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Abstract 

High-amplitude co-activation patterns are sparsely present during resting-state fMRI but 

drive functional connectivity1–5. Further, they resemble task activation patterns and are well-

studied3,5–10. However, little research has characterized the remaining majority of the resting-

state signal. In this work, we introduced caricaturing—a method to project resting-state data to a 

subspace orthogonal to a manifold of co-activation patterns estimated from the task fMRI data. 

Projecting to this subspace removes linear combinations of these co-activation patterns from the 

resting-state data to create Caricatured connectomes. We used rich task data from the Human 

Connectome Project (HCP)11 and the UCLA Consortium for Neuropsychiatric Phenomics12 to 

construct a manifold of task co-activation patterns. Caricatured connectomes were created by 

projecting resting-state data from the HCP and the Yale Test-Retest13 datasets away from this 

manifold. Like caricatures, these connectomes emphasized individual differences by reducing 

between-individual similarity and increasing individual identification14. They also improved 

predictive modeling of brain-phenotype associations. As caricaturing removes group-relevant 

task variance, it is an initial attempt to remove task-like co-activations from rest. Therefore, our 

results suggest that there is a useful signal beyond the dominating co-activations that drive 

resting-state functional connectivity, which may better characterize the brain’s intrinsic functional 

architecture.  
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1. Introduction: 

 Functional connectivity at rest is driven by bursts of short, spatially distributed co-

activation events, which make up only a small fraction of the scan1–5. These co-activations 

increase the temporal correlation between functional networks and the nonstationarity of the 

resting-state signal1,3 and mimic task-induced activity patterns3,5–10. However, they may be 

problematic because they account for only a small fraction of the signal and occur sporadically, 

leading to low reliability14,15 and predictive utility16.  

Relatedly, two theoretical frameworks exist to emphasize individual differences in 

functional connectivity14. The spotlight approach “[blurs] the irrelevant features while retaining 

and enriching relevant ones”. Task-induced changes in the fMRI signal achieve this goal by 

consistently modulating the co-activations across individuals14,17. Since task paradigms 

intentionally elicit these strong co-activations, they are more densely sampled during tasks, 

driving a comparatively stable connectivity pattern. As a result, task-based connectomes exhibit 

greater within- and between-individual similarity, reliability, and predictive utility than resting-

state connectomes. These improvements have been observed across classic task paradigms14–

16,18,19, as well as modern naturalistic and movie paradigms20–22. Methods which transform 

resting-state connectomes into task-based connectomes similarly improve reliability and 

prediction23,24. 

 The second framework—the caricature approach—exaggerates “the most prominent 

features of each individual”14. Like a caricature, individuals would become less similar to each 

other, reducing between-individual similarity and increasing reliability and predictive utility14. 

While no work has investigated how to implement this thought experiment, removing the co-

activations in resting-state fMRI might formalize it. As task-induced co-activation patterns lie on 

a low-dimensional manifold common across participants25, principal component analysis (PCA) 

of task fMRI data can flexibly identify these patterns in an unsupervised manner. Projecting 

resting-state data onto a subspace orthogonal to this manifold would remove linear 
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combinations of these co-activation patterns from the resting-state data. Importantly, as the co-

activation patterns are defined at the group level, the group-relevant variance would be 

removed, reducing between-individual similarity as a caricature would. Additionally, caricaturing 

offers a method to study the remaining signal in resting-state data with the dominant, task-like 

co-activations removed, which may better characterize the brain’s intrinsic functional 

architecture.  

 To evaluate caricaturing, we compared the within- and between-individual similarity of 

the projected data (i.e., Caricatured connectomes) to standard resting-state connectomes in 

three datasets. We also compared the reliability and predictive utility of Caricatured 

connectomes. Caricatured connectomes behaved like caricatures, exhibiting lower between-

individual similarity but higher multivariate reliability and predictive utility. This novel method 

enhances the individual differences in existing resting-state data and—given the ease of 

collecting and harmonizing resting-state data over task data—helps motivate future data 

collection. These results also suggest that there is an informative signal beyond the dominating 

co-activation patterns that drive resting-state functional connectivity. 
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2. Results 

To implement caricaturing, we projected the resting-state fMRI time series away from a 

manifold of task co-activation patterns, estimated from the task-based time series (Figure 1A). 

First, group-level principal components (PCs) are calculated by temporally concatenating task-

based time series across tasks and participants and performing principal component analysis 

(PCA). Next, a projection matrix is created to project an fMRI time point into a subspace 

orthogonal to the top PCs. Multiplying this projection matrix by each time point in a resting-state 

scan creates new time series without information from the top PCs. Finally, connectomes are 

made as usual by correlating time series pairs.  

We used the Human Connectome Project (HCP)11, UCLA Consortium for 

Neuropsychiatric Phenomics (CNP)12, and the Yale Test-Retest (TRT) datasets, the latter of 

which comprises the publicly available TRTI13 and the private TRTII. The HCP and CNP 

datasets have rich task data and were used to create the manifold of task co-activations and 

associated projection matrices, independently. Using two datasets to create different manifolds 

highlights that caricaturing is general to the tasks and datasets used. Resting-state data from 

the HCP and TRT datasets were projected away from the manifold, creating ‘Caricatured’ 

connectomes. ‘CaricaturedHCP’ or ‘CaricaturedCNP’ indicates which dataset–the HCP or CNP–

was used to generate the manifold. When using only the HCP to create Caricatured 

connectomes, we used a validated subsampling procedure (SI Figures 1-3) to avoid data 

leakage. SI Figure 4 highlights the diminished correlation structure of the Caricatured 

connectomes compared to standard connectomes. 

Caricatured connectomes from HCP and TRT were evaluated and compared to 

‘Standard’ connectomes (i.e., those created using standard resting-state fMRI data) in multiple 

downstream analyses (Figure 1B). First, we characterized within- and between-participant 

similarity in the HCP and TRT datasets. Second, we analyzed multivariate reliability via 

fingerprinting and discriminability and univariate reliability via intra-class correlation (ICC) in the 
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HCP and TRT datasets. Multivariate reliability reflects the stability of multidimensional data, 

such as whole-brain patterns, while univariate reliability reflects the reliability of each 

measurement individually. For the similarity and reliability analyses, we truncated the HCP time 

series to 176 frames before constructing the connectomes as was done in Finn et al., 201714 to 

avoid a potential ceiling effect since longer scan duration improves connectome stability26–29 and 

fingerprinting accuracy14. Third, we performed connectome-based predictive modeling (CPM) in 

the HCP dataset for age, IQ, and sex, comparing prediction performance between Caricatured 

and Standard connectomes. Models for age and IQ used ridge regression; models for sex used 

support vector machines (SVM). Models were trained and tested using 1000 iterations of 10-fold 

cross-validation.  
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Figure 1: Caricaturing overview. (A) Caricaturing has two parts. The first is to define a task manifold from group-level 

task fMRI. We concatenate all task scans for individuals temporally and perform principal component analysis (PCA). 

Each principal component (PC) is a common co-activation pattern across tasks. The second part is to project resting-

state data away from this manifold. We create a matrix of PCs excluding the top PCs (e.g., the first five, as in this 

work). This matrix is multiplied by its transpose (denoted as “T”) to obtain the projection matrix. Next, we multiply the 

projection matrix and each time point from a resting-state scan, orthogonalizing them to the task manifold. 

Caricatured connectomes are created by correlating these orthogonalized time series. (B) In several downstream 

analyses, we compare Caricatured connectomes to Standard connectomes (i.e., those created using standard 

resting-state fMRI data). First, we observed how the method mechanistically changes the data by investigating within- 

and between-individual similarity and multivariate (fingerprinting and discriminability) and univariate (edge-level 

intraclass correlation) reliability. Next, we used Connectome-Based Predictive Modeling to investigate if mechanistic 

changes in Caricatured connectomes resulted in stronger brain-behavior associations. 
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2.1 Group-level task-based PCA replication and validation 

In the HCP, we replicated previous results25 to verify that task-driven activity lies on a 

low-dimensional manifold. PCA was performed on the concatenated task data from every 

participant in the HCP dataset. We then correlated the top five PC time series with the task 

block regressors. In line with previous results, the first PC time series was strongly correlated 

with the full task block regressor, created by combining the regressors across all tasks (mean 

r=0.387; SI Figure 1A). Additionally, the fifth PC time series was correlated with the absolute 

value of the derivative of the full task block regressors (mean r=0.113). The remaining PC time 

series differentially correlated with the task regressors (SI Figure 1B). 

 

2.2 Caricatured connectomes decrease within- and between-individual similarity 

We investigated within- and between-individual similarity for Caricatured and Standard 

connectomes as a caricature should decrease between-individual similarity. As expected in the 

HCP, CaricaturedHCP connectomes showed 53% lower between-individual similarity (p’s<0.008; 

Bonferroni corrected; Figure 2A). However, these connectomes also showed 42% less within-

individual similarity (p’s<0.008; Bonferroni corrected; Figure 2A). Likewise, CaricaturedCNP 

connectomes exhibited a 39% decrease in within-individual similarity and a 48% decrease in 

between-individual similarity (p’s<0.0001; Bonferroni corrected; Figure 2B). Lastly, in the TRT 

dataset, Caricatured connectomes followed suit (Figure 2C) with significantly decreased within- 

(25%) and between-individual (41%) similarity (p’s<0.0001; Bonferroni corrected). Notably, 

these changes contrast with spotlighting, which increases both within- and between-individual 

similarity14.  
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Figure 2: Connectome similarity. (A) Using 1000 iterations of the PC subsample procedure, the similarity between 

LR and RL phase-encoded scan pairs was calculated in the HCP dataset within each scan condition. Each iteration 

obtained within-individual and between-individual similarity distributions, and the median was taken for each 

distribution. Blue bars show the average median within-individual similarity, with error bars showing the standard 

deviation. Red bars show the same for the median between-individual similarity. (B) The same analysis was 

performed, instead using the CNP dataset to construct the PCs. Only one iteration was performed, with all 

participants used. The full within-individual similarity distribution (blue) and between-individual similarity distribution 

(red) are shown for each condition. (C) The analysis was performed in the TRT dataset, using either the HCP or CNP 

dataset to construct the PCs for projection. The full within-individual similarity distribution (blue) and between-

individual similarity distribution (red) are shown for each condition. P-values are shown for all relevant comparisons; 

they are denoted as “less than” a particular value when the resolution of the test could not be discerned below that 

value. We chose 0.0001 as the lowest bound above which to report p-values. 
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2.3 Caricaturing improves multivariate reliability 

We investigated multivariate reliability to determine whether changes in connectome 

similarity had a wider effect on the data. Reliability is broadly a function of within- and between-

individual similarity, where a higher ration between the two is associated with higher reliability. 

In the HCP dataset, CaricaturedHCP connectomes exhibited significantly better fingerprinting 

than Standard connectomes, increasing accuracy by 41% (p’s<0.004; Bonferroni corrected; 

Figure 3A). Results were similar when using CaricaturedCNP connectomes, with a 42% average 

increase in accuracy (p’s<0.004; Bonferroni corrected; SI Table 1). In the TRT dataset, we also 

assessed the perfect separability rate (PSR)13, an extension of fingerprinting for datasets with 

more than two scan sessions per participant. Caricatured connectomes improved PSR by 508% 

(p’s<0.004; Bonferroni corrected; SI Table 2). Using the HCP, CaricaturedHCP and 

CaricaturedCNP connectomes increased discriminability on average by 4% compared to their 

Standard counterparts (p’s<0.004; Bonferroni corrected; Figure 3B; SI Table 3). Lastly, in the 

TRT dataset, discriminability was 1% higher for CaricaturedHCP and CaricaturedCNP 

connectomes than Standard connectomes (pHCP=0.28, pCNP=0.528; Bonferroni corrected; SI 

Table 3). Discriminability was near-perfect in the TRT dataset, leaving little room for large 

improvements. Likely, the small number of subjects inflates discriminability. While both within- 

and between-individual similarity decreased with Caricatured connectomes, between-individual 

similarity decreased more than within-individual similarity, increasing multivariate reliability. 
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Figure 3: Multivariate reliability. Fingerprinting (A) and discriminability analysis (B) were performed for 1000 

subsamples of individuals using pairs of LR and RL phase-encoded scans for each condition. Points represent mean 

fingerprinting accuracy (A) and discriminability (B) for each iteration, with the half violin plots demonstrating the 

distribution with the 1st, 2nd, and 3rd quartiles shown. P-values are shown for all relevant comparisons; they are 

denoted as “less than” a particular value when the resolution of the test could not be discerned below that value. 

 

2.4 Univariate reliability decreases with caricaturing 

Given the changes of within- and between-individual similarity and multivariate reliability, 

we investigated univariate (i.e., edge-level) reliability to understand how individual edges are 

changed after projection. Surprisingly, ICC was lower in Caricatured connectomes than in 

Standard ones. In the HCP dataset, CaricaturedHCP and CaricaturedCNP connectomes had a 25% 

decrease in ICC compared to Standard connectomes (p’s<0.0001; Bonferroni corrected; Figure 

4A-B). In the TRT dataset (Figure 4C), ICC was 12% lower for the CaricaturedHCP connectomes 

and 9% lower for the CaricaturedCNP connectomes (p’s<0.0001; Bonferroni corrected).  
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Figure 4: Intraclass correlation. (A) ICC was calculated for 1000 subsamples of participants using pairs of LR and RL 

phase encoded scans for each condition as the multiple measures per participant. Points represent the mean edge 

ICC across iterations with the half violin plots demonstrating the distribution with the 1st, 2nd, and 3rd quartiles 

shown. (B) ICC was calculated for LR and RL phase-encoded resting-state scans. Caricatured scans were projected 

onto PCs derived from the CNP dataset. (C) ICC was calculated in the TRT dataset using the run and session 

structure to partition the multiple measurements for each participant. Caricatured scans were projected onto PCs 

derived from the HCP or CNP datasets. P-values are shown for all relevant comparisons. We chose 0.0001 as the 

lowest bound above which to report p-values. 

 

2.5 Caricatured connectomes improve resting-state predictive accuracy 

Finally, as multivariate reliability provides an upper limit for prediction30, we examined 

whether improved CPM results for Caricatured connectomes accompanied the increased 

multivariate reliability. CPM models built from the CaricaturedHCP connectomes were significantly 

better than those from Standard connectomes (p’s<0.0001; Bonferroni corrected), explaining 

40% more variance for age and 34% more variance for IQ (Figure 5A-B; SI Figure 5; left 

panels). Results were similar for CaricaturedCNP connectomes (Figure 5A-B; SI Figure 5; right 

panels), with a 21% average increase in explained variance for age and IQ (p’s≤0.0022; 

Bonferroni corrected). Sex classification was more accurate for CaricaturedHCP and 

CaricaturedCNP connectomes (p’s≤0.2808; Bonferroni corrected; Figure 5C). We also examined 
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the multicollinearity of each model’s features to assess model interpretability. Across all 

phenotypes, multicollinearity was lower for models built on CaricaturedHCP connectomes (SI 

Figures 6 and 7). Additionally, models built on CaricaturedHCP connectomes had a similar or 

fewer number of features than those built on Standard connectomes (SI Figure 8). Thus, 

Caricatured connectomes increased CPM performance over Standard connectomes, partially by 

improving a connectome’s feature space and multivariate reliability. 

Overall, projecting resting-state data away from a manifold of task co-activation patterns 

improved prediction and multivariate reliability similar to task-based connectomes but 

mechanistically operated differently. Whereas task-based connectomes accomplish this 

improvement by increasing within- and between-individual similarity and edge-level reliability, 

caricaturing decreases these properties. Together, these results suggest that while moving 

resting-state data toward and away from tasks improves prediction and reliability, their 

underlying mechanisms are distinct.  
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Figure 5: CPM prediction accuracy. Models were built for age (A), IQ (B), and sex (C) in the HCP. Caricatured 

connectomes were constructed using the HCP task data for the left and CNP task data for the right panels. For age 

and IQ, models were assessed via Pearson’s correlation between predicted and actual phenotype. For sex, models 

were evaluated via the percentage of participants correctly classified. In all plots, dots represent model performance 

for one of the 1000 randomizations of 10-fold cross-validation. P-values are shown for all relevant comparisons. We 

chose 0.0001 as the lowest bound above which to report p-values. 
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3. Discussion 

In this work, we introduced caricaturing—a method to project resting-state data to a 

subspace orthogonal to a manifold of co-activation patterns estimated from the task fMRI data. 

This projection removes linear combinations of these co-activation patterns from the resting-

state data. It also formalizes the thought experiment from Finn et al., 201714 and “caricatures” 

resting-state connectomes. These connectomes exhibited decreased between- and within-

individual similarity and increased multivariate reliability and predictive utility. As caricaturing 

removes group-relevant task variance, it is an initial attempt to remove task-like co-activations 

from rest. Our results suggest that there is a useful signal beyond the dominating co-activations 

that drive resting-state functional connectivity. Therefore, caricaturing enhances individual 

differences in resting-state data and may better characterize the brain’s intrinsic functional 

architecture. 

 

3.1 Co-activation events may hide useful signal 

Resting-state functional connectivity can be difficult to interpret31. Early misconceptions 

about its nature painted a portrait of an intrinsic brain activity “baseline”32. Although refuted with 

evidence that there is a temporally unconstrained element of the signal associated with willful 

thought33,34, this only made the portrait more complex. If resting-state is some combination of 

task-like co-activation events3,5–10 and intrinsic functional architecture, then in theory, it should 

be possible to separate the two. Since our method projects resting-state data to a subspace 

orthogonal to a task-relevant manifold, the remaining signal may represent an intrinsic functional 

signal. Our results suggest that information about individual differences is present in this 

remaining signal, potentially at a greater degree than that found in the co-activation events. 

Nevertheless, these results warrant further study to determine what this signal represents. 

 

3.2 Caricatured connectomes improve resting-state data 
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We used two datasets with different tasks to create the task manifold. Caricatured 

connectomes from both manifolds showed similar improvements in multivariate reliability and 

prediction. Thus, caricaturing appears general to the tasks and datasets used to create the 

manifold. As such, it is possible to use a large-scale, task-rich dataset to estimate the manifold 

and then apply it to any new or existing resting-state data. Thus, while task connectivity, 

naturalistic viewing paradigms, and “spotlighting” more generally offer exciting paths forward to 

study individual differences35, one need not throw out the baby with the bathwater. Existing 

resting-state data is widely available, and more will be collected. As such, approaches like ours 

that improve the utility of resting-state data are essential.  

Relatedly, there may be other scenarios in which it is best to maximize within-individual 

similarity while minimizing between-individual similarity. So far, a single method has yet to 

accomplish this. Compared to resting-state connectomes, task-based connectomes increase 

both metrics14. By contrast, our method decreases both. Therefore, future work should 

determine whether novel approaches can be created to achieve the disentanglement of the two.  

 

3.3 Caricaturing is similar to data prewhitening 

Spotlighting and caricaturing are analogous to precoloring and prewhitening—two 

approaches from time series analysis, including in neuroimaging, to account for 

autocorrelations36. In precoloring, a large correlation is added to the time series to swamp out 

the unknown, existing autocorrelation. The total autocorrelation can be estimated as only the 

added component and input into the model to improve statistical inference. In spotlighting, tasks 

add a structure on top of rest, masking its unconstrained nature and improving downstream 

analyses (i.e., identification and prediction) in a conceptually similar way. However, precoloring 

also acts as a low-pass filter, which may remove signals of interest and degrade power37, similar 

to how tasks may obscure useful underlying signals. In contrast to precoloring, prewhitening 

estimates the true autocorrelation to remove it directly. Once removed, classic statistical 
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inference is valid. Similarly, our caricaturing method estimates group-level, task-like co-

activations and removes them from resting-state data to improve identification and prediction. In 

most applications, prewhitening is preferred to precoloring. However, prewhitening requires an 

accurate autocorrelation model, which can be difficult to determine with real data, similar to how 

it is difficult to estimate true task-like co-activation patterns. As with prewhitening and 

precoloring, future research will clarify the strengths and weaknesses of spotlighting and 

caricaturing and how they complement each other. 

 

3.4 Multivariate reliability is separable from univariate reliability 

Caricatured connectomes have greater multivariate but lower univariate reliability. While 

often going hand in hand, increasing multivariate does not guarantee an increase in univariate 

reliability38. They are distinct. Similarly, improving univariate reliability may not improve 

predictive utility13,39,40. Our results further explain this observation. Prediction methods are 

inherently multivariate, reflecting a pattern distributed across many features. Improving each 

feature’s reliability (i.e., univariate) may not make the overall pattern more reliable or, in turn, 

predictive. Therefore, methods for increasing multivariate reliability instead of univariate 

reliability are better equipped to improve predictive models.  

 

3.5 Limitations 

There are several limitations of our work. Although we project resting-state data away 

from a manifold of task co-activation patterns, it is unclear if task-relevant information is 

removed from the resting-state data. However, a couple of alternative explanations can be ruled 

out. First, the top PCs are unlikely to represent physiological noise. The PCs are defined at the 

group level, and heart rate, respiratory rate, and blood pressure would be averaged out across 

individuals. Second, the top PCs are unlikely to represent site- or scanner-related effects. 

Results were generalizable across the datasets collected at different sites and with different 
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scanners. Further, in line with previous research25, the PCs temporally track with task designs. 

Thus a portion of information in the PCs is certainly attributable to the task. Future research is 

needed to determine how much task-relevant information is present in resting-state and how it 

can be removed.  

Additionally, we only used PCA to define the manifold. However, many nonlinear 

methods exist7,41,42 which may better identify task co-activation patterns. Further advances 

through nonlinear techniques may reveal complementary results. 

 

3.6 Conclusion 

In conclusion, we introduce a caricaturing method that projects resting-state fMRI data 

away from a manifold of task co-activation patterns, improving resting-state connectomes' 

reliability and predictive utility. This method putatively removes task co-activation patterns. Our 

work suggests that the signal remaining after projection has increased reliability and utility over 

the standard resting-state signal. If resting-state combines intrinsic functional architecture and 

task-like co-activations, this signal may better represent this intrinsic functional architecture and 

is a topic for further study. Meanwhile, caricaturing can be applied to existing and future resting-

state data to improve results in standard connectivity analyses. 
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4. Methods 

4.1 Datasets 

Three datasets were used in this work: the Human Connectome Project (HCP)11, the 

UCLA Consortium for Neuropsychiatric Phenomics (CNP)12, and the Yale test-retest dataset 

(TRT), which is composed of the publicly available TRTI13 and the private TRTII. HCP and CNP 

were chosen for their wide array of task-based data available in addition to resting-state data. 

The TRT dataset was selected because participants were scanned four times across different 

days, yielding ideal data for assessing ICC and discriminability. 

 

4.2 Processing 

For the HCP data, we only used participants with data for each of the seven tasks 

(EMOTION, GAMBLING, LANGUAGE, MOTOR, RELATIONAL, SOCIAL, WM) and both 

resting-state scans (REST, REST2) for both the left-to-right (LR) and right-to-left (RL) phase 

encodings from the S1200 release. We also removed participants from analysis if the mean 

motion across all of their scans was greater than 0.1mm, if any scan's mean motion was greater 

than 0.15mm, or if they were missing any data. Based on these criteria, 661 participants (males: 

316, females: 345) remained. For the CNP data, we only used participants with data for each of 

the six tasks (BART, PAMENC, PAMRET, SCAP, STOPSIGNAL, TASKSWITCH). We further 

excluded participants if their mean motion across these scans was greater than 0.1mm, if the 

mean motion in any scan was greater than 0.15mm, or if any of their scans were missing data. 

From these criteria, we remained with 136 participants (males: 78, females: 58). For the TRT 

dataset, participants were scanned six times on four days. Since some participants were 

missing the sixth run for some days, we excluded the sixth run for all days and participants. 

Also, each scan was collected at rest for six minutes, but for some runs, scans were shorter and 

were still included in our analysis. The resulting data comprised 20 participants (males: 9, 

females: 11). 
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Consistent preprocessing steps were applied to all datasets. We started with the 

minimally preprocessed data for the HCP dataset43. For the CNP and TRTII data, skull-stripping 

was performed with OptiBet44. The data were then registered into common space. Motion 

correction was done with SPM8. The TRTI dataset was first skull-stripped in FSL45 and then 

registered into common space. Motion correction was performed in SPM5. The data were also 

iteratively smoothed to a 2.5mm Gaussian kernel equivalent46,47. For all datasets, further 

preprocessing was performed using BioImage Suite48. These steps included regressing 24 

motion parameters, regressing the mean white matter, gray matter, and CSF time series, 

removing linear and quadratic trends, and applying a low-pass Gaussian filter (cutoff frequency 

~0.12 Hz for HCP, CNP, and TRTII and ~0.19Hz for TRTI). For more detailed accounts of the 

CNP and TRTI datasets, see Gao et al., 20217 and Noble et al., 201713, respectively. 

 

4.3 Caricaturing 

In Caricaturing, we project resting-state data away from a task manifold. This method 

has two parts. The first is to define a task manifold from group-level, task fMRI. First, we 

temporally concatenate all task scans for individuals. Then, we perform principal component 

analysis (PCA). Each principal component (PC) is a common spatial activity pattern across 

tasks. The second part is to project resting-state data away from this manifold. First, we create a 

matrix of PCs excluding the top PCs (e.g., the first five, as in this work). This matrix is multiplied 

by its transpose to obtain the projection matrix. Next, we multiply the projection matrix and each 

time point from a resting-state scan, orthogonalizing them to the task manifold. Caricatured 

connectomes are created by correlating these orthogonalized time series. 

 

Principal Component Estimation. Using fMRI time series data from one participant, the 

data can be represented as a matrix with dimensions 𝑡𝑡 × 𝑛𝑛, where 𝑡𝑡 is the number of frames in 
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the scan and 𝑛𝑛 is the number of nodes in the atlas. To estimate the PCs, the time series for 

each node are z-scored, and the z-scored matrix is inputted into a PCA algorithm, ensuring that 

the algorithm considers the frames to be observations of the nodes, which are the variables. 

The output is an 𝑛𝑛 × 𝑛𝑛 matrix 𝐿𝐿 of loadings, or PCs, which are orthonormal patterns of co-

activation in the brain ordered by decreasing amount of variance explained in the data. To 

extend this framework to multiple scans, first, each time series is z-scored individually, and then 

they are concatenated along the time dimension. Thus, if using 𝑚𝑚 scans where each scan 𝑖𝑖 has 

𝑡𝑡𝑖𝑖 frames, the final matrix to be input into the PCA algorithm will have dimensions (∑ 𝑡𝑡𝑖𝑖𝑚𝑚
𝑖𝑖=1 ) × 𝑛𝑛. 

The resulting PCs are co-activation patterns that explain variance in the concatenated data. 

 

Projection onto Principal Components. Using a time series matrix 𝑀𝑀 with dimensions 

𝑡𝑡 × 𝑛𝑛 and a loading matrix 𝐿𝐿 with dimensions 𝑛𝑛 × 𝑛𝑛, we first choose a subset of PCs onto which 

we will project the time series. Let 𝑙𝑙 be vector of a subset of the integers from 1 to 𝑛𝑛 indicating 

which PCs will be used for projection. Then, we can create a new matrix 𝐿𝐿� where the 𝑖𝑖𝑡𝑡ℎ column 

is equal to the (𝑙𝑙𝑖𝑖)𝑡𝑡ℎ column of 𝐿𝐿 where 𝑙𝑙𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ element of 𝑙𝑙. We then create a projection 

matrix 𝑃𝑃 = 𝐿𝐿� × 𝐿𝐿�𝑇𝑇 , where 𝑇𝑇 indicates the transpose of a matrix. To project 𝑀𝑀 onto the desired 

PCs, we simply multiply it by the projection matrix to obtain 𝑀𝑀�  =  𝑀𝑀 × 𝑃𝑃. The resulting matrix 𝑀𝑀�  

still retains the same dimensions as 𝑀𝑀 but now with only information from co-activation patterns 

that can be constructed by the desired PCs. Thus, the projected time series data can still be 

used for downstream connectomics analysis with the same dimensionality. 

 

Implementation. The first five PCs obtained by concatenating time series across 

participants and tasks strongly reflected various aspects of the task structure25. Based on this 

result, we implemented our framework by projecting each participant's z-scored resting-state 

time series onto the last 263 PCs of the task time series across multiple participants. Thus, we 
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remove information from the top 5 group-level task PCs to remove dominating signals in the 

task data from the resting-state data. 

 

4.4 Connectome Construction 

Time series data were parcellated according to the Shen268 (268 nodes) atlas49, 

whereby the mean time course for each node was computed as the average of all voxel-level 

time series in that node. Connectomes were then constructed by taking the Fisher transform of 

the Pearson correlation between all pairs of node-wise time series. As a subsampling procedure 

was used in some analyses to ensure there was no data leakage between the data used to 

construct the PCs and the connectomes from which those PCs were projected away, we 

constructed Caricatured resting-state connectomes in the REST and REST2 HCP data for each 

subsample separately. 

 

4.5 Downstream Metrics 

We evaluated how caricaturing affects downstream connectome metrics. We assessed 

the connectomes constructed from projected resting-state time series (referred to as 

Caricatured connectomes) via within- and between-subject similarity, fingerprinting, 

discriminability, intraclass correlation (ICC), and connectome-based predictive modeling (CPM).  

Similarity. To calculate similarity within and between individuals, we extracted and 

vectorized the upper triangle of the connectome. The within-individual similarities were 

computed as the correlation between vectorized connectome pairs of the same individual 

across scans. The between-individual similarities were calculated as the correlation between 

vectorized connectome pairs between different individuals. 

Fingerprinting. We performed fingerprinting as described in Finn et al., 201550. Given two 

groups of distinct connectomes that span the same participants, we labeled one group as the 

‘Database’ and the other as the ‘Target Set’. For each connectome in the ‘Target Set’, the 
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Pearson correlation between that connectome and each in the ‘Database’ was calculated. The 

identity of the connectome in the ‘Database’ that corresponded to the highest correlation was 

assigned as the predicted identity of the current connectome in the ‘Target Set’. After repeating 

this for all connectomes in the ‘Target Set’, the fingerprinting accuracy for this label of 

‘Database’ and ‘Target Set’ was calculated as the number of participants correctly identified 

divided by the number of participants. Perfect separability analysis–described in Noble et al., 

201713–is a simple extension to datasets with more than two scans per participant. From this, 

we can calculate the perfect separability rate (PSR), the percentage of scans for which all 

within-individual similarities are higher than any between-individual comparison. 

Discriminability. Although fingerprinting serves as an excellent metric for participant 

identifiability, because it is binary in its methodology (i.e., correct vs. incorrect identification), it 

potentially leaves out information. Discriminability seeks to overcome this limitation by centering 

the method around the ratio of between-individual measurement distances that exceed within-

individual measurement distances30,51. Furthermore, like perfect separability analysis, 

discriminability allows for any number of measurements per participant. We started by 

constructing a distance matrix between all pairs of measurements, using the correlation 

distance, or 1 minus Pearson’s r. Discriminability was calculated as the proportion of instances 

within-subject measurements were closer in distance than between-subject measurements 

across all possible combinations.  

Intraclass Correlation. Whereas fingerprinting and discriminability are measures of 

multivariate reliability, that is, how reliable are connectomes as a whole, intraclass correlation 

(ICC) is a measure of univariate reliability, or how reliable are the edges of a connectome52. 

ICC53 is the fraction of variance due to the participant divided by the variance due to error. In the 

HCP data, there were only two measures per subject in each condition, so the variance 

components were estimated with a 2-way ANOVA. Symbolically, using subscripts s (subject), r 

(run), and e (residual) to represent the factors, this can be represented as 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥)  =
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 𝜎𝜎𝑠𝑠2(𝑥𝑥)
𝜎𝜎𝑠𝑠2(𝑥𝑥)+𝜎𝜎𝑟𝑟2(𝑥𝑥)+𝜎𝜎𝑠𝑠𝑠𝑠,𝑒𝑒

2 (𝑥𝑥)
, where 𝑥𝑥 is an edge in the connectome. In the TRT data, since the 20 scans 

per participant were partitioned by day and run, the variance components were estimated with a 

3-way ANOVA. Here, adding d (day) to the factors, we get 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥)  =

 𝜎𝜎𝑠𝑠2(𝑥𝑥)
𝜎𝜎𝑠𝑠2(𝑥𝑥)+𝜎𝜎𝑟𝑟2(𝑥𝑥)+𝜎𝜎𝑑𝑑

2(𝑥𝑥)+𝜎𝜎𝑠𝑠𝑠𝑠2 (𝑥𝑥)+𝜎𝜎𝑠𝑠𝑠𝑠
2 (𝑥𝑥)+𝜎𝜎𝑟𝑟𝑟𝑟

2 (𝑥𝑥)+𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠,𝑒𝑒
2 (𝑥𝑥)

. We set negative variance components (which were 

small in magnitude) to zero before computing ICC as in prior work54. For more information, see 

the shared code provided in the links below. 

Connectome-Based Predictive Modeling. For our CPM analyses, we chose sex, fluid 

intelligence (IQ), and age to predict in the HCP dataset. These phenotypes are common in 

benchmarking analyses and typically have larger effect sizes. In all cases, models were built 

with 10-fold cross-validation where models were trained on 90% of the families and tested in 

10% of the families in each fold. In each fold, feature selection was done to reduce the number 

of connectome edges used to build the model. Here, in the 90% of families used to build the 

model, edges were associated with the phenotype by either correlation (if continuous) or t-test 

(if binary). The resulting p-values for each edge were then observed and edges with a p-value 

less than 0.05 were used to build the model. For each phenotype, 1000 iterations of this 10-fold 

cross-validation were performed. For the continuous variables, the models were built using ridge 

regression. For sex, the models were built using linear support vector machine (SVM).  

 

4.6 Statistics. This section provides specific details for all tests performed on the results of this 

research. 

Similarity. For similarity analysis performed on the HCP data using the LR and RL phase 

encodings as the two scans per subject, tests assessing differences across the medians of 

within-subject similarity distributions were performed between REST and CaricaturedHCP REST, 

and REST2 and CaricaturedHCP REST2. We also performed tests to assess the same 

differences in medians of between-subject similarity distributions. The test performed is a 
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paired, one-way non-parametric subtraction test performed in both directions whereby one 

distribution of median similarity is subtracted from the other, and 1 minus the proportion of 

differences that are greater than 0 is the resulting p-value. We then use Bonferroni correction to 

adjust the p-values across conditions (i.e., REST and REST2) and sub-analysis (i.e., within-

subject and between-subject similarity). Thus, to be significant, a test must produce an 

uncorrected p-value less than 0.05/2
4

. If an uncorrected p-value is returned as 0, we say it is less 

than 0.001, since there are 1000 observations. 

 

For the similarity analysis involving HCP connectomes projected onto the CNP PCs, we 

compared the full distributions of within-subject and between-subject similarity between REST 

and CaricaturedCNP REST, and REST2 and CaricaturedCNP REST2. A paired t-test was used 

here, and Bonferroni correction was applied across conditions and sub-analysis (multiplying the 

p-value by 4 to correct). 

 

For the TRT similarity analysis, we compared the distribution of within-subject similarity in 

Standard resting-state connectomes to both CaricaturedHCP and CaricaturedCNP connectomes. 

The same was done for between-subject similarity. We again used the paired t-test with 

Bonferroni correction to account for the four tests performed. 

 

Fingerprinting. For fingerprinting performed between LR and RL phase encodings for each scan 

condition, tests assessing differences in mean accuracy were performed between REST and 

Caricatured REST, and REST2 and Caricatured REST2. This was done via the same non-

parametric subsampling test described above. Afterwards, Bonferroni correction was applied 

across these two tests, multiplying uncorrected p-values by 2 to correct. Thus, to be significant, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.08.588578doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.08.588578
http://creativecommons.org/licenses/by-nc-nd/4.0/


a test must produce an uncorrected p-value less than 0.05/2
2

. If an uncorrected p-value is 

returned as 0, we say it is less than 0.001, since there are 1000 observations.  

 

For the fingerprinting analysis involving HCP connectomes projected onto the CNP PCs, we 

compared accuracies between CaricaturedCNP connectomes and their standard counterparts. 

We performed a permutation test with 1000 permutations in which the labels for caricatured 

versus standard connectomes were shuffled with a probability of 0.5 for each scan to construct 

two distributions of null fingerprinting accuracies. The measured difference between REST and 

CaricaturedCNP REST accuracy and REST2 and CaricaturedCNP REST2 accuracy were 

compared to the distribution of differences between the constructed null accuracy distributions. 

Thus, the resulting uncorrected p-value in each case was 1 minus the proportion of times the 

empirical difference was greater than the null differences. If an uncorrected p-value was 

returned as zero, we stated that it was less than 0.001. Since this test was one-tailed and we 

compared two conditions, the resulting p-values underwent Bonferroni correction by multiplying 

them by four. 

 

For the TRT perfect separability analysis, we compared the PSR in Standard resting-state 

connectomes to both CaricaturedHCP and CaricaturedCNP connectomes. For both comparisons, 

we used the permutation test described above. Again, the resulting p-values underwent 

Bonferroni correction by multiplying them by four. Importantly, statistical inference for PSR is not 

well-behaved, so the p-values are likely inaccurate. However, the discriminability analysis 

overcomes these limitations. 

 

Discriminability. For the discriminability analysis using LR and RL phase encoded HCP 

connectomes, each subsample iteration yielded a single discriminability value. These were all 
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pooled together to compare REST to CaricaturedHCP REST and REST2 to CaricaturedHCP 

REST2. The same non-parametric subsample test was used in each case, so to be significant, 

a test must produce an uncorrected p-value less than 0.05/2
2

. If an uncorrected p-value is 

returned as 0, we say that it is less than 0.001, since there are 1000 observations. 

 

To compare discriminability between REST and CaricaturedCNP REST and REST2 and 

CaricaturedCNP REST2 in the HCP dataset, we used the same type of permutation test as for 

fingerprinting accuracy. With 1000 iterations, if Caricatured discriminability was always greater, 

we defined the uncorrected p-value as less than 0.001. Using the Bonferroni method to correct 

for both tests and the fact that the test was one-tailed, we multiplied each p-value by 4.  

 

Likewise, we used the same permutation test for the analysis where discriminability was 

computed in the TRT dataset. Comparisons were between CaricaturedHCP connectomes and the 

Standard TRT connectomes and between CaricaturedCNP connectomes and the Standard TRT 

connectomes. Bonferroni correction was applied by multiplying each p-value by 4. 

 

Intraclass Correlation. For ICC calculated using the LR and RL phase encodings for each scan 

condition in the HCP dataset, 1000 subsample iterations were performed, yielding an ICC value 

for each edge in each iteration. The ICC values for each edge were averaged across iterations, 

yielding a mean ICC value for each edge in each scan condition. To compare REST to 

CaricaturedHCP REST and REST2 to CaricaturedHCP REST2, we used a Wilcoxon signed rank 

test and applied Bonferroni correction by multiplying the resulting p-values by 2.  

 

For the ICC analysis in the HCP dataset, where caricatured connectomes used CNP-derived 

PCs, a single calculation yielded an ICC value for each edge in the connectome. Comparing 
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REST to CaricaturedCNP REST and REST2 to CaricaturedCNP REST2, we used a Wilcoxon 

signed rank test and multiplied the resulting p-values by 2 to correct for multiple comparisons.  

 

For the ICC analysis in the TRT dataset, two comparisons were performed using a Wilcoxon 

signed rank test. Edge ICC in the CaricaturedHCP connectomes and edge ICC in the 

CaricaturedCNP connectomes were compared to edge ICC in the Standard TRT connectomes. 

Bonferroni correction was applied by multiplying the resulting p-values by 2. 

 

Connectome-Based Predictive Modeling. The correlation between actual and predicted 

phenotype assessed model performance for continuous variables. For both projections (i.e., 

CaricaturedHCP and CaricaturedCNP), Caricatured REST was compared to Standard REST and 

Caricatured REST2 was compared to Standard REST2, using the 1000 subsample iterations to 

estimate the true model accuracy. Here, we used a corrected paired t-test similar to Nadeau 

and Bengio, 200355 and referred to as the “corrected repeated k-fold CV test” in Bouckaert and 

Frank, 200456. For each random subsample 𝑖𝑖, we calculated prediction accuracy for the 

caricatured data and the standard data, say 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖  . Letting the mean be 𝑚𝑚 =

 1
1000

∑ (𝑎𝑎𝑖𝑖 − 𝑏𝑏𝑖𝑖)1000
𝑖𝑖=1  and the estimated variance be 𝜎𝜎�2 = 1

999
∑ (𝑎𝑎𝑖𝑖 − 𝑏𝑏𝑖𝑖 − 𝑚𝑚)21000
𝑖𝑖=1 , we arrive at the 

t-statistic 𝑡𝑡 = 𝑚𝑚

�( 1
1000+

1
9)𝜎𝜎�2

 where 1
9
 is an added correction factor to account for the lack of 

independence in sample pairs. This is input into the t-distribution with 999 degrees of freedom to 

compute the p-value. As this is a one-sided test to determine whether accuracy is greater for the 

caricatured connectomes, the p-value is multiplied by 2. Finally, Bonferroni correction is applied 

within each sub-analysis (i.e., age and IQ) and within each method for constructing PCs, so 

every p-value is again multiplied by 2 to correct for multiple comparisons. For the binary 

phenotype, model accuracy was assessed as the percentage of subjects correctly classified. 

The same test was applied to compare REST to Caricatured REST and REST2 to Caricatured 
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REST2, and the same statements regarding p-values and correction for multiple comparisons 

apply. 

 

4.7 Data availability. The HCP data are publicly available on the ConnectomeDB database 

(https://db.humanconnectome.org/app/template/Login.vm). The UCLA CNP data can be 

obtained from the OpenfMRI database (https://openfmri.org/dataset/ds000030/). The TRTI data 

can be accessed publicly (https://fcon_1000.projects.nitrc.org/indi/retro/yale_trt.html). The TRTII 

data is currently unavailable for public access. Data used to generate the atlas parcellation can 

be accessed at http://fcon_1000.projects.nitrc.org/indi/retro/yale_hires.html.  

 

4.8 Code availability. Code used for caricaturing can be found at 

https://github.com/RXRodriguez98/Caricature. Code used for fingerprinting and perfect 

separability analysis is available at https://github.com/SNeuroble/fingerprinting. Code used for 

discriminability analysis is available at 

https://github.com/RXRodriguez98/DiscriminabilityMATLAB. Code used for ICC calculation is 

available at https://github.com/SNeuroble/Multifactor_ICC. Code used for CPM can be found at 

https://github.com/YaleMRRC/CPM/tree/master and 

https://github.com/mattrosenblatt7/trust_connectomes/tree/main/utils/cpm_kfold_classification.  

 

4.9 Ethics statement. All human subject data were collected previously (with informed consent) 

under the guidance of the local IRBs of the data collection sites. Yale Human Research 

Protection Program approved secondary analyses of these datasets.  
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