced in development 
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through X chromosome inactivation by XIST, thus normalizing X chromosome genes dosage between sexes. 

However, some X chromosome genes escape inactivation and are expressed from both alleles in XX cells.40,41 

These “X-escape genes” are conserved between mouse and humans, and several are epigenetic remodelers 

that promote histone modification to regulate genome access to transcription factors.  For example, the histone 

demethylase KDM6A escapes X inactivation42 and was more accessible and expressed in female β and α cells. 

KDM6A promotes sex differences in T cell biology.43 Similarly, KDM5D is only expressed from the male Y 

chromosome and was overexpressed in male β and α cells. KDM5D drives sex differences in male osteogenesis, 

cardiomyocyte, and cancer.44-47 Thus, sex differences in expression of chromatin remodelers like KDM6A or 

KDM5D may influence sex-specific chromatin access to transcription factors promoting sex differences in islet 

function. Consistent with this possibility, we observed a five-to-ten-fold greater number of transcription factor-

specific accessible motifs in female compared to male α and β cells. 

Non-diabetic female islets exhibited greater ATP-mediated respiration and coupling efficiency than those of 

males, which is consistent with females’ mitochondria having greater functional capacity.48,49 In contrast, female 

β cells from T2D donors showed reduced activation of pathways enriched in mitochondrial function compared to 

female β cells from non-diabetic donors, which was not observed in male β cells. This suggests that in the 

transition from normoglycaemia to T2D, female β cell develop greater mitochondrial dysfunction than those of 

males.50 Sex hormones may explain these differences, as estrogen and androgen receptors affect mitochondrial 

function in female and male β cells.51,52 However, since differences between islets from non-diabetic and T2D 

donors were present outside of the in vivo hormonal environment, cell autonomous factors, such as the sexually 

dimorphic sex chromosomes genes described above are more likely to be involved in these differences.  

We find little evidence of differences across race, although inflammatory cytokine signaling was increased in 

black male β cells via IL18, a cytokine implicated in diabetes, obesity, and metabolic syndrome.53-55  In addition, 

non-diabetic black male islets exhibit decreased cAMP-stimulated insulin secretion compared to white male 

islets. This is reminiscent of ketosis-prone diabetes, a form of T2D mostly observed in males of sub-Saharan 

African descent with severe β cell failure.3-5 

A key aspect of our study is the use of ‘pseudo-bulk’ profiles aggregated per cell type in each sample. Collapsing 

cell profiles by sample enables to effectively control for pseudo-replication due to cells being sampled from a 

fixed number of donors, whereas treating each cell from the same cluster as an independent observation leads 
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to inflated p-value and spurious results. This approach has demonstrated high concordance with bulk RNA-seq, 

proteomics and functional gene ontology data.56,57 We applied a hypergeometric statistical model using ‘pseudo-

bulk’ count data correcting for library composition bias and batch effects in the scRNA-seq.26 This approach has 

enabled us to recapitulate biological ground truth, where we demonstrate high concordance between accessible 

chromatin and associated active genes across human islet cells.  

In conclusion, this study establishes an integrated accessible chromatin and transcriptional map of human islet 

cell types across sex and race at single cell resolution, reveals that sex-specific genomic differences in non-

diabetic individuals predominantly through sex chromosome genes, and reveals genomic differences in islet cell 

types in T2D which highlights mitochondrial failure in females.  

Limitations of the study  

Despite the inclusion of seven black donors (Tulane dataset) to promote genetic diversity, our study is limited by 

the small number of donors. Future extramural funding for the inclusion and study of diverse genetic datasets is 

essential. Another key consideration is library composition bias owing to targeted islet sequencing, which is not 

a representation of all pancreatic cells, cell subtypes, or spatiotemporal domains.58,59 Even after utilizing a 

stringent ambient RNA correction methodology, invariably residual contaminant RNA can be observed across 

cells. Emphasis is given on generating tools to adjust for ambient RNA particularly in case of pancreatic cells 

containing high expression of genes such as INS and PRSS1.  
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Fig. 1: Pancreatic islet cells have a conserved expression signature across sex and race. 
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a, Experimental and computational design. b, UMAP plot denoting integrated clustering of 141,739 single 
pancreatic islet cells across 17 clustered cell types based on their scRNAseq profiles, spanning n=52 datasets. 
Each cluster cell type is denoted by a label and color. c, Cells diversified based on donor’s sex, origin, race, and 
disease status. d, Cell number stemming from each of the n=52 donors, grouped based on origin, race, disease 
status and sex. e, Venn diagrams showing conserved differentially expressed genes (DEGs) upregulated in each 
cluster, across race and sex in non-diabetic donors. Each number denotes conserved upregulated genes across 
sex and race. Venn diagram identities are colored based on clusters shown in A. f, Gene expression heatmap 
of conserved genes grouped based on colored and labelled clusters as in A. Heatmap is grouped based on 
disease, source, sex, and race, as denoted by the bars on top. Select genes are labeled on the y-axis. g, Gene 
ontology (GO) analysis showing select upregulated pathways across clusters as shown in E. The intensity of the 
color denotes scaled FDR corrected adj p-value, and size of the bubble denotes the gene:query ratio. h, 
Activated pathway network analysis of conserved pathways across sex and race in case of β, α and δ cell 
clusters. n= 36 non-diabetic and n=16 T2D diabetic donors. DEGs have FDR adjusted q-value<0.1, GO 
pathways have FDR adjusted q-value<0.2 
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Fig. 2: Transcriptional differences across islet β and α cells, highlight enrichment in sex-chromosome 
genes.  
a, Principal component analysis (PCA) plot of pseudo-bulk transcriptional profiles across all individual donor 
islets. b, PCA plot of pseudo-bulk transcriptional profiles in each cell type across all donors. c-d, Volcano plots 
showing differentially expressed genes (DEGs) across sex in case of non-diabetic: c, β cells. d, α cells. e, GO 
analysis of all β cell DEGs. f, GO analysis of all α cell DEGs. n= 36 non-diabetic and n=16 T2D diabetic donors. 
DEGs have FDR adjusted q-value <0.1, GO pathways have FDR adjusted q-value <0.2 
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Fig. 3: Chromatin accessibility landscape of human pancreatic islet cell types.  
a, UMAP plot denoting integrated clustering of 52,613 single pancreatic islet cells across 11 clustered cell types 
based on their accessible chromatin profiles, spanning n=15 datasets. Each cluster cell type is denoted by a 
label and color. b, Cell diversified based on sex and race. c, Cell distribution stemming from each of the n=15 
donors, grouped based on race and sex. d, Normalized confusion matrix, showing correlation across cell types 
based on their cell annotation based on their accessible chromatic profile (x-axis) and predicted cell type label 
gene expression profile (y-axis). e, Aggregated read density profile within a 50-kb window flanking a TSS for 
selected endocrine marker genes. f, Promoter accessibility as in (e) for selected acinar, ductal, endothelial and 
macrophage genes. g, Row normalized chromatin accessibility peak counts for 55,710 candidate cis regulatory 
elements (CREs) across all 11 cell types. Cells are clustered based on cell type, sex and race. h, Gene ontology 
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profiles of differentially active genes based on CREs in g. i, Row-normalized motif enrichment (ChromVAR) z-
scores for the 500 most variable transcription factor motifs, across cell type, sex, and race. Select motifs and 
corresponding transcription factors are highlighted. j, Enrichment z-scores projected onto UMAP coordinates of 
accessibility for select motifs from i (left panel). Normalized RNA expression projected onto UMAP profiles of 
scRNAseq profiles of islet cells as shown in (Fig. 1a) (right panel). n= 11 non-diabetic donors. Differentially 
accessible chromatin peak counts have FDR adjusted q-value<0.1, GO pathways have FDR adjusted q-
value<0.2 
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Figure 4. Sex-based enrichment for sex-chromosome gene accessibility in human islet cells  
a, Row-normalized differentially accessible chromatin peaks across sex and cell-type. XIST, KDM5D and 
KDM6A are highlighted. b, Row normalized expression profiles for genes in a 100kb boundary in proximity to 
cCREs corresponding to a in scRNAseq dataset. c, Row normalized expression profiles for the subset of genes 
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corresponding to b and differentially expressed genes across sex in scRNAseq dataset. d, Gene ontology dot 
plot showing differential pathways active across multiple cell types based on sex. e, Aggregated read density 
profile within a 50-kb window flanking a TSS for KDM6A, KDM5D and XIST. f, Violin plots of differentially 
accessible motifs identified using ChromVAR in female and male β cells (top) α cells bottom). g, Dotplot across 
sex showing top 25 ranked differentially expressed transcription factors across beta and alpha cells. h, Gene 
regulatory network UMAP embedding of pan-islet transcription factor (TF) activity, based on co-expression, and 
inferred interaction strength across TFs, for males (left) and females (right). Size/color represent PageRank 
centrality of each TF. TFs from (g) are highlighted for β (red) and α (blue) cell types. n= 11 non-diabetic donors. 
Differentially accessible chromatin peak counts have FDR adjusted q-value<0.1, GO pathways have FDR 
adjusted q-value<0.2. 
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Figure 5. Transcriptional differences in T2D compared to non-diabetic endocrine cells. 
a, Heatmap of DEGs across T2D donors. b, Violin plots showing DEGs across male and female T2D β/α cells. 
c, Violin plots showing DEGs across β/α cells when diabetic donors are compared to non-diabetic controls across 
sex. d, Venn diagram showing DEGs across different sex-disease comparisons in case of β cells. Color denotes 
the number of genes. e, Gene ontology dotplot for upregulated and downregulated pathways for β-cell DEGs. f, 
Venn diagram showing DEGs across different sex-disease comparisons in case of α cells. Color denotes the 
number of genes. g, Gene ontology dotplot for upregulated and downregulated pathways for α-cell DEGs. n= 36 
non-diabetic and n=16 T2D diabetic donors. DEGs have FDR adjusted q-value<0.01, GO pathways have FDR 
adjusted q-value<0.2 
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Lead contact 

Further information and requests for resources and reagents should be directed to and will be fulfilled by the 

lead contact, Franck Mauvais-Jarvis (fmauvais@tulane.edu).  

Materials availability 

This study did not generate any new materials. 

Data and code availability 

• Single cell RNA and single nuclei ATAC sequencing data has been deposited at GEO (deposition will be 

made public upon publication), All data reported in this paper will be shared by the lead contact upon 

request. 

• A description of coding environments required to reproduce scRNAseq analysis in this paper are outlined 

in: https://github.com/FMJLabTulane/sex_regulome_pancreas 

• Any additional information required to reanalyze the data reported in this paper is available from the lead 

contact upon request. 

Human pancreatic islets  

De-identified human pancreatic islets from fifteen male and female donors were obtained from PRODO 

Laboratories Inc, and the Integrated Islet Distribution Program (IIDP). Islets were left in culture at 37°C in a 

humidified incubator containing 5% CO2 overnight before any experiments were performed. Islets were cultured 

in phenol-red free RPMI medium (Gibco) containing 11mM glucose, supplemented with 10% Charcoal Stripped 

FBS (Invitrogen), HEPES (10mM; Gibco), Sodium Pyruvate (1mM; Gibco), β-mercaptoethanol (50µM; 

Invitrogen), GlutaMAX (2mM; Gibco) and Penicillin-Streptomycin (1x; Gibco). 

Studies involving Human cadaveric tissue. 

Samples originate from de-identified cadaveric donors and are institutional review board exempt. 

Measurement of insulin secretion in perifusion.  

Perifusion experiments were performed in Krebs buffer containing 125mM NaCl, 5.9mM KCl, 1.28mM CaCl2, 

1.2mM MgCl2, 25mM HEPES, and 0.1% bovine serum albumin at 37°C using a PERI4-02 machine (Biorep 

Technologies). Fifty hand-picked human islets were loaded in Perspex microcolumns between two layers of 

acrylamide-based microbead slurry (Bio-Gel P-4, Bio-Rad Laboratories). For experiment 1, cells were challenged 
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with either low or high glucose (5.6mM or 16.7mM), IBMX (100μM), epinephrine (1μM) or potassium chloride 

(20mM) at a rate of 100µL/min. After 60 minutes of stabilization in 5.6mM glucose, cells were stimulated with the 

following sequence: 10min at 5.6mM glucose, 30min at 16.7mM glucose, 15min at 5.6mM glucose, 5min at 

100μM IBMX + 16.7mM glucose, 15min at 5.6mM glucose, 5min at 1μM epinephrine + 1.7mM glucose, 15min 

at 5.6mM glucose, 15min at  20mM KCl + 5.6mM glucose, and 15min at 5.6mM glucose.  In case of experiment 

2, islets were challenged with either low or graded high concentrations of glucose (2, 5, 11 or 20mM) or 

potassium chloride (20mM) at a rate of 100μL/min. After 60min of stabilization in 2mM glucose, islets were 

stimulated in the following sequence: 10min at 2mM glucose, 10min at 7mM glucose, 10min at 11mM glucose, 

10min at 20mM glucose, 15min at 2mM glucose, 10min at 20mM KCl + 2mM glucose, 10min at 20mM KCl + 

11mM glucose and, 10min at 2mM glucose.  Samples were collected every minute on a plate kept at <4°C, while 

the perifusion solutions and islets were maintained at 37°C in a built-in temperature controlled chamber. Insulin 

and glucagon concentrations were determined using commercially available ELISA kits (Mercodia). Total insulin 

and glucagon release was normalized per total insulin or glucagon content respectively using a human insulin 

or glucagon ELISA kit (Mercodia). 

For samples used as a part of the HPAP dataset, sample metadata and perifusion data were downloaded from 

the HPAP website: https://hpap.pmacs.upenn.edu/, for samples used as a part of this study. Data were organized 

based on insulin and glucagon secretion where available and plotted across sex.  

Bioenergetics.  

Islets were washed once with assay buffer (made from Agilent Seahorse XF Base Medium supplemented with 

3mM glucose and 1% charcoal striped FBS). Around 150 islets were transferred to each well of Seahorse XF24 

Islet Capture Microplate (Agilent) and were incubated in assay buffer at 37 ºC for 60 minutes before being 

transferred to Agilent Seahorse XFe24 Analyzer. Islets were maintained in the assay medium throughout the 

experiment, while oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were measured 

at basal (3 mM), glucose-stimulated level (20 mM) and after addition of oligomycin, carbonyl cyanide-4 

(trifluoromethoxy) phenylhydrazone (FCCP), rotenone/antimycin according to manufacturer’s instructions.  

Single cell RNA indexing and sequencing.  

Human islets (500 IEQ per condition) were cultured overnight in a humidified incubator containing 5% CO2 at 

37°C. Islet cells were then dispersed using TrypLE (Thermofischer), and immediately evaluated for viability 
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(90.61±3.04%) by Cellometer Automated Cell Counter (Nexcelom Bioscience) prior to single cell RNAseq library 

preparation. For 10x single cell RNAseq library preparation, 5000-6500 individual live cells per sample were 

targeted by using 10x Single Cell 3’ RNAseq technology provided by 10x Genomics (10X Genomics Inc). Briefly, 

viable single cell suspensions were partitioned into nanoliter-scale Gel Beads-In-EMulsion (GEMs). Full-length 

barcoded cDNAs were then generated and amplified by PCR to obtain sufficient mass for library construction. 

Following enzymatic fragmentation, end-repair, A-tailing, and adaptor ligation, single cell 3’ libraries comprising 

standard Illumina P5 and P7 paired-end constructs were generated. Library quality controls were performed by 

using Agilent High Sensitive DNA kit with Agilent 2100 Bioanalyzer (Agilent) and quantified by Qubit 2.0 

fluorometer (ThermoFisher). Pooled libraries at a final concentration of 750pM were sequenced with paired end 

single index configuration by Illumina NextSeq 2000 (Illumina). 

Single cell gene expression mapping 

For the Tulane dataset we utilized CellRanger v4.0.0 software using the [-mkfastq] command to de-multiplex 

FASTQ data. Reads were mapped and aligned to the human genome (10X genomics pre-built GRCh38-2020-

A Homo sapiens reference transcriptome assembly) with STAR (95.33±0.75% of reads confidently mapped to 

the human genome).60 Subsequently, final digital gene expression matrices and c-loupe files were generated for 

downstream multimodal analysis. In case of the HPAP dataset we isolated data processed as described 

previously (nPod data: 87.91±11.56 and UPenn 90.62±5.44% of reads map confidently to genome).26 Cellranger 

identified 75,619 (Tulane), 73,472 (nPOD) and 52,357 (UPenn) correctly allocated barcodes (cells), having 

78,584±40,590 (Tulane), 130,993±289,368 (nPOD), 63,949±29,598 (UPenn) reads/cell and 26,866±680 

(Tulane), 24,739±8983 (nPOD), 24,183±1254 (UPenn) genes/cell. 

Preliminary filtering and S4 R object creation 

We deployed Seurat v4.3.061,62 scripts to perform merging, thresholding, normalization, principal component 

analysis (linear dimensionality reduction), clustering analysis (non-linear multidimensional reduction), 

visualization and differential gene expression analysis. Cells having total mitochondrial RNA contribution beyond 

20% were eliminated from the analysis, along with cells expressing less than 500 or greater than 8000 total 

genes. 

Ambient RNA correction and doublet annotation 
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In droplet based scRNAseq technologies, extracellular RNA from cells with compromised membrane integrity 

contaminates single cell libraries.56 This remains a challenge for pancreatic cells, as endocrine and exocrine 

cells are rich in select secreted RNA species. We used SoupX 1.6.163 on raw feature barcode matrices correcting 

for ambient RNA across all 52 donors. Raw counts were corrected using SoupX and rounded to the nearest 

integer. As the TUID is not doublet corrected, we utilized DoubletFinder v264 expecting 5% doublets, eliminating 

them from the dataset.  

Data normalization and clustering 

SoupX corrected matrices were metadata annotated, and geometrically normalized (log10) at a scale factor of 

10,000. The variance stabilization method (vst) method was used to find 2000 most variable features, which 

were later used for scaling and principal component analysis (PCA) using 20 components. and dimensions 

(UMAP). We batch corrected the datasets using Harmony 0.1.165, using donor library identity, 10X genomics 

chemistry (v2 or v3) and tissue source (Tulane, nPOD or UPenn) as covariates in the batch model. Uniform 

manifold approximation and projection (UMAP) and neighbors were calculated using Seurat v4.3.0.61,62 Finally 

we hyperclustered data using a Leiden algorithm at a resolution of 6. We observed poor quality cells to remain 

in the dataset (low relative total RNA and gene counts yet within threshold), and excluded these from the 

analysis, and performed re-clustering as described above. Finally, we assigned identities to clusters based on 

pancreatic cell specific gene sets28,58, resulting in 17 discrete clusters, totaling 141,739 high quality cells. 

Cell type specific marker genes 

Statistical approaches to define DEGs across cell types using aggregated “pseudobulked” RNA count data, out-

perform single cell DEG models56,57,66. Infact, pseduobulk DEG methods demonstrate the highest Mathews 

Correlation Coefficient, a balanced machine learning performance testing model, capable of evaluating models 

classifying binary data.66,67 Therefore, we performed an unbiased differential analysis of cell cluster-specific 

marker genes using the [FindAllMarkers] function in Seurat. We employed DESeq2 v1.36.068 to perform DEG 

testing, where a cluster must express a gene in at least 25% of cells, have a 2x fold difference, and a Benjamini-

Hochberg FDR adjusted p-value < 0.01 (α = 1%). Aggregated counts were compared across cell types and 

donors. 

Sex, race, and disease type specific marker genes 
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Based on facts outlined above, we employ a previously described statistical model26 using DESeq2 v1.36.068 to 

evaluate statistical differences across human islet cell types based on race, sex and disease, metadata profiles 

across donors. A DEG is defined as a gene having a Benjamini-Hochberg adjusted p-value < 0.1 (α = 10%). 

Single nuclear assay for transposase-accessible chromatin indexing and sequencing 

Human islets (500 IEQ per condition) were cultured overnight in a humidified incubator containing 5% CO2 at 

37°C. Islet cells were then dispersed using TrypLE (Thermofischer), and immediately evaluated for viability 

(90.61±3.04%) by Cellometer Automated Cell Counter (Nexcelom Bioscience) prior to single nuclei ATAC library 

preparation. Nuclei were isolated based on the 10X genomics Nuclei isolation protocol (CG00169 Rev D) with 

some modifications. We observe that the usage of 0.5ml tubes yields superior nuclei collection. Furthermore, we 

optimize based on a sample-to-sample basis the time for cell lysis (3-5min). The final lysis buffer concentration 

for Nonidet P40 was 0.15% over the 0.1% recommendation. Finally, in addition to the final wash with wash buffer, 

we perform a final wash with the 10X Genomics Nuclei Buffer (PN-2000153/2000207). Nuclei are always kept < 

0°C, visually inspected for integrity and quality using a viability dye, prior to library prep which was performed 

within 30min. Briefly, 5,000-6,500 isolated nuclei were incubated with a transposition mix to preferentially 

fragment and tag the DNA in open regions of the chromatin. The transposed nuclei were then partitioned into 

nanoliter-scale Gel Bead-In-emulsions (GEMs) with barcoded gel beads, a master mix, and partition oil on a 

chromium chip H. Upon GEM formation and PCR, 10x barcoded DNA fragments were generated with an Illumina 

P5 sequence, a 16nt 10x barcode, and a read 1 sequence. Following library construction, sequencing-ready 

libraries were generated with addition of P7, a sample index, and a read 2 sequence. Quality controls of these 

resulting single cell ATAC libraries were performed by using Agilent High Sensitive DNA kit with Agilent 2100 

Bioanalyzer (Agilent) and quantified by Qubit 2.0 fluorometer (ThermoFisher). Pooled libraries at a final 

concentration of 750pM were sequenced with paired-end dual indexing configuration by Illumina NextSeq 2000 

(Illumina) to achieve 40,000-30,000 read pairs per nucleus. 

Single nuclei accessible chromatin mapping 

We utilized CellRanger ATAC v1.2.0 software using the [-mkfastq] command to de-multiplex FASTQ data. Reads 

were mapped and aligned to the human genome (10X genomics pre-built GRCh38-2020-A Homo sapiens 

reference transcriptome assembly) with STAR (70.70±11.46% of reads confidently mapped to the human 
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genome).60 Cellranger identified 84,741 correctly annotated barcodes (cells), having an average transcriptional 

start site (TSS) enrichment score of 6.27±1.38 and 73.55±6.78% fragments overlapping peaks/sample. We then 

utilized Signac’s peak calling tool to call peaks on our dataset using MACS2.69 We utilize the [CallPeaks()] 

function to annotate accessible peaks using MACS2. 

Preliminary filtering and S4 R object creation 

We deployed Seurat v4.3.061,62 coupled with Signac v1.10.070 scripts to perform merging, thresholding, 

normalization, principal component analysis (linear dimensionality reduction), clustering analysis (non-linear 

multidimensional reduction), visualization and differential gene expression analysis. Cells having a TSS 

enrichment score of < 2, peak region fragments less than 2000 or more than 20,000 counts, percentage reads 

in peaks < 30%, blacklist ratio > 0.05, nucleosome ratio > 4 and, fraction reads in promoters < 0.2 were eliminated 

from the analysis. 

Doublet annotation 

It is increasingly challenging to detect multiplets in droplet based snATAC data, owing to sparsity and low 

dynamic range. We employed AMULET71 within the scDblFinder v1.10.072 R package on raw fragment barcode 

matrices correcting for all 15 donors, using the authors recommendations. 

Data normalization and clustering 

We used a unified set of peaks across all 15 datasets, annotating genes using EnsDb.Hsapiens.v86.73 We 

estimated gene activity using Signac’s GeneActivity function, by extracting gene coordinates and extend them 

to include the 2 kb upstream region, followed by geometric normalization (log10). We next performed non-linear 

multidimensional reduction using term frequency-inverse document frequency (TF-IDF) weighted peak counts 

transformed to binary data. Weighted data was reduced to 30 dimensions using RunSVD function. We batch 

corrected the datasets using Harmony 0.1.165 using 30 nearest neighbours, using donor library identity as a 

covariate in the batch model. The first singular value decomposition (SVD) component correlated with read depth 

and was eliminated from UMAP projection dimensionality reduction, and SLM74 clustering, based on 

recommendations provided in Signac.  
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Upon performing iterative clustering and after removing low quality cells, we end up with 52,613 nuclei having 

255,194 peak features spanning 11 clusters.  We classified clusters based on described gene activities across 

islet cells,32 followed by validating identity with label transfer, from our RNAseq atlas dataset using the 

FindTransferAnchors function. Finally, we stored an additional modeled predicted RNA expression matrix within 

the snATAC object using the TransferData function. 

Cell type specific marker genes 

To evaluate differentially accessible regions (DARs) we used a Wilcoxon rank sum test comparing a cluster of 

cells against all other clusters, defining DARs as those peaks expressed in atleast 5% of cells, having a 

foldchange > 2, Benjamini-Hochberg FDR adjusted pvalue < 0.05 (α = 5%) and restricting to those peaks that 

are within a 100kb window of a gene.  

Sex, race, and disease type specific marker genes 

In order to evaluate population wide differences, we employed the similar model utilized for scRNAseq.26 A DAR 

is defined as a peak having a Benjamini-Hochberg adjusted p-value < 0.1 (α = 10%). 

Single-Cell motif enrichment 

We used chromVAR v1.22.130 to estimate transcription factor motif enrichment z-scores across all cells. We 

used a peak by cell sparse binary matrix correcting for GC content bias based on the hg38 genome 

(BSgenome.Hsapiens.UCSC.hg38). We use the non-redundant JASPAR 2020 core vertebrate motif database75 

calculating bias-corrected deviation z-scores across single cells. We then calculated average transcription factor 

motif enrichment z-scores across single cells in a cluster. We used aggregate cell average z-scores to evaluate 

differentially accessible motifs (DAMs) across clusters, using a Benjamini-Hochberg FDR corrected p-value < 

0.05. 

Gene set enrichment and pathway analysis 

In order to perform gene set enrichment analysis (GSEA)76, we downloaded the entire molecular signatures 

database (MSigDB) v376,77 for C5 human gene ontological terms, using clusterProfiler v4.4.478 or using an R 

based deployment (https://github.com/wjawaid/enrichR) of EnrichR.79 We subset the C5 database, restricting 

terms to biological processes and perform functional pathway annotation using the compareCluster function. We 
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define a pathway to be statistically significant at a Benjamini-Hochberg FDR adjusted p-value < 0.2 (α = 20%). 

We performed functional pathway mapping using the cnetplot function.  

Gene regulatory network analysis 

In order to infer gene regulatory networks (GRNs) we utilized Pando36 while using the predicted RNA expression 

profile and MACS2 components of our snATAC dataset while interrogating TFs for which motifs exist. The 

coefficients of Pando’s model highlight a quantified measure of interaction across cCRE-TF pair and a 

downstream target gene, resulting in a regulatory graph which can be plotted using non-linear multidimensional 

reduction. 
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