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Abstract 1 

The subthalamic nucleus (STN) plays critical roles in the motor and cognitive function of the 2 
basal ganglia (BG), but the exact nature of these roles is not fully understood, especially in the 3 
context of decision-making based on uncertain evidence. Guided by theoretical predictions of 4 
specific STN contributions, we used single-unit recording and electrical microstimulation in the 5 
STN of healthy monkeys to assess its causal, computational roles in visual-saccadic decisions 6 
based on noisy evidence. The recordings identified subpopulations of STN neurons with distinct 7 
task-related activity patterns that related to different theoretically predicted functions. 8 
Microstimulation caused changes in behavioral choices and response times that reflected 9 
multiple contributions to an “accumulate-to-bound”-like decision process, including modulation 10 
of decision bounds and evidence accumulation, and to non-perceptual processes. These results 11 
provide new insights into the multiple ways that the STN can support higher brain function. 12 

 13 

 14 

Introduction 15 

The subthalamic nucleus (STN) is a critical junction in both the indirect and hyperdirect 16 
pathways of the basal ganglia (BG). It receives inputs from the external segment of the globus 17 
pallidum (GPe) and cortex and sends diffuse excitation to pallidal output nuclei of the BG. The 18 
STN has well-recognized functions in movement control. For example, in humans and monkeys, 19 
lesions of the STN cause involuntary movements of contralateral body parts (Martin, 1927; 20 
Martin and Alcock, 1934; Whittier and Mettler, 1949; Carpenter et al., 1950). In monkeys with 21 
experimentally induced Parkinsonism, STN lesions and inactivation can reverse abnormal BG 22 
output activity and alleviate both akinesia and rigidity (Bergman et al., 1990, 1994; Wichmann et 23 
al., 1994a). In Parkinsonian human patients, deep brain stimulation (DBS) of the STN has 24 
become a common treatment option to alleviate movement abnormalities (DeLong and 25 
Wichmann, 2001).  26 

Recognizing that motor symptoms associated with STN damage are often accompanied by 27 
emotional and cognitive deficits, recent work has also begun to examine the roles of the STN in 28 
cognition. For example, the STN has been shown to contribute to cued, goal-driven action 29 
inhibition (Baunez et al., 2001; Desbonnet et al., 2004; Witt et al., 2004; Aron and Poldrack, 30 
2006; Frank et al., 2007; Isoda and Hikosaka, 2008; Schmidt et al., 2013; Pasquereau and Turner, 31 
2017). STN activity can also be sensitive to task complexity and decision conflict, as measured 32 
in imaging studies and human patients undergoing DBS (Lehericy et al., 2004; Aron et al., 2007; 33 
Fumagalli et al., 2011; Brittain et al., 2012; Zaghloul et al., 2012; Zavala et al., 2017). These 34 
findings have led to the idea that STN may also contribute to resolving difficult decisions based 35 
on uncertain evidence. This idea has been formalized in several computational models, which 36 
posit three, not mutually exclusive, functions for STN: 1) in coordination with the medial 37 
prefrontal cortex, STN adjusts decision bounds (i.e., thresholds on accumulated evidence that 38 
govern decision termination and commitment) to control impulsivity in responding (Frank, 2006; 39 
Cavanagh et al., 2011; Ratcliff and Frank, 2012; Zavala et al., 2014; Herz et al., 2016, 2017; Pote 40 
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et al., 2016); 2) through its interaction with GPe, STN computes a normalization signal to 41 
calibrate how the available, alternative options are assessed (Bogacz and Gurney, 2007; 42 
Coulthard et al., 2012; Green et al., 2013); and 3) by maintaining the balance between the direct 43 
and indirect pathways of the BG, STN helps to implement a nonlinear computation that improves 44 
the efficacy with which the BG adjusts decision bounds (Lo and Wang, 2006; Wei et al., 2015).  45 

Guided by predictions of these models (Figure 1B), we assessed the role of the STN in decisions 46 
made by monkeys performing a random-dot visual motion direction discrimination task (Figure. 47 
1A). We recorded from individual STN neurons while monkeys performed the task and found 48 
activity patterns that were highly heterogenous across neurons. Nevertheless, these patterns 49 
could be sorted into three prominent clusters with functional properties that, in principle, could 50 
support each of the three theoretically predicted STN functions from previous modeling studies. 51 
In addition, we tested STN’s causal contribution to the decision process using electrical 52 
microstimulation. These perturbations of STN activity affected both choice and reaction time 53 
(RT) performance in multiple ways that could be ascribed to particular computational 54 
components of an “accumulate-to-bound” decision process. As detailed below, these results show 55 
that STN can play multiple, causal roles in the formation of a deliberative perceptual decision, 56 
likely reflecting its diverse contributions to the many cognitive and motor functions that depend 57 
on the BG.  58 

 
 
Figure 1. Behavioral task and model predictions. A, Behavioral task. The monkey was 
required to report the perceived motion direction of the random-dot stimulus by making a 
saccade towards the corresponding choice target at a self-determined time. B, Three previous 
models predicted different patterns of STN activity.  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2024. ; https://doi.org/10.1101/2024.04.09.588715doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.09.588715
http://creativecommons.org/licenses/by/4.0/


4 
 

Results 59 

STN neurons show diverse response profiles 60 

We recorded 203 neurons while the monkeys were performing a random-dot motion 61 
discrimination task (n = 115 and 88 for monkeys C and F, respectively). The behavioral 62 
performance of both monkeys has been documented extensively (Ding and Gold, 2010, 2012a; 63 
Fan et al., 2018). Their performance in three example sessions are shown in Figure 4A–C (black 64 
data points). In general, both monkeys made more contralateral choices with increasing signed 65 
motion strength (positive for motion toward the contralateral target) and had lower RTs (i.e., 66 
faster responses) for higher absolute motion strength. 67 

STN neurons showed diverse response profiles. Figure 2A shows average activity patterns of 68 
three example neurons. The top neuron showed an initial suppression of activity after motion 69 
onset and became active, in a choice-dependent manner, before saccade onset. The middle 70 
neuron showed choice- and motion coherence-dependent activation during the motion-viewing 71 
period before saccade onset. The bottom neuron exhibited activation after motion onset that was 72 
similar for both choices and all coherence levels, which then decayed in a choice- and coherence-73 
dependent manner around saccade onset.  74 

The diversity of response profiles can be seen in the summary heatmaps for the population 75 
(Figure 2B). When activity was averaged across all trial types, STN neurons can become 76 
activated or suppressed (warm vs. cool colors, respectively), relative to pre-stimulus baseline, 77 
during motion viewing and around saccade onset. The timing of peak modulation also spanned 78 
the entire motion-viewing period and extended beyond saccade generation, including a 79 
substantial fraction of neurons that also responded to target onset before the motion stimulus 80 
appeared. These diverse spatiotemporal response profiles suggest that the STN as a whole may 81 
serve multiple functions in perceptual decision-making. 82 

Across the population, a substantial fraction of neurons was sensitive to choice, motion 83 
coherence, and RT (Figure 2C-E, Supplemental Figure 1). We performed multiple linear 84 
regressions, separately for coherence and RT (Eqs. 1 and 2), for each neuron and used the 85 
regression coefficients to measure these decision-related sensitivities. For choice sensitivity 86 
(Figure 2C, first row), both contralateral and ipsilateral preferences were  commonly observed.  87 

The overall fraction of neurons showing choice sensitivity increased after motion onset and 88 
peaked at saccade onset (Figure 2D). For coherence sensitivity, modulations were observed for 89 
trials with contralateral or ipsilateral choices and with similar tendencies for positive and 90 
negative coefficients (Figure 2C, rows 2 and 3). The fraction of neurons showing reliable 91 
coherence sensitivity was also higher around saccade onset (Figure 2D). 92 

Despite the diverse distributions of regression coefficients, there were systematic patterns in 93 
when and how these forms of selectivity were evident in the neural responses. Notably, neurons 94 
showing choice sensitivity were more likely to show coherence modulation during early motion 95 
viewing, especially for trials when the monkey chose the neuron’s preferred choice (Figure 2E, 96 
purple). In contrast, coherence modulation emerged later for neurons that did not show choice 97 
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sensitivity (Figure 2E, gray lines). These systematic interactions in modulation types suggest that 98 
the STN population does not simply reflect a random mix of selectivity for decision-related 99 
quantities. Instead, there appears to exist subpopulations with distinct decision-related 100 
modulation patterns, which we detail below. 101 

 
 
Figure 2. STN neurons have diverse response profiles. A, Activity of three STN neurons 
(rows) aligned to motion (left) and saccade (right) onsets and grouped by choice x motion 
coherence (see legend). For motion-onset alignment, activity was truncated at 100 ms before 
saccade onset. For saccade-onset alignment, activity was truncated before 200 ms after 
motion onset. B, Summary of average activity patterns. Each row represents the activity of a 
neuron, z-scored by baseline activity in a 300 ms window before target onset and averaged 
across all trial conditions. Rows are grouped by monkey (red and green shown to the right of 
each panel: monkeys C and F, respectively) and sorted by the time of peak values relative to 
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motion onset. Only correct trials were included. C, Heatmaps of linear regression coefficients 
for choice (top), coherence for trials with contralateral choices (middle), and coherence for 
trials with ipsilateral choices (bottom), for activity aligned to motion (left) and saccade (right) 
onsets. Regression was performed in running windows of 300 ms. Regression coefficients 
that were not significantly different from zero (t-test, p>0.05) were set to zero (green) for 
display purposes. Neurons were sorted in rows by the time of peak coefficient magnitude. 
Only correct trials were included. D, Time courses of the fractions of regression coefficients 
that were significantly different from zero (t-test, p<0.05), for choice (black), coherence for 
trials with contralateral choices (red), and coherence for trials with ipsilateral choices (blue). 
Dashed line indicates chance level. E, Time courses of the fractions of non-zero regression 
coefficients for coherence. Separate fractions were calculated for trials with the preferred 
(purple) and null (green) choices from choice-selectivity activity and for all trials from activity 
that was not choice selective (gray). Only time points after motion onset with fractions > 0.05 
for choice-selective activity were included. Dashed line: chance level. 

 102 

STN subpopulations can support previously theorized functions 103 

Using two forms of cluster analysis, we identified three subpopulations of neurons in the STN 104 
with distinct activity patterns that conform to predictions of each of the three previously 105 
published sets of models. For the first analysis, we represented a neuron’s activity pattern with a 106 
30-dimension vector, consisting of normalized average activity associated with two choices, five 107 
coherence levels, and three task epochs. We generated three artificial vectors based on the 108 
predicted activity patterns of each model, as follows (Figure 3A). Bogacz and Gurney (2007) 109 
posited that STN neurons, through their reciprocal connections with the external segment of 110 
globus pallidum, pool and normalize evidence-related signals, leading to the prediction of choice 111 
and coherence-modulated activity during motion viewing (Figure 3A, top). Ratcliff and Frank 112 
(2012) posited that STN neurons, through their direct innervation by cortical regions, provide an 113 
early signal to suppress immature choices, leading to the prediction of a choice-independent 114 
signal that appears soon after motion onset and dissipates over time (Figure 3A, middle). Wei 115 
and colleagues (2015) posited that the STN balances evidence-related signals in the GPe until 116 
near decision time, leading to the prediction of coherence-dependent ramping activity with no or 117 
weak choice selectivity (Figure 3A, bottom). We performed k-means clustering using these three 118 
vectors and another arbitrary vector as the seeds to group the population into four clusters.  119 

Figure 3B shows the average activity from each of the resulted clusters. Consistent with the 120 
design of this analysis, the average activity of the first cluster shows choice- and coherence-121 
dependent activity that also ramps up during motion viewing. The average activity of the second 122 
cluster shows an early, sharper rise in activity that is modulated by neither choice or coherence 123 
during motion viewing and this activity gradually decreases toward saccade onset. The average 124 
activity of the third cluster shows choice- and coherence-dependent ramping activity during 125 
motion viewing and a short burst of activity for one choice just before saccade onset. The last 126 
cluster shows little task-related modulation. The first three clusters contained similar numbers of 127 
neurons. When visualized using the T-distributed stochastic neighbor embedding technique, these 128 
clusters did not form a single continuum but instead reflected separable features between clusters 129 
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(Figure 3C). In other words, the clustering did not simply force a uniform distribution with 130 
random-mixed selectivity into four groups.  131 

For the second cluster analysis, we used random seeds without considering any of the model 132 
predictions and obtained almost identical clusters. As detailed in Methods, we explored a wide 133 
range of settings for clustering, including: 1) using directly the 30-D vectors or their principal 134 

 
Figure 3. STN contains distinct subpopulations. A, Three activity vectors that were 
constructed based on theoretical predictions in Figure 1B and used as seeds for k-means 
clustering (see Methods). B, Each panel shows the average activity of neurons in a cluster, 
same format as Figure 2A. The numbers indicate the cluster size. C, Visualization of the 
clusters using the t-distributed stochastic neighbor embedding (t-SNE) dimension-reduction 
method. D, Average activity of clusters identified using random-seeded k-means clustering. 
Same format as Figure 3B. E, Visualization of the random-seeded clusters in the same tSNE 
space.  
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component projections, 2) basing the clustering on three different distance metrics, and 3) 135 
varying the number of presumed clusters. To identify the best setting, we assessed the goodness 136 
of clustering using the silhouette score, which quantifies for each member the relative distance 137 
between its average within-cluster distance and distance to those in its closest neighboring 138 
cluster (a higher score indicates better cluster separation). The silhouette plots favored the 139 
combination of using the 30-D vector directly and correlation distance (Supplemental Figure 140 
2A), which generated less variability across clusters and few/small-magnitude negative 141 
silhouette scores (negative scores indicate that a member is closer to its neighboring cluster than 142 
its own cluster).  143 

We assessed the stability of clustering using the Rand index (Rand, 1971), which measures how 144 
consistently two members are assigned to the same clusters from different iterations of clustering 145 
(a high index indicates greater stability). The Rand index was generally high (above 0.95 out of a 146 
max of 1) except for the combination of using the 30-D vector and cosine distance 147 
(Supplemental Figure 2B). Finally, using the raw vector-correlation combination, an assumption 148 
of four clusters resulted in the highest average Rand index and assuming 4-6 clusters generally 149 
resulted in higher mean silhouette score and lower number of negative scores (Supplemental 150 
Figure 2C). We thus considered that the raw-vector-correlation combination and an assumption 151 
of four clusters produced the most stable and plausible results.  152 

As shown in Figure 3D and E, the four clusters thus identified closely matched those obtained 153 
using model predicted seeds, in terms of the average activity, the cluster sizes, and their locations 154 
in the tSNE space. Increasing the assumed number of clusters caused changes mostly in the gray 155 
cluster, with some changes in the blue cluster, and little effects on the red and purple clusters 156 
(Supplemental Figure 3). Together these results suggest that, absent the ground truth on the 157 
number of subpopulations in STN, there exist at least three subpopulations that each corresponds 158 
to the predictions of one of three previous published models. As a consequence, STN appears in 159 
principle to be able to support multiple decision-related functions. 160 

 161 

Perturbation of STN activity affects choice and RT 162 

To better understand STN’s functional roles in the decision process, we perturbed STN activity 163 
using electrical microstimulation while monkeys performed the task. Specifically, we applied a 164 
train of current pulses at identified STN sites during decision formation, lasting from motion 165 
onset to saccade onset. Figure 4 shows microstimulation effects on choices and RTs in three 166 
example sessions. In the first example session, STN microstimulation caused a leftward 167 
horizontal shift (more contralateral choices) and slope reduction (more variable choices) in the 168 
psychometric curve (Figure 4A, top), as well as a substantial flattening of RT curves (faster 169 
responses that depended less on motion coherence) for both choices (bottom). In the second 170 
example session, STN microstimulation induced a minor leftward shift in the psychometric curve 171 
and asymmetric changes in RT for the two choices (Figure 4B). In the third example session, 172 
STN microstimulation did not change the psychometric curve but caused reductions in RT for 173 
both choices (Figure 4C).  174 
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Across 54 different STN sites, microstimulation caused variable choice biases and tended to 175 
reduce the dependence of choice on motion strength. We fitted the choice data to a logistic 176 

 
 
Figure 4. STN microstimulation affects monkeys’ choice and RT. A-C, Monkey’s choice 
(top) and RT (bottom) performance for trials with (red) and without (black) microstimulation for 
three example sessions (A,B: monkey C; C: monkey F). Lines: DDM fits. D, Distributions of 
microstimulation effects on bias and slope terms of the logistic function. Filled bars in 
histograms indicate sessions with significant modulation of the specific term (bootstrap 
method). Triangles indicate the median values. Filled triangle: Wilcoxon sign-rank test for H0: 
median=0, p < 0.05. E and F, Summary of microstimulation effects on the offset (E) and slope 
(F) terms of a linear regression fit to RT data. Two separate linear regressions were 
performed for the two choices (Ipsi/Contra, as indicated). Triangles indicate the median 
values. Filled triangles: Wilcoxon sign-rank test, p < 0.05. 
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function and measured choice bias (horizontal shift) and motion strength-dependence (slope). In 177 
23 sessions, microstimulation induced a reliable choice bias (Figure 4D). The induced bias was 178 
toward the contralateral or ipsilateral choice in 15 and 8 sessions, respectively, and the median 179 
value for bias was not significantly different from zero (Wilcoxon sign-rank test, p = 0.15). In 18 180 
sessions, microstimulation induced a change in the slope. The slope was reduced in 15 sessions 181 
and the median value was negative (p = 0.008). These tendencies were robust across different 182 
variants of logistic functions (Supplemental Figure 4). Of the sessions where inclusion of lapse 183 
terms for the control and microstimulation trials produced lower AICs, very few showed 184 
significant microstimulation-induced changes in lapses (2 sessions each for the “Symmetric 185 
Lapse” and “Asymmetric Lapse” variants). Thus, based on fitting results using logistic functions, 186 
STN microstimulation most consistently reduced the choice dependence on motion strength, 187 
caused session-specific choice biases, and had minimal effects on lapses. 188 

Microstimulation also tended to reduce RT. We fitted linear functions separately for RTs 189 
associated with the two choices, in which offset and slope terms measure coherence-independent 190 
and -dependent changes in RTs, respectively. Microstimulation caused changes in RT offsets in 191 
25 sessions for contralateral choices (18 were reductions in RT, with a median change across all 192 
sessions of -36 ms; Wilcoxon sign-rank test for H0: median change=0, p <0.0001) and 18 193 
sessions for ipsilateral choices (15 reductions, mean change = -23 ms, p<0.0001; Figure 4E). 194 
Microstimulation caused changes in RT slopes in 6 sessions for contralateral choices (5 were 195 
positive, implying a weaker coherence dependence; p < 0.0001) and 4 sessions for ipsilateral 196 
choices (all 4 were positive; Figure 4F). Thus, based on fitting results using linear functions, 197 
STN microstimulation can induce choice-specific changes in RT, with overall tendencies to 198 
reduce both the coherence-independent component and the RT’s dependence on coherence for 199 
the contralateral choice.  200 

 201 

Microstimulation effects reflected changes in multiple computational components 202 

To infer STN’s computational roles in the decision process, we examined the microstimulation 203 
effects using a drift-diffusion model (DDM) framework. This framework has been widely used in 204 
studies of perceptual decision-making and can provide a unified, computational account of both 205 
choice and RT (Gold and Shadlen, 2007). It assumes that noisy evidence is accumulated over 206 
time and a decision is made when the accumulated evidence reaches a certain decision bound. 207 
The overall RT is the sum of the time needed to reach the bound and non-decision times 208 
reflecting perceptual and motor latencies. Previous theoretical models also made predictions 209 
about the effects of perturbing STN activity that can be interpreted in the DDM framework. The 210 
model by Bogacz and Gurney (2007) predicted that the perturbation would reduce the effect of 211 
task difficulty on decision performance by eliminating a nonlinear transformation that is needed 212 
for appropriate evidence accumulation (Green et al., 2013). The model by Ratcliff and Frank 213 
(2012) predicted that the perturbation, by causing changes in the STN’s influence onto the 214 
substantia nigra pars reticulata (SNr), would change temporal dynamics of the decision bound 215 
and influence non-decision time. The model by Wei and colleagues (2015) predicted that the 216 
perturbation would result in a reduction in the decision bound.  217 
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To test whether these predictions, and/or other effects, were present in our microstimulation data, 218 
we fitted a DDM to choice and RT data simultaneously (Figure 5A). We performed AIC-based 219 
model selection and found that, in 40 of 54 sessions, the Full model, which included 220 
microstimulation effects on any model parameters, outperformed the None model, which 221 
assumed that there was no microstimulation effect on any parameters (Figure 5B). This result 222 
implies that, in these sessions, STN microstimulation affected one or more computational 223 

 
Figure 5. STN microstimulation affected multiple computational components in the 
DDM. A, Illustration of the DDM. Red/black lines represent across-trial mean/single-trial 
example of the evidence (top) and drift rate (bottom). Blue lines represent the collapsing 
decision bounds. B, Distribution of the difference in AIC between the None and Full models. 
Red dashed line indicates the criterion for choosing the full model: AIC difference = 3. C, 
Histograms of microstimulation effects on DDM parameters. Each histogram included only 
sessions in which the Full model outperformed the corresponding reduced model (e.g., the 
histogram for parameter a included only sessions in which AICNoA – AICFull > 3 and AICNone – 
AICFull > 3). Triangles indicate median values. Filled triangles: Wilcoxon sign rank test, p < 
0.05. D, Summary of microstimulation effects on all parameters, for sessions in which at least 
one significant effect was present. Sessions were sorted by the prevalence and sign of the 
effects.  
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components of the decision process. To better characterize these effects, we compared AICs 224 
between the Full model and six reduced models to identify sessions with reliable 225 
microstimulation-induced changes in particular model parameters (Supplemental Figure 5A). 226 

We found that STN microstimulation resulted in reliable changes in several model parameters 227 
over different subsets of sessions (Figure 5C and D). Consistent with model predictions from 228 
Bogacz and Gurney (2007), microstimulation reduced the scale factor for evidence 229 
accumulation, k, in 14 sessions. This effect contributed to a decreased motion coherence 230 
dependence of choice and RT (Figure 5C, first histogram; Wilcoxon sign-rank test for H0: zero 231 
median effect, p = 0.021). Consistent with model predictions from Ratcliff and Frank (2012) and 232 
Wei and colleagues (2015), microstimulation affected parameters that controlled the decision 233 
bound (a, B_collapse, B_t) in 16 sessions each (not necessarily in the same sessions for each 234 
parameter, see Figure 5D). The changes in the maximal decision bound (a) were variable across 235 
sessions (p = 0.68). The changes in the collapsing bound dynamics (B_collapse, B_t) tended to 236 
indicate faster and earlier decreases in bounds (p = 0.039 and 0.088, respectively). Consistent 237 
with model predictions from Ratcliff and Frank (2012), microstimulation caused changes in non-238 
decision times in 30 sessions (t0_Contra and t0_Ipsi). These changes varied from session to 239 
session (p = 0.28 and 0.75, respectively). Statistical tests on fitted parameters of all sessions, 240 
regardless of whether a microstimulation effect was necessary to account for the behavioral data, 241 
showed similar trends (Supplemental Figure 5B).  242 

STN microstimulation had two additional effects beyond those predicted by the previous 243 
modeling studies. First, consistent with the above-demonstrated microstimulation-induced choice 244 
biases (Figure 4), microstimulation induced offsets in momentary (me; n = 16 sessions; p = 0.61) 245 
and accumulated (z; n = 12 sessions; p = 0.016) evidence. Second, the microstimulation effects 246 
involved changes in more than one model parameter in the majority of sessions (Figure 5D). We 247 
did not observe any dominant combinations of effects. These results suggest that the STN is 248 
causally involved in multiple decision-related functions, including those mediating the 249 
dependence on evidence, choice biases, and bound dynamics.  250 

 251 

Distribution of microstimulation effects reflected intermingled neuron activity patterns 252 

The multi-faceted microstimulation effects, combined with the fact that the kind of 253 
microstimulation we used tends to activate not just one neuron, but rather groups of neurons near 254 
the tip of the electrode (Tehovnik, 1996), suggested that STN neurons with different functional 255 
roles are located close to one another. Consistent with this idea, neurons that were classified as 256 
belonging to different clusters tended to be intermingled (Figure 6). We did not observe any 257 
consistent topographical organization patterns within or between the two monkeys. At certain 258 
locations, neurons belonging to different clusters were recorded using the same electrode. We 259 
calculated silhouette scores to quantify whether different the activity pattern-based neuron 260 
clusters also formed clusters in the 3D physical space. The mean values were -0.09 and -0.11 for 261 
the two monkeys, respectively, indicating that neurons were often closer to others from a 262 
different cluster than those within the same cluster. In other words, STN subpopulations did not 263 
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segregate from each other and instead tended to be intermingled, and thus microstimulation 264 
likely activated multiple neurons with different functional properties.  265 

Although the intermingled organization of STN subpopulations, defined based on their task-266 
related activity patterns (Figure 3), made it challenging to relate a specific microstimulation 267 
effect to a specific subpopulation, we did observe certain trends that could contribute to the site-268 
specific microstimulation effects. We assigned the single or multi-unit activity at the stimulation 269 
sites according to the clusters identified using the random-seeded clustering (Figure 7A). We 270 
then grouped the sites by neuron clusters (Figure 7C). When neurons of different clusters were 271 
recorded at the same site, the same microstimulation effects were assigned to each cluster. We 272 
found that the second cluster was associated with lower overall likelihood of observing 273 
microstimulation effects compared to other clusters (Figure 7B; Chi-square test, H0: the 274 
likelihood is the same for the first cluster and the other clusters; p = 0.003), while the third 275 
cluster had higher overall likelihood (p = 0.035). For the first three clusters, no microstimulation 276 
effect dominated (p > 0.3 for all), whereas it was more likely to observe effects on non-decision 277 
times for the fourth cluster (i.e., with neural activity patterns not related to the three models; p = 278 
0.001).  279 

The sign of microstimulation effects depended weakly on neuron clusters. For example, it was 280 
more likely to observe an increase in maximal bound height (“a”) for the third neuron cluster 281 
(Chi-square test, H0: same fractions of increase/decrease for all clusters; p = 0.073; Chi-square 282 
test, H0: equal fractions of increase/decrease within the cluster; p = 0.036). Microstimulation 283 
decreased the scale factor (“k”) for the third and fourth clusters but caused variable changes for 284 
the first cluster (p = 0.070 and 0.021, respectively). Microstimulation effects on the non-decision 285 
time for the contralateral choices were dominated by increases for the fourth cluster (p = 0.04 286 
and 0.007, respectively). Together, these results suggested that microstimulation effects reflected 287 

 
Figure 6. Different STN subpopulations are intermingled. Locations of STN neurons, 
color-coded by clusters based on random-seed clustering (same as Figure 3D). The Medial-
Lateral (ML) values were jittered for better visualization of neurons recorded along the same 
track and at similar depths. Anterior-Posterior (AP) levels were relative to the anterior 
commissure. ML and depth levels were relative to the center of the recording chambers.  
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multiple contributions of intermingled STN subpopulations to decision- and non-decision-related 288 
processes.  289 

 290 

Discussion  291 

We provide the first characterization of single-unit recordings and electrical microstimulation in 292 
the STN of monkeys performing a demanding perceptual-decision task. We show that: 1) STN 293 
neurons are heterogeneous in their response profiles; 2) different STN subpopulations, with 294 
distinct decision-related activity modulation patterns and intermingled within the region, can 295 
support previously-theorized functions; and 3) electrical microstimulation in STN causes 296 
changes in choice and RT behaviors, reflecting effects on multiple computational components of 297 
an accumulate-to-bound decision process. These results indicate that the STN plays important 298 
and complex roles in perceptual decision formation, both supporting and extending existing 299 
views of STN function.  300 

 
Figure 7. STN microstimulation effects depend partially on neural clusters. A, Average 
activity at stimulation sites, grouped by four clusters that were identified in Figure 3D. B, 
Fractions of significant microstimulation effects for sites with the presence of each neuron 
cluster. Significance was based on AIC comparison between reduced and Full models. C, 
Microstimulation effects grouped by neuron cluster. Same format as Figure 5D. D, Fractions 
of significant microstimulation effects, grouped by effects reflecting changes in bound, 
decision variable computation, and non-decision processes.  
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Our study was motivated by the differing predictions of STN activity patterns from several 301 
theoretical studies that were based on STN cellular physiology, connectivity, and/or response 302 
patterns in non-perceptual decision-making contexts (Bogacz and Gurney, 2007; Ratcliff and 303 
Frank, 2012; Wei et al., 2015). Remarkably, we found three clusters of STN activity that are 304 
consistent with each of these predictions. The three clusters were robust and stable, emerging 305 
when we used two different clustering methods (one with model-based seeds, the other with 306 
random seeds). Interestingly, Zavala and colleagues (2017) have reported two types of STN 307 
responses in human patients performing a flanker task. The “early” response they identified may 308 
correspond to our second cluster, while the “late” response may reflect a combination of our first 309 
and third clusters. Together these results suggest that the primate STN contains distinct 310 
subpopulations with different functional roles. Combined with the microstimulation results, the 311 
presence of these subpopulations suggests that the STN can both contribute to the conversion of 312 
sensory evidence into an appropriately formatted/calibrated decision variable and modulate the 313 
dynamics of decision bound. Future studies of BG function should strive to better understand 314 
how these subpopulations interact with each other, as well as with other neurons in the BG and 315 
larger decision network to support decision making.  316 

Despite the general agreements between our observations and previous theoretical predictions, 317 
there were also differences that could be informative for developing future BG models. Most 318 
notably, the models focused on the period of evidence accumulation and less on neural activity 319 
patterns at or after decision commitment. In contrast, our data show interesting modulations 320 
around saccade onset (see Figure 3) that raise several intriguing possibilities for STN’s 321 
contributions to the decision process. In particular, one subpopulation showed a broad peak with 322 
strong choice modulation and little coherence modulation. These modulations may reflect bound-323 
crossing in an accumulate-to-bound process (but see below). A second subpopulation returned to 324 
the baseline level independent of choice or coherence. The relatively constant trajectory of this 325 
modulation may reflect a collapsing bound or urgency signal that is dependent only on elapsed 326 
time and not the sensory evidence. A third subpopulation maintained coherence-dependent 327 
activity until very close to saccade onset and showed a sharp peak with little choice or coherence 328 
modulation. This sharp peak may signal the end of decision deliberation, without specifying 329 
which decision is made, to direct the network to a post-decision state for decision evaluation.  330 

The diverse activity patterns and their intermingled distribution in the STN underscore the 331 
challenge of identifying specific, causal contributions of a particular neural subpopulation. In 332 
many sessions, we observed effects that have been predicted theoretically and observed 333 
experimentally in human PD patients undergoing DBS. These effects included a reduction in RT, 334 
a weaker dependence on evidence, and changes in the maximal value and trajectories of the 335 
decision bound (Frank et al., 2007; Cavanagh et al., 2011; Coulthard et al., 2012; Green et al., 336 
2013; Zavala et al., 2014; Herz et al., 2016; Pote et al., 2016). In addition to these predicted 337 
effects, microstimulation also changed choice biases, measured as horizontal shifts of 338 
psychometric functions and as two different types of biases in the DDM framework. This 339 
departure from previous DBS studies may arise from different task designs (button press versus 340 
eye movement), health status of the subjects, and experience level (minimally versus extensively 341 
trained). The lateralized bias suggests that the STN may be involved in flexible decision 342 
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processes that adapt to environments with asymmetric prior probability and/or reward outcomes 343 
for different alternatives, in addition to modulating speed-accuracy tradeoff. Consistent with this 344 
idea, DBS can affect the threshold for deliberations over uncertain sensory inputs or motivational 345 
factors such as reward and effort (Pagnier et al., 2024), suggesting that the STN may be part of a 346 
general selection machinery that can incorporate sensory evidence with information about the 347 
task environment (Redgrave et al., 1999).  348 

Our findings also suggest that STN’s role in decision formation differs in important ways from 349 
other oculomotor regions that have been examined under similar conditions. First, in the frontal 350 
eye field (FEF), lateral intraparietal area (LIP), and superior colliculus (SC), decision-related 351 
neural activity is dominated by a choice- and coherence-dependent “ramp-to-bound” pattern 352 
(Roitman and Shadlen, 2002; Ding and Gold, 2012a; Crapse et al., 2018; Cho et al., 2021; Jun et 353 
al., 2021; Stine et al., 2023), with additional multiplexing of decision-irrelevant signals (Meister 354 
et al., 2013). In contrast, different STN subpopulations can carry distinct signals that may all be 355 
relevant to decision formation. Moreover, these signals include patterns not evident in the other 356 
regions, such as a choice- and coherence-independent activation in early motion viewing (blue 357 
cluster in Figure 3B and D), that may signal a unique role for the STN. 358 

Second, choice-selective ramping activity has been identified in LIP, FEF, SC, the caudate 359 
nucleus, and now two STN subpopulations (Ding and Gold, 2010; Fan et al., 2020). However, 360 
such activity differs among these oculomotor regions just before saccade onset for the preferred 361 
choice. In LIP, FEF, and SC, when the ramping activity is aligned to saccade onset, it shows 362 
negative coherence modulation and positive RT modulation before converging to a common, 363 
higher level, consistent with an accumulate-to-bound process. In the caudate nucleus, the 364 
ramping activity does not converge to a common, higher level. For the first STN subpopulation 365 
(Figure 3), the ramping activity showed on average positive coherence modulation and negative 366 
RT modulation (opposite to predictions of an accumulate-to-bound process) before converging to 367 
a common, higher level. The second STN subpopulation did not show choice-selective activity 368 
before saccade onset. These differences suggest that the caudate and STN neurons participate in 369 
decision deliberation but do not directly mediate decision termination (bound crossing).  370 

Third, whereas unilateral perturbations in LIP and SC tend to induce contralateral choice biases 371 
(Hanks et al., 2006; Jun et al., 2021; Jeurissen et al., 2022; Stine et al., 2023), unilateral STN 372 
(and caudate) microstimulation can induce both contralateral and ipsilateral choice biases, 373 
depending on the stimulation site (Ding and Gold, 2012b; Doi et al., 2020). At many sites, STN 374 
microstimulation effects on RT were often bilateral and of the same polarity. Moreover, STN 375 
microstimulation seems to have a particularly strong effect on the overall dependence of choice 376 
and RT on evidence, which was not the case for other oculomotor regions. These differences 377 
suggest that the STN has unique roles in choice-independent computations, likely including 378 
those involving evidence pooled for all alternatives or general bound dynamics (Bogacz and 379 
Gurney, 2007; Ratcliff and Frank, 2012).   380 

In summary, we characterized single-neuron activity and the effects of local perturbations in the 381 
STN of monkeys performing a deliberative visual-oculomotor decision task. Our results 382 
validated key aspects of previous theoretical predictions, including specific roles for the STN in 383 
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modulating decision deliberation and commitment. Our results also identified other features of 384 
decision-related processing in STN that differ from both theoretical predictions and known 385 
properties of other brain areas that contribute to these kinds of decisions. These differences can 386 
help guide future investigations that aim to delineate how cortical-subcortical interactions in 387 
general, and interactions involving the STN in particular, support decision-making and other 388 
aspects of higher brain function. 389 

 390 

Methods 391 

For this study, we used two adult male rhesus monkeys (Macaca mulatta) that have been 392 
extensively trained on the direction-discrimination (dots) task. All training, surgery, and 393 
experimental procedures were in accordance with the National Institutes of Health Guide for the 394 
Care and Use of Laboratory Animals and were approved by the University of Pennsylvania 395 
Institutional Animal Care and Use Committee (protocol # 804726). 396 

Task design and electrophysiology 397 

The behavioral task (Figure 1A), general surgical procedure, and data acquisition methods have 398 
been described in detail previously (Ding and Gold, 2010, 2012b). Briefly, the monkey was 399 
required to report the perceived motion direction of the random-dot stimulus with a saccade at a 400 
self-determined time. Trials with different motion coherences (drawn from five levels) and 401 
directions were interleaved randomly. The monkey’s eye position was monitored with a video-402 
based eye tracker and provided reward/error feedback online based on comparisons between the 403 
monkey’s eye position and task-relevant locations. Saccade reaction time (RT) was measured 404 
offline with established velocity and acceleration criteria. Neural activity was recorded using 405 
glass-coated tungsten electrodes (Alpha-Omega) or polyamide-coated tungsten electrodes (FHC, 406 
Inc.), using a grid system through a recording chamber with access to the STN. For 407 
microstimulation sessions, lower-impedance FHC electrodes were used to record and stimulate at 408 
the same sites. Single units were identified by offline spike sorting (Offline Sorter, Plexon, Inc.). 409 
Electrical microstimulation was delivered using Grass S88 stimulator as a train of negative-410 
leading bipolar current pulses (250 µs pulse duration, 200 Hz) from motion onset to saccade 411 
onset. For most sessions, a current intensity of 50 µA was used. In other sessions, we lowered the 412 
intensity to ensure that microstimulation did not abolish the monkey’s ability to complete the 413 
trials. We randomly interleaved trials with and without microstimulation at a 1:1 ratio.  414 

Localizing the STN 415 

We obtained structural MRI scans using T1- MPRAGE and/or T2-SPACE sequences. We 416 
estimated the likely chamber coordinates with access to the STN from these images (and 3D 417 
reconstruction using BrainSight from Rogue Research, Inc) and mapped the surrounding areas 418 
electrophysiologically. Specifically, we identified several putative landmark regions, including 1) 419 
thalamus, which showed characteristic bursts of activity in a low-firing background while the 420 
monkey dozed off; 2) reticular nucleus of the thalamus, where neurons exhibited high baseline 421 
firing rates (with bursts sometimes > 100Hz); 3) zona incerta, where neurons exhibited low, tonic 422 
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baseline firing and briefly paused their activity around saccades (Ma, 1996); 4) substantia nigra, 423 
pars reticulata, where some neurons showed high baseline firing rates and suppression in activity 424 
around visual stimulus or saccade onset (Hikosaka and Wurtz, 1983); and 5) substantia nigra, 425 
pars compacta, where neurons showed low baseline firing and responded to unexpected reward. 426 
Based on a macaque brain atlas (Saleem and Logothetis, 2007) and previously reported STN 427 
activity patterns (Matsumura et al., 1992; Wichmann et al., 1994b; Isoda and Hikosaka, 2008), 428 
we defined STN as the area that: 1) was surrounded by these landmark regions, 2) was separated 429 
from them by gaps with minimal activity (white matter), and 3) exhibited irregular firing patterns 430 
with occasional short bursts. The baseline firing rate, measured within 50 ms before fixation 431 
point onset, had a mean±SD magnitude of 15.4±12.4 spikes/s in our sample. 432 

Neural-activity analysis 433 

We measured the firing rates for each neuron and trial condition in running windows (300 ms) 434 
aligned to motion and saccade onsets. To visualize the overall activation/suppression, we 435 
averaged the firing rates across trial conditions and computed the z-scores using a 300 ms 436 
window before motion onset as the baseline. To visualize the overall choice preferences, we 437 
averaged the firing rates for each choice, computed the difference between choices, and z-scored 438 
the difference using the same baseline window. To quantitatively measure each neuron’s 439 
sensitivity to choice and motion coherence, we performed two multiple linear regressions for 440 
each running window: 441 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝛽𝛽0 + 𝛽𝛽𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 × 𝐼𝐼𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + + 𝛽𝛽𝐶𝐶𝐶𝐶ℎ−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 × 𝐼𝐼𝐶𝐶𝐶𝐶ℎ−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 +  𝛽𝛽𝐶𝐶𝐶𝐶ℎ−𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 × 𝐼𝐼𝐶𝐶𝐶𝐶ℎ−𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 442 
(Eq. 1) 443 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝛽𝛽0 + 𝛽𝛽𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 × 𝐼𝐼𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + + 𝛽𝛽𝑅𝑅𝑅𝑅−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 × 𝐼𝐼𝑅𝑅𝑅𝑅−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 +  𝛽𝛽𝑅𝑅𝑅𝑅−𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 × 𝐼𝐼𝑅𝑅𝑅𝑅−𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (Eq. 444 
2) 445 

where 𝐼𝐼𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = {1 for contralateral choice,−1 for ipsilateral choice} , 446 

𝐼𝐼𝐶𝐶𝐶𝐶ℎ−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = {coherence for contralateral choice, 0 for ipsilateral choice}, 447 
𝐼𝐼𝐶𝐶𝐶𝐶ℎ−𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = {0 for contralateral choice, coherence for ipsilateral choice}. 448 

𝐼𝐼𝑅𝑅𝑅𝑅−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = {RT for contralateral choice, 0 for ipsilateral choice}, 449 
𝐼𝐼𝑅𝑅𝑅𝑅−𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = {0 for contralateral choice, RT for ipsilateral choice}. 450 
 451 
Significance of non-zero coefficients was assessed using a t-test (criterion: p = 0.05). 452 

Cluster analysis 453 

We converted each neuron’s activity into a 30-D vector consisting of the average firing rate 454 
within three 200-ms windows for all trial conditions (i.e., 2 choices x 5 coherence levels). The 455 
windows were selected as early motion viewing (100 – 300 ms after motion onset), late motion 456 
viewing (300 – 500 ms after motion onset), and peri-saccade (100 ms before to after saccade 457 
onset). The choice identity was designated as either “preferred” and “other”, based on the 458 
relative average activity in the peri-saccade window. Note that this designation was used so that 459 
neurons with similar general modulation patterns except for the polarity of their choice 460 
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selectivity would be grouped together. This designation was not based on any statistical test and 461 
did not imply that the peri-saccade activity was reliably choice selective. The average firing rate 462 
for each neuron was then z-scored based on baseline rates measured in a 300 ms window ending 463 
at motion onset.  464 

We explored multiple method variations using k-means clustering and present results from the 465 
variation with the highest stability. These variations included: 1) whether or not the vectors were 466 
projected onto 11 principal components that together explained at least 95% of total variance; 467 
and 2) calculation of vector distance, including squared Euclidean, cosine, and correlation 468 
metrics. We determined the best settings using: 1) the Rand index (Rand, 1971), which quantifies 469 
the stability of clusters in repeated clustering; 2) Silhouette scores, which quantifies the quality 470 
of grouping and separation between clusters; and 3) visual inspection of clustering results in 471 
terms of both cluster distribution in a t-SNE space and average activity of the clusters. To 472 
compute the Rand index, we performed 50 runs of clustering, assuming 3-9 clusters, for each 473 
combination of variations. The Rand index was computed as the fraction of consistent grouping 474 
between a pair of units between two clustering runs. For two runs of clustering results, Rand 475 

index = 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

, where 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 counts the number of neuron pairs that 476 

share clusters in both runs, 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 counts the number of neuron pairs that do not 477 
share clusters in either run, and 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 counts the total number of neuron pairs. To compute 478 
the Silhouette scores, we chose the best of 100 repetitions of clustering for each combination of 479 

variations. For each neuron, Silhouette score = max (𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,   𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐− 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

, where 480 

𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐is the average distance to the neuron’s nearest neighboring cluster, and 481 
𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the average distance to other neurons in the same cluster. A positive score 482 
implies that, for the given neuron, its activity was more similar to other neurons within the same 483 
cluster than those in its nearest neighboring cluster. A negative score implies that the neuron’s 484 
activity was more similar to those outside its own cluster.  485 

To classify activity recorded at a microstimulation site, we calculated the correlation between its 486 
30-D vector and the centroids from random-seeded clustering. The centroid with the highest 487 
correlation value determined the cluster identity of the activity. 488 

Microstimulation-effects analysis 489 

We analyzed microstimulation effects in several ways. To characterize the effects without 490 
assumptions about the underlying decision process, we fitted logistic functions to the choice data 491 
and linear functions to the RT data. We used three variants of the logistic functions that differed 492 
in their use of lapse rates:  493 

No Lapse: 𝑝𝑝 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) =  1
1+𝑒𝑒−(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆0+𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)×(𝐶𝐶𝐶𝐶ℎ+ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵0+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 

  (Eq. 3) 494 

Symmetric Lapse: 𝑝𝑝 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) = 𝜆𝜆0 + 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 +495 
1−2×(𝜆𝜆0+𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)

1+𝑒𝑒−(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆0+𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)×(𝐶𝐶𝐶𝐶ℎ+ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵0+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 
        (Eq. 4) 496 
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Asymmetric Lapse: 𝑝𝑝 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) = 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼0 + 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼−𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 +497 
1−𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼0−𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼−𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−𝜆𝜆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶0−𝜆𝜆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
1+𝑒𝑒−(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆0+𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)×(𝐶𝐶𝐶𝐶ℎ+ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵0+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 

        (Eq. 5) 498 

where Coh is the signed coherence (positive/negative for motion toward the 499 
contralateral/ipsilateral choice). To assess the significance of the “estim” terms, we used 500 
bootstrap methods. Specifically, we generated 200 sets of data by shuffling the microstimulation 501 
status of trials within each session. We fitted these artificial data using the same logistic 502 
functions to estimate null distributions for each parameter and performed a one-tailed test to 503 
determine if the actual fit value exceeded chance (criterion, p < 0.05).  504 

We fitted linear functions to the RT data, separately for the two choices: 505 

𝑅𝑅𝑅𝑅 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂0 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆0 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) × 𝐶𝐶𝐶𝐶ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  (Eq. 6) 506 

We assessed significance using t-tests (criterion, p < 0.05).  507 

To infer microstimulation effects on decision-related computations, we fitted drift-diffusion 508 
models to choice and RT data simultaneously. We used DDM variants with collapsing bounds 509 
(DDM; Figure 7A), following previously established procedures (Fan et al., 2018; Doi et al., 510 
2020). Briefly, the DDM assumes that motion evidence is accumulated over time into a decision 511 
variable (DV), which is compared to two collapsing choice bounds. A choice is made when the 512 
DV crosses either bound, such that the time of crossing determines the decision time and the 513 
identity of the bound determines the choice identity. The model has eight basic parameters 514 
(presented here in six groups): 1) a, the maximal bound height; 2) B_collapse and B_t, the decay 515 
speed and onset specifying the time course of the bound “collapse”; 3) k, a scale factor governing 516 
the rate of evidence accumulation; 4) me, an offset specifying a bias in the rate of evidence 517 
accumulation; 5) z, an offset specifying a bias in the DV, or equivalently, asymmetric offsets of 518 
equal magnitude for the two choice bounds; and 6) 𝑡𝑡0𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑡𝑡0𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, non-decision times for 519 
the two choices that capture RT components that do not depend on evidence accumulation (e.g., 520 
visual latency and motor delay).  521 

We used 8 variants of DDM. In the Full model, all eight parameters were allowed to change with 522 
microstimulation. In the None model, all eight parameters did not change with microstimulation. 523 
In six reduced models (NoA, NoCollapse, NoK, NoME, NoZ, NoT), the corresponding group of 524 
parameters (specified above) were fixed while the other parameters were allowed to change with 525 
microstimulation. We fitted each model using the maximum a posteriori estimate method and 526 
previously established prior distributions (Wiecki et al., 2013). We performed five runs for each 527 
fit and used the best run (highest likelihood) for analyses here. We used the Akaike Information 528 
Criterion (AIC) for model selection. We considered an AIC difference >3 to indicate that the 529 
smaller-AIC model significantly outperformed the larger-AIC model. For a given sessions, if the 530 
Full model outperformed a reduced model and the None model, we considered that session to 531 
show significant microstimulation effect(s) on the corresponding model parameter(s). For 532 
example, we considered STN microstimulation to induce significant changes in k if the Full 533 
model outperformed both None and NoK models for a given session.  534 
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Figure legends 549 

Figure 1. Behavioral task and model predictions. A, Behavioral task. The monkey was 550 
required to report the perceived motion direction of the random-dot stimulus by making a 551 
saccade towards the corresponding choice target at a self-determined time. B, Three previous 552 
models predicted different patterns of STN activity.  553 

Figure 2. STN neurons have diverse response profiles. A, Activity of three STN neurons 554 
(rows) aligned to motion (left) and saccade (right) onsets and grouped by choice x motion 555 
coherence (see legend). For motion-onset alignment, activity was truncated at 100 ms before 556 
saccade onset. For saccade-onset alignment, activity was truncated before 200 ms after motion 557 
onset. B, Summary of average activity patterns. Each row represents the activity of a neuron, z-558 
scored by baseline activity in a 300 ms window before target onset and averaged across all trial 559 
conditions. Rows are grouped by monkey (red and green shown to the right of each panel: 560 
monkeys C and F, respectively) and sorted by the time of peak values relative to motion onset. 561 
Only correct trials were included. C, Heatmaps of linear regression coefficients for choice (top), 562 
coherence for trials with contralateral choices (middle), and coherence for trials with ipsilateral 563 
choices (bottom), for activity aligned to motion (left) and saccade (right) onsets. Regression was 564 
performed in running windows of 300 ms. Regression coefficients that were not significantly 565 
different from zero (t-test, p>0.05) were set to zero (green) for display purposes. Neurons were 566 
sorted in rows by the time of peak coefficient magnitude. Only correct trials were included. D, 567 
Time courses of the fractions of regression coefficients that were significantly different from zero 568 
(t-test, p<0.05), for choice (black), coherence for trials with contralateral choices (red), and 569 
coherence for trials with ipsilateral choices (blue). Dashed line indicates chance level. E, Time 570 
courses of the fractions of non-zero regression coefficients for coherence. Separate fractions 571 
were calculated for trials with the preferred (purple) and null (green) choices from choice-572 
selectivity activity and for all trials from activity that was not choice selective (gray). Only time 573 
points after motion onset with fractions > 0.05 for choice-selective activity were included. 574 
Dashed line indicates chance level. 575 

Figure 3. STN contains distinct subpopulations. A, Three activity vectors that were 576 
constructed based on theoretical predictions in Figure 1B and used as seeds for k-means 577 
clustering (see Methods). B, Each panel shows the average activity of neurons in a cluster, same 578 
format as Figure 2A. The numbers indicate the cluster size. C, Visualization of the clusters using 579 
the t-distributed stochastic neighbor embedding (t-SNE) dimension-reduction method. D, 580 
Average activity of clusters identified using random-seeded k-means clustering. Same format as 581 
Figure 3B. E, Visualization of the random-seeded clusters in the same tSNE space.  582 

Figure 4. STN microstimulation affects monkeys’ choice and RT. A-C, Monkey’s choice (top) 583 
and RT (bottom) performance for trials with (red) and without (black) microstimulation for three 584 
example sessions (A,B: monkey C; C: monkey F). Lines: DDM fits. D, Distributions of 585 
microstimulation effects on bias and slope terms of the logistic function. Filled bars in 586 
histograms indicate sessions with significant modulation of the specific term (bootstrap method). 587 
Triangles indicate the median values. Filled triangle: Wilcoxon sign-rank test for H0: median=0, 588 
p < 0.05. E and F, Summary of microstimulation effects on the offset (E) and slope (F) terms of a 589 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2024. ; https://doi.org/10.1101/2024.04.09.588715doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.09.588715
http://creativecommons.org/licenses/by/4.0/


23 
 

linear regression fit to RT data. Two separate linear regressions were performed for the two 590 
choices (Ipsi/Contra, as indicated). Triangles indicate the median values. Filled triangles: 591 
Wilcoxon sign-rank test, p < 0.05. 592 

Figure 5. STN microstimulation affected multiple computational components in the DDM. 593 
A, Illustration of the DDM. Red/black lines represent across-trial mean/single-trial example of 594 
the evidence (top) and drift rate (bottom). Blue lines represent the collapsing decision bounds. B, 595 
Distribution of the difference in AIC between the None and Full models. Red dashed line 596 
indicates the criterion for choosing the full model: AIC difference = 3. C, Histograms of 597 
microstimulation effects on DDM parameters. Each histogram included only sessions in which 598 
the Full model outperformed the corresponding reduced model (e.g., the histogram for parameter 599 
a included only sessions in which AICNoA – AICFull > 3 and AICNone – AICFull > 3). Triangles 600 
indicate median values. Filled triangles: Wilcoxon sign rank test, p < 0.05. D, Summary of 601 
microstimulation effects on all parameters, for sessions in which at least one significant effect 602 
was present. Sessions were sorted by the prevalence and sign of the effects.  603 

Figure 6. Different STN subpopulations are intermingled. Locations of STN neurons, color-604 
coded by clusters based on random-seed clustering (same as Figure 3D). The Medial-Lateral 605 
(ML) values were jittered for better visualization of neurons recorded along the same track and at 606 
similar depths. Anterior-Posterior (AP) levels were relative to the anterior commissure. ML and 607 
depth levels were relative to the center of the recording chambers.  608 

Figure 7. STN microstimulation effects depend partially on neural clusters. A, Average 609 
activity at stimulation sites, grouped by four clusters based on the clusters in Figure 3D. B, 610 
Fractions of significant microstimulation effects for sites with the presence of each neuron 611 
cluster. Significance was based on AIC comparison between reduced and Full models. C, 612 
Microstimulation effects grouped by neuron cluster. Same format as Figure 5D. D, Fractions of 613 
significant microstimulation effects, grouped by effects reflecting changes in bound, decision 614 
variable computation, and non-decision processes.  615 

  616 
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Supplemental Information 617 

Suppl. Figure 1. STN activity is modulated by choice and RT. Same format as Figure 2, 618 
except using choice and RT as regressors.  619 

Suppl. Figure 2. Clustering parameters. A, Silhouette plots for clustering results using 620 
different combinations of settings. Silhouette scores for neurons are grouped by clusters and 621 
sorted. Red lines indicate the mean scores. Yellow shaded box indicates the chosen setting for 622 
results in Figure 3. B, Average Rand indices for different clustering settings. For each setting, the 623 
k-means algorithm was run 50 times, each time picking the best clusters out of 100 repetitions. 624 
Higher Rand index indicates greater cluster stability across different runs. C, Mean silhouette 625 
scores and the number of negative scores as a function of number of clusters, using the firing rate 626 
vectors and correlation distance. Higher mean score and fewer negative scores indicate better 627 
clustering.  628 

Suppl. Figure 3. Clustering results using alternative numbers of clusters, visualized in tSNE 629 
space. Same format as Figure 3E.  630 

Suppl Figure 4. Comparison of different logistic models. A, The No Lapse model was 631 
associated with the lowest AIC for most sessions. The Symmetric Lapse model was associated 632 
with lower AICs for 12 sessions. The Asymmetric Lapse model was associated with lower AICs 633 
for 8 sessions. B, Histograms of microstimulation effects on bias, slope, and lapse terms in the 634 
Symmetric Lapse model. C, Histograms of microstimulation effects on bias, slope, and two lapse 635 
(for each choice) terms in the Asymmetric Lapse model. Same format as the histograms in Figure 636 
6A.  637 

Suppl Figure 5. A, Differences in AIC between reduced and Full models. Filled circles indicate 638 
sessions for which AICReduced – AICFull > 3 (red line). Note that for three sessions, the Full model 639 
outperformed the None model but not any of the reduced models. B, Histograms of difference in 640 
DDM parameters between trials with and without microstimulation. Filled bars represent 641 
sessions considered to show significant microstimulation effects on the given parameter, based 642 
on AIC comparisons. Triangles indicate median values. Filled triangles: Wilcoxon sign-rank test, 643 
p < 0.05. 644 

  645 
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Figure 2, except using choice and RT as regressors. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2024. ; https://doi.org/10.1101/2024.04.09.588715doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.09.588715
http://creativecommons.org/licenses/by/4.0/


0

1
Ve

ct
or

sq
Eu

cl
id

ea
n n = 3

0

1 n = 4

0

1 n = 5

0

1 n = 6

0

1 n = 7

0

1 n = 8

0

1 n = 9

-1

0

1

co
si

ne

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

co
rre

la
tio

n

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

0

1

PC
A 

Pr
oj

ec
tio

n
sq

Eu
cl

id
ea

n

0

1

0

1

0

1

0

1

0

1

0

1

0

1

co
si

ne

0

1

0

1

0

1

0

1

0

1

0

1

0 100 200
-1

0

1

co
rre

la
tio

n

-1

0

1

0

1

0

1

0

1

0

1

0

1

Neuron #

A

Suppl. Figure 2. Clustering parameters. A, Silhouette plots for clustering results using differ-
ent combinations of settings. Silhouette scores for neurons are grouped by clusters and sorted. 
Red lines indicate the mean scores. Yellow shaded box indicates the chosen setting for results 
in Figure 3. B, Average Rand indices for different clustering settings. For each setting, the 
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better clustering. 
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Suppl Figure 4. Comparison of different logistic models. A, The No Lapse 
model was associated with the lowest AIC for most sessions. The Symmetric 
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Suppl Figure 5. A, Differences in AIC between reduced and Full models. Filled circles indicate 
sessions for which AICReduced – AICFull > 3 (red line). Note that for three sessions, the Full model 
outperformed the None model but not any of the reduced models. B, Histograms of difference in DDM 
parameters between trials with and without microstimulation. Filled bars represent sessions considered 
to show significant microstimulation effects on the given parameter, based on AIC comparisons. 
Triangles indicate median values. Filled triangles: Wilcoxon sign-rank test, p < 0.05.
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