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Abstract 47 
Apart from ancestry, personal or environmental covariates may contribute to differences in 48 
polygenic score (PGS) performance. We analyzed effects of covariate stratification and 49 
interaction on body mass index (BMI) PGS (PGSBMI) across four cohorts of European 50 
(N=491,111) and African (N=21,612) ancestry. Stratifying on binary covariates and quintiles for 51 
continuous covariates, 18/62 covariates had significant and replicable R2 differences among 52 
strata. Covariates with the largest differences included age, sex, blood lipids, physical activity, 53 
and alcohol consumption, with R2 being nearly double between best and worst performing 54 
quintiles for certain covariates. 28 covariates had significant PGSBMI-covariate interaction 55 
effects, modifying PGSBMI effects by nearly 20% per standard deviation change. We observed 56 
overlap between covariates that had significant R2 differences among strata and interaction 57 
effects – across all covariates, their main effects on BMI were correlated with their maximum R2 58 
differences and interaction effects (0.56 and 0.58, respectively), suggesting high-PGSBMI 59 
individuals have highest R2 and increase in PGS effect. Using quantile regression, we show the 60 
effect of PGSBMI increases as BMI itself increases, and that these differences in effects are 61 
directly related to differences in R2 when stratifying by different covariates. Given significant 62 
and replicable evidence for context-specific PGSBMI performance and effects, we investigated 63 
ways to increase model performance taking into account non-linear effects. Machine learning 64 
models (neural networks) increased relative model R2 (mean 23%) across datasets. Finally, 65 
creating PGSBMI directly from GxAge GWAS effects increased relative R2 by 7.8%. These 66 
results demonstrate that certain covariates, especially those most associated with BMI, 67 
significantly affect both PGSBMI performance and effects across diverse cohorts and ancestries, 68 
and we provide avenues to improve model performance that consider these effects. 69 
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Introduction 93 
Polygenic scores (PGS) provide individualized genetic predictors of a phenotype by aggregating 94 
genetic effects across hundreds or thousands of loci, typically estimated from genome-wide 95 
association studies (GWAS). In recent years it has become increasingly apparent that the 96 
transferability of PGS performance across different cohorts is poor (1). Most analyses to date 97 
have focused on ancestry differences as the main driver of this lack of portability (2–4). 98 
However, a growing body of evidence has demonstrated that PGS performance and effect 99 
estimates are influenced by differences in certain contexts i.e., environmental (classically termed 100 
“gene-environment” effects or interactions) or personal-level covariates – different phenotypes 101 
seem to be differently affected by these covariates, with adiposity traits such as body mass index 102 
(BMI) having substantial evidence for these effects (5–14). In one previous study, they showed 103 
that GWAS stratified by sample characteristics had better PGS performance in cohorts that 104 
matched the sample characteristics of the stratified GWAS, and that differences in heritability 105 
between the stratified cohorts partially explained this observation (13). 106 
 There are several gaps in current knowledge about these covariate-specific effects. Many 107 
analyses have assessed only a handful of these covariates due to the myriad of choices possible 108 
in typical large-scale biobanks. Little investigation has been done to systematically understand 109 
why certain covariates affect PGS performance, with such knowledge being useful to reduce the 110 
potential search for variables that impart context-specific effects. Furthermore, most studies 111 
investigating PGS-covariate interactions have been in European ancestry individuals; notably, 112 
comparing differences in PGS performance and prediction while controlling for differences in 113 
ancestry versus differences in context has not been assessed in previous studies. Moreover, 114 
covariate-specific effects are notorious for replicating poorly in human genetics studies, and 115 
previous studies of PGS-covariate interactions have been predominantly performed in the UK 116 
Biobank (UKBB) (15), where the majority of individuals are aged 40-69 (i.e., excluding young 117 
adults), are overall healthier than those from other e.g., hospital-based cohorts, and are 118 
predominantly European ancestry. Additionally, PGS performance is often assessed using linear 119 
models and in isolation of clinical covariates, which in practice would often be available. 120 
Machine learning models can have increased performance over linear models and are capable of 121 
modeling complex relationships and interactions between variables, which may serve to increase 122 
predictive performance, especially given evidence for PGS-covariate specific effects. Finally, 123 
given evidence for context-specific effects, it should be possible to directly incorporate SNP-124 
covariate interaction effects from a GWAS directly to improve prediction performance, instead 125 
of relying on post-hoc interactions from a typical PGS calculated from main GWAS effects. 126 
 Using genetic data with linked-phenotypic information from electronic health records, we 127 
estimated the effects of covariate stratification and interaction on performance and effect 128 
estimates of PGS for BMI (PGSBMI) – a flowchart summarizing our analyses is presented in 129 
Figure 1. These analyses were done across four datasets (Supplemental Table 1): UK Biobank 130 
(UKBB), Penn Medicine BioBank (PMBB) (15), Electronic Medical Records and Genomics 131 
(eMERGE) network dataset (16), and Genetic Epidemiology Research on Adult Health and 132 
Aging (GERA). These datasets include participants from two ancestry groups (N=491,111 133 
European ancestry (EUR), N=21,612 African ancestry (AFR)), and 62 covariates (25 present in 134 
multiple datasets) representing laboratory, survey, and biometric data types typically associated 135 
with cardiometabolic health and adiposity. After constructing PGSBMI using out-of-sample multi-136 
ancestry BMI GWAS, we assessed effects of covariate stratification on PGSBMI R

2, the 137 
significance of PGSBMI-covariate interaction terms and their increases to model R2 over models 138 
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only using main effects, as well as correlation of main effect, interaction effect, and R2 139 
differences. We then assessed ways to increase model performance through using machine 140 
learning models, and creating PGSBMI using GxAge GWAS effects. This study addresses a 141 
plethora of open issues considering performance and effects of PGS on individuals from diverse 142 
backgrounds. 143 
 144 
Results 145 
Effect of covariate stratification on PGSBMI performance 146 
We assessed 62 covariates for PGSBMI R

2 differences (25 present, or suitable proxies, in multiple 147 
datasets (Supplemental Table 2) after stratifying on binary covariates and quintiles for 148 
continuous covariates. With UKBB EUR as discovery (N=376,729), 18 covariates had 149 
significant differences (Bonferroni p<.05/62) in R2 among groups (Figure 2a), including age, sex, 150 
alcohol consumption, different physical activity measurements, Townsend deprivation index, 151 
different dietary measurements, lipids, blood pressure, and HbA1c, with 40 covariates having 152 
suggestive (p<.05) evidence of R2 differences. From an original PGSBMI R

2 of 0.076, R2 153 
increased to 0.094-0.088 for those in the bottom physical activity, alcohol intake, and high-154 
density lipoprotein (HDL) cholesterol quintiles, and decreased to 0.067-0.049 for those in the top 155 
quintile, respectively, comparable to differences observed between ancestries (1). We note that 156 
the differences in R2 due to alcohol intake and HDL were larger than those of any physical 157 
activity phenotype, despite physical activity having one of the oldest and most replicable 158 
evidence of interaction with genetic effects of BMI (17,18). Despite considerable published 159 
evidence suggesting covariate-specific genetic effects between BMI and smoking behaviors 160 
(6,8), we were only able to find suggestive evidence for R2 differences when stratifying 161 
individuals across several smoking phenotypes (minimum p=0.016, for smoking pack years). R2 162 
differences due to educational attainment were also only suggestive (p=0.015), with published 163 
evidence on this association being conflicting (19–21). 164 

We replicated these analyses in three additional large-scale cohorts of European and 165 
African ancestry individuals (Figure 2b, Supplemental Table 3), as well as in African ancestry 166 
UKBB individuals. Among covariates with significant performance differences in the discovery 167 
analysis, we were able to replicate significant (p<.05) R2 differences for age, HDL cholesterol, 168 
alcohol intake frequency, physical activity, and HbA1c, despite much smaller sample sizes. We 169 
again observed mostly insignificant differences across cohorts and ancestries when stratifying 170 
due to different smoking phenotypes and educational attainment. For each covariate and ancestry 171 
combination, we combined data across cohorts and conducted a linear regression weighted by 172 
sample size, regressing R2 values on covariate values across groupings. Slopes of the regressions 173 
across cohorts had different signs between ancestries for the same covariate (triglyceride levels, 174 
HbA1c, diastolic blood pressure, and sex), although larger sample sizes may be needed to 175 
confirm these differences are statistically significant.  176 

Several observations related to age-specific effects on PGSBMI we considered noteworthy. 177 
First, in the weighted linear regression of all R2 values across ancestries, expected R2 for African 178 
ancestry individuals can become greater than that of European ancestry individuals among 179 
individuals within bottom and top age quintiles observed in these data. For instance, the 180 
predicted R2 of 0.048 for 80 year-old European ancestry individuals would be lower than that of 181 
African ancestry individuals aged 24.7 and lower, indicating that differences in covariates can 182 
affect PGSBMI performance more than differences due to ancestry. Second, we obtained these 183 
results despite the average age of GWAS individuals being 57.8, which should increase PGSBMI 184 
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R2 for individuals closest to this age (13). This result suggests that PGS performance due to 185 
decreased heritability with age cannot be fully reconciled using GWAS from individuals of 186 
similar age being used to create PGSBMI (as heritability is an upper bound on PGS performance). 187 
Finally, we observed that PGSBMI R

2 increases as age decreases, consistent with published 188 
evidence suggesting that the heritability of BMI decreases with age (22,23). 189 
 190 
PGS-covariate interaction effects 191 
Next, we estimated difference in PGS effects due to interactions with covariates, by modeling 192 
interaction terms between PGSBMI and the covariate for each covariate in our list (described in 193 
Methods). We implemented a correction for shared heritability between covariates of interest and 194 
outcome (which can inflate test statistics (24)) to better measure the environmental component of 195 
each covariate, and show that this correction successfully reduces significance of interaction 196 
estimates (Supplemental Figure 1). Again, using UKBB EUR as the discovery cohort, we 197 
observed 28 covariates with significant (Bonferroni p<.05/62) PGS-covariate interactions (Table 198 
1), with 38 having suggestive (p<.05) evidence (Supplemental Table 4). We observed the largest 199 
effect of PGS-covariate interaction with alcohol drinking frequency (20.0% decrease in PGS 200 
effect per 1 standard deviation (SD) increase, p=2.62x10-55), with large effects for different 201 
physical activity measures (9.4%-12.5% decrease/SD, minimum p=3.11x10-66), HDL cholesterol 202 
(15.3% decrease/SD, p=1.71x10-96) and total cholesterol (12.7% decrease/SD, p=1.64x10-71). We 203 
observed significant interactions with diastolic blood pressure (10.8% increase/SD, p=6.06x10-204 
60), but interactions with systolic blood pressure were much smaller (1.17% increase/SD, 205 
p=4.41x10-3). Significant interactions with HbA1c (4.63% increase/SD, p=5.37x10-14) and type 2 206 
diabetes (27.2% PGS effect increase in cases, p=1.83x10-7) were also observed. Other significant 207 
PGS-covariate interactions included lung function, age, sex, and LDL cholesterol – various 208 
dietary measurements also had significant interactions, albeit with smaller effects than other 209 
significant covariates. We were able to find significant interaction effects for smoking pack years 210 
(4.78% increase/SD, p=3.68x10-7), but other smoking phenotypes had insignificant interaction 211 
effects after correcting for multiple tests (minimum p=2.7x10-3); interactions with educational 212 
attainment were also insignificant (p= 4.54x10-2).  213 

We replicated these analyses across ancestries and the other non-UKBB EUR cohorts 214 
(Figure 3, Supplemental Table 4). For age and sex, which were available for all cohorts, 215 
interactions were significant (p<.05) and directionally consistent across cohorts and ancestries 216 
(except for GERA AFR which had small sample size (N=1,789)). We were able to test 217 
interactions with alcohol intake frequency and physical activity in GERA, and replicated 218 
significant and directionally consistent associations. We observed poor replication for LDL 219 
cholesterol, HbA1c, and smoking pack years, with insignificant and directionally inconsistent 220 
interaction effects across cohorts. Educational attainment was available in GERA, and 221 
interactions were once again insignificant. We observed significant and directionally consistent 222 
interaction effects for TG in eMERGE EUR and PMBB EUR, while the effect was inconsistent 223 
in UKBB EUR despite much larger sample size.  224 
 However, despite significance of interaction terms, increases in model R2 when including 225 
PGS-covariate interaction terms were small. For instance, the maximum increase among all 226 
covariates in UKBB EUR was only 0.0024 from a base R2 of 0.1049 (2.1% relative increase), for 227 
alcoholic drinks per week. Across all cohorts and ancestries, the maximum increase in R2 was 228 
only 0.0058 from a base R2 of 0.09454 (6.1% relative increase), when adding a PGS-age 229 
interaction term for eMERGE EUR (p=5.40x10-46) – this was also the largest relative increase 230 
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among models with significant interaction terms. This result suggests that, while interaction 231 
effects can significantly modify PGSBMI effect, their overall impact on model performance is 232 
relatively small, despite large differences in R2 when stratifying by covariates. 233 
 234 
Correlations between R2 differences, interaction effects, and main effects 235 
We next investigated the relationship between interaction effects, maximum R2 differences 236 
across quintiles, and main effects of covariates on BMI. We first estimated main effects of each 237 
covariate on BMI (Methods, Supplemental Table 5), and then calculated the correlation weighted 238 
by sample size between main effects, maximum PGSBMI R

2 across quintiles, and PGS-covariate 239 
interaction effects (Figure 4) across all cohorts and ancestries – GERA data were excluded from 240 
these analyses due to slightly different phenotype definition (Supplemental Table 6), as were 241 
binary variables. Interaction effects and maximum R2 differences had a 0.80 correlation 242 
(p=2.1x10-27), indicating that variables with larger interaction effects also had larger effects on 243 
PGSBMI performance across quintiles, and that covariates that increase PGSBMI effect also have 244 
the largest effect on PGSBMI performance i.e., individuals most at risk for obesity will have both 245 
disproportionately larger PGSBMI effect and R2. Main effects and maximum R2 differences had a 246 
0.56 correlation (p=1.3x10-11), while main effects and interaction effects had a 0.58 correlation 247 
(p=7.6x10-12) again suggesting that PGSBMI are more predictive in individuals with higher values 248 
of BMI-associated covariates, although less predictive than estimating the interaction effects 249 
themselves directly. However, this result demonstrates that covariates that influence both PGSBMI 250 
effect and performance can be predicted just using main effects of covariates, which are often 251 
known for certain phenotypes and easier to calculate, as genetic data and PGS construction 252 
would not be required.  253 
 254 
Increase in PGS effect for increasing percentiles of BMI itself, and its relation to R2 differences 255 
when stratifying by covariates 256 
Given large and replicable correlations between main effects, interaction effects, and maximum 257 
R2 differences for individual covariates, it seemed these differences may be due to the 258 
differences in BMI itself, rather than any individual or combination of covariates. To assess this, 259 
we used quantile regression to evaluate the effect of PGSBMI on BMI at different deciles of BMI 260 
itself. We observed that the effect of PGSBMI consistently increases from lower deciles to higher 261 
deciles across all cohorts and ancestries (Figure 5) – for instance, in European ancestry UKBB 262 
individuals, the effect of PGSBMI (in units of log(BMI)) when predicting the bottom decile of 263 
log(BMI) was 0.716 (95% CI: 0.701-.732), and increased to 1.31 (95% CI: 1.29-1.33) in the top 264 
decile. Across all cohorts and ancestries, the effect of PGSBMI between lowest and highest effect 265 
decile ranged from 1.43-2.06 times larger, with all cohorts and ancestries having non-266 
overlapping 95% confidence intervals between their effects (except for African ancestry 267 
eMERGE individuals, which had much smaller sample size). 268 
 While this analysis showed that the effect of PGSBMI increases as BMI itself increases, 269 
which may help explain significant interaction effects between PGSBMI and different covariates, 270 
it does not directly explain differences in R2 when stratifying by different covariates – we 271 
describe several points that help explain this result and suggest they may actually be closely 272 
related. Essentially, as the magnitude of the slope of a regression line increases while the mean 273 
squared residual does not increase, model R2 will increase – we demonstrate this using simulated 274 
data (Supplemental Figure 2). As the magnitude of the regression line’s slope decreases, the 275 
regression line becomes a comparatively worse predictor compared to just using the mean, which 276 
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decreases R2 despite the mean error being the same across models. To demonstrate this in real 277 
data, we compared simple univariable models of log(BMI) ~ PGSBMI (in units of log(BMI)) 278 
between the bottom and top age quintiles in the European ancestry UKBB (Supplemental Figure 279 
3). As shown in previous sections, R2 and PGSBMI beta are higher in younger individuals (R2 = 280 
0.088 versus R2 = 0.066, and beta=1.12 and 0.87, respectively), which seem to be a direct 281 
consequence of one another, as the mean squared error in younger individuals is actually higher 282 
(0.027 versus 0.022, respectively). This description suggests that the use of R2 as the sole 283 
performance metric for evaluation of PGS may not always be appropriate, despite its 284 
overwhelming usage. Furthermore, this explanation helps explain the seemingly paradoxical 285 
results of significant interaction terms yet small increases in overall model R2, and comparably 286 
much larger differences in R2 in the stratified analyses. 287 
 288 
Effects of machine learning approaches on predictive performance 289 
Given evidence of PGS-covariate dependence, we aimed to assess increases in R2 when using 290 
machine learning models (neural networks), which can inherently model interactions and other 291 
nonlinearities, over linear models even with interaction terms. We first included age and sex as 292 
the only covariates (along with genotype PCs and PGSBMI), as age and sex were present in all 293 
datasets and had significant and replicable evidence for PGS-dependence across our analyses. 294 
Three models were assessed – L1-regularized (i.e., LASSO) linear regression without any 295 
interaction terms, LASSO including a PGS-age and PGS-sex interaction term, and neural 296 
networks (without interaction terms). When comparing neural networks to LASSO with 297 
interaction terms, the relative 10-fold cross-validated R2 increased up to 67% (mean 23%) across 298 
cohorts and ancestries (Figure 6, Supplemental Table 7). The inclusion of interaction terms 299 
increased cross-validated R2 up to 12% (mean 3.9%) when comparing LASSO including 300 
interaction terms to LASSO with main effects only.  301 

We then modeled all available covariates and their interactions with PGS for each cohort 302 
and did similar comparisons. Cross-validated R2 increased by up to 17.6% (mean 9.5%) when 303 
using neural networks versus LASSO with interaction terms, and up to 7.0% (mean 2.0%) when 304 
comparing LASSO with interaction terms to LASSO with main effects only. Increases in model 305 
performance using neural networks were smaller in UKBB, perhaps due to the age range being 306 
smaller than other cohorts (all participants aged 39-73). This result suggests that additional 307 
variance explained through non-linear effects with age and sex are explained by other variables 308 
present in the remainder of the datasets. Our findings show machine learning methods can 309 
improve model R2 that include PGSBMI as variables beyond including interaction terms in linear 310 
models, even when variable selection is performed using LASSO, demonstrating that model 311 
performance can be increased beyond modeling nonlinearities through linear interaction terms 312 
and a feature selection procedure.  313 
 314 
Calculating PGS directly from GxAge GWAS effects 315 
Previous studies (13) have created PGS using GWAS stratified by different personal-level 316 
covariates, but for practical purposes this leads to a large loss of power as the full size of the 317 
GWAS is not utilized for each strata and continuous variables are forced into bins. We developed 318 
a novel strategy where PGS are instead created from a full-size GWAS that includes SNP-319 
covariate interaction terms (Methods). We focused on age interactions, given their large and 320 
replicable effects based on our results – similar to a previous study (13), we conducted these 321 
analyses in the European UKBB. We used a 60% random split of study individuals to conduct 322 
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three sets of PGS using GWAS of the following designs: main effects only, main effects also 323 
with a SNP-age interaction term, and main effects but stratified into quartiles by age. 20% of the 324 
remaining data were used for training and the final 20% were held-out as a test set. The best 325 
performing PGS created from SNP-age interaction terms (PGSGxAge) increased test R2 to 0.0771 326 
(95% bootstrap CI: 0.0770-0.0772) from 0.0715 (95% bootstrap CI: 0.0714-0.0716), a 7.8% 327 
relative increase compared to the best performing main effect PGS (Figure 7, Supplemental 328 
Table 8 – age-stratified PGS had much lower performance than both other strategies 329 
(unsurprising given reasons previously mentioned). Including a PGSGxAge-age interaction term 330 
only marginally increased R2 (0.0001 increase), with similar increases for the other two sets of 331 
PGS, further demonstrating that post-hoc modeling of interactions cannot reconcile performance 332 
gained through directly incorporating interaction effects from the original GWAS. The strategy 333 
of creating PGS directly from full-sized SNP-covariate interactions is potentially quite useful as 334 
it increases PGS performance without the need for additional data – there are almost certainly a 335 
variety of points of improvement (described more in Discussion), but we consider their 336 
investigation outside the scope of this study. 337 
 338 
Discussion 339 
We uncovered replicable effects of covariates across four large-scale cohorts of diverse ancestry, 340 
on both performance and effects of PGSBMI. When stratifying by quintiles of different covariates, 341 
certain covariates had significant and replicable evidence for differences in PGSBMI R

2, with R2
 342 

being nearly double between top and bottom performing quintiles for covariates with the largest 343 
differences. When testing PGS-covariate interaction effects, we also found covariates with 344 
significant interaction effects, where, for the largest effect covariates, each standard deviation 345 
change affected PGSBMI effect by nearly 20%. Across analyses, we found age and sex had the 346 
most replicable interaction effects, with levels of serum cholesterol, physical activity, and 347 
alcohol consumption having the largest effects across cohorts. Interaction effects and R2 348 
differences were strongly correlated, with main effects also being correlated with interaction 349 
effects and R2 differences, suggesting that covariates with the largest interaction effects also 350 
contribute to the largest R2 differences, with simple main effects also being predictive of 351 
expected differences in R2 and interaction effects. Relatedly, we observed the effect of PGSBMI 352 
increases as BMI itself increases, and reason that differences in R2 when stratifying by covariates 353 
are largely a consequence of difference in PGSBMI effects. Next, we employed machine learning 354 
methods for prediction of BMI with models that include PGSBMI and demonstrate that these 355 
methods outperform regularized linear regression models that include interaction effects. Finally, 356 
we employed a novel strategy that directly incorporates SNP interaction effects into PGS 357 
construction, and demonstrate that this strategy improves PGS performance when modeling 358 
SNP-age interactions compared to PGS created only from main effects.  359 
 These observations are relevant to current research and clinical use of PGS, as individuals 360 
above a percentile cutoff are designated high-risk (40), implying that individuals most at-risk for 361 
obesity have both disproportionately higher predicted BMI and increased BMI prediction 362 
performance compared to the general population. More broadly, these results may likely extend 363 
to single variant effects instead of those aggregated into a PGS, which may inform the cause of 364 
previous GxE discoveries – for instance, variants near FTO that interact with physical activity 365 
discovered through GWAS of BMI are robust and well-documented. However, individuals 366 
engaging in physical activity will generally have lower BMI than those that are sedentary, and 367 
these results suggest it may not be the difference in physical activity that’s driving the 368 
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interaction, rather the difference in BMI itself. This concept may also apply to other traits – for 369 
instance, sex-specific analyses are commonly performed, and variants with differing effects 370 
between males and females GWAS may largely be explained by phenotypic differences, rather 371 
than any combination of biological or lifestyle differences. 372 

Future work may include replicating these analyses across additional traits, and trying to 373 
understand why these differences occur, as well as further exploring machine learning and deep 374 
learning methods on other phenotypes to determine if this trend of inclusion of PGS along with 375 
covariate interaction effects outperforms linear models for risk prediction. Additionally, 376 
inclusion of a PGS for the covariate to better measure its environmental effect is potentially 377 
worth exploring further, and should improve in the future as PGS performance continues to 378 
increase. A slight limitation of this method in our study is that for the UKBB analyses the 379 
GWAS used for PGS construction were also from UKBB thus not out-of-sample, although many 380 
of the covariates only have GWAS available through UKBB individuals. Furthermore, a variety 381 
of improvements are likely possible when creating PGS directly from SNP-covariate interaction 382 
terms. First, we used the same SNPs that were selected by pruning and thresholding based on 383 
their main effect p-values, but selection of SNPs based on their interaction p-values should also 384 
be possible and would likely improve performance. Additionally, performance of pruning and 385 
thresholding-based strategies have largely been overtaken by methods that first adjust all SNP 386 
effects for LD and don’t require exclusion of SNPs, and a method that could do a similar 387 
adjustment for interaction effects would likely outperform most current methods for traits with 388 
significant context-specific effects. Next, incorporating additional SNP-covariate interactions 389 
(e.g., SNP-sex) would also likely further improve prediction performance, although any SNP 390 
selection/adjustment procedures may be further complicated by additional interaction terms. 391 
Finally, if SNP effects do truly differ according to differences in phenotype, then SNP effects 392 
would differ depending on the alleles one has, implying epistatic interactions are occurring at 393 
these SNPs. 394 

While difference in phenotype itself may be able to explain difference in genetic effects, 395 
it still may be that specific environmental or lifestyle characteristics are driving the differences. 396 
We propose several ideas about why BMI-associated covariates have larger interaction effects 397 
and impact on R2 for PGSBMI. First, age may be a proxy for accumulated gene-environment 398 
interactions as younger individuals have less exposure to environmental influences on weight 399 
compared to older individuals; therefore, one may expect that in younger individuals their 400 
phenotype could be better explained by genetics compared to environment. Second, PGS may 401 
more readily explain high phenotype values especially for positively skewed phenotypes, as 402 
large effect variants (e.g., associated with very high weight or height (25)) may be more 403 
responsible for extremely high phenotypic values. For example, the distribution of BMI is often 404 
positively skewed, and effects in trait-increasing alleles may have a larger potential to explain 405 
trait variation compared to trait-reducing variants. This explanation would likely be better suited 406 
to positively skewed traits and is not fully satisfactory as first log-transforming or rank-normal 407 
transforming the phenotype, as was done in this study, may invalidate this explanation.  408 
 PGS is a promising technique to stratify individuals for their risk of common, complex 409 
disease. To achieve more accurate predictions as well as promote equity, further research is 410 
required regarding PGS methods and assessments. This research provides firm evidence 411 
supporting the context-specific nature of PGS and the impact of nonlinear covariate effects for 412 
improving polygenic prediction of BMI, promoting equitable use of PGS across ancestries and 413 
cohorts. 414 
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 415 
Methods 416 
Study datasets 417 
Individual inclusion criteria and sample sizes per cohort are described below – additional 418 
information is available in Supplemental Table 1. 419 
 420 
UKBB 421 
Individual-level quality-control and filtering have been described elsewhere (26) for European 422 
ancestry individuals. Briefly, individuals were split by ancestry according to both genetically 423 
inferred ancestry and self-reported ethnicity (15). Individuals with low genotyping quality and 424 
sex mismatch were removed, only unrelated individuals (pi-hat < 0.250) were retained, and 425 
variants were filtered at INFO > 0.30 and minor allele frequency (MAF) > 0.01. For African 426 
ancestry, individuals were first selected based on self-reported ethnicity “Black or Black 427 
British”, “Caribbean”, “African”, or “Any other Black background”. Individuals that were low 428 
quality i.e., “Outliers for heterozygosity or missing rate”, and that were Caucasian from “Genetic 429 
ethnic grouping” were removed. Of these individuals, those that were +/- 6 standard deviations 430 
from the mean of the first 5 genetic principal components provided by UKBB were excluded. 431 
Finally, only unrelated individuals were retained up to the second degree using plink2 (27) “-432 
king-cutoff 0.125”. After QC and consideration of phenotype, a total of 7,046 individuals in the 433 
UKBB AFR data who also had BMI available were used for downstream analyses. In total, 434 
383,775 individuals were used for analysis (NEUR=376,729, NAFR=7,046). 435 
 436 
eMERGE 437 
Ancestry and relatedness inference have been described elsewhere (15). Individuals were split 438 
into European and African ancestry cohorts, and related individuals were removed (pi-hat > 439 
0.250) such that all were unrelated. 35,064 individuals (NEUR=31,961, NAFR=3,103) were used 440 
for analysis. 441 
 442 
GERA 443 
Ancestry inference has been described elsewhere (28), and study individuals were divided into 444 
European and African ancestry cohorts. Related individuals were removed using plink2 “-king-445 
cutoff 0.125”. 57,838 individuals (NEUR=56,049, NAFR=1,789) were used for analysis. 446 
 447 
PMBB 448 
Ancestry inference and relatedness inference have been described elsewhere (29). Individuals 449 
were split into European and African ancestry cohorts, and related individuals were removed at 450 
pi-hat > 0.250. 36,046 individuals (NEUR=26,372 , NAFR=9,674) were used for analysis. 451 
 452 
Choice of covariates 453 
A total of 62 covariates were included in the analyses, 25 of which were present (or similar 454 
proxies) in multiple datasets.  These covariates were selected based on relevance to 455 
cardiometabolic health and obesity, and previous evidence of context-specific effects with BMI 456 
(5,6,8,30–32). For UKBB, phenotype values were used from the collection that was closest to 457 
recruitment, and for PMBB the median values were used – for GERA and eMERGE only one 458 
value was available. Additional details on covariate constructions, transformations, filtering, and 459 
cohort availability are in Supplemental Table 2. 460 
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 461 
PGS construction 462 
PGS for BMI (PGSBMI) were constructed using PRS-CSx (33), using GWAS summary statistics 463 
for individuals of European (34), African (35), and East Asian (36) ancestry that were out-of-464 
sample of study participants. A set of 1.29 million HapMap3 SNPs provided by PRS-CSx was 465 
used for PGS calculation, which are generally well-imputed and variable frequency across global 466 
populations. Default settings for PRS-CSx (downloaded November 22, 2021) were used, which 467 
have been demonstrated to perform well for highly polygenic traits such as BMI (list of 468 
parameters in Supplemental Table 9). The final PGSBMI per ancestry and cohort was calculated 469 
by regressing log(BMI) on the PGSBMI per ancestry without covariates – the combined, predicted 470 
value was used as a single PGSBMI in downstream analyses.  471 
 472 
For GERA, BMI was not transformed, as it was already binned into a categorical variable with 5 473 
levels (18≤, 19-25, 26-29, 30-39, >40). Additionally, for GERA the uncombined ancestry-474 
specific PGSBMI were used in the final models, as it had higher R2 than using the combined 475 
PGSBMI (data not shown). 476 
 477 
PGSBMI performance after covariate stratification  478 
Analyses were performed separately for each cohort and ancestry. For each covariate, individuals 479 
were binned by binary covariates or quintiles for continuous covariates. Incremental PGSBMI R

2 480 
was calculated by taking the difference in R2 between: 481 
 482 
log(BMI) ~ PGSBMI + Age + Sex + PCs1-5 483 
log(BMI) ~ Age + Sex + PCs1-5 484 
 485 
We performed 5,000 bootstrap replications to obtain a bootstrapped distribution of R2. P-values 486 
for differences in R2 were calculated between groups by calculating the proportion of overlap 487 
between two normal distributions of the R2 value using the standard deviations of the bootstrap 488 
distributions. Again for GERA, BMI was not transformed. 489 
 490 
PGSBMI interaction modelling 491 
Evidence for interaction with each covariate with the PGSBMI was evaluated using linear 492 
regression. It has been reported that the inclusion of covariates that are genetically correlated 493 
with the outcome can inflate test statistic estimates (24,37,38). To assuage these concerns, we 494 
introduced a novel correction, where we first calculated a PGS for the covariate (PGSCovariate) and 495 
included it in the model, as well as an interaction term between PGSBMI and PGSCovariate. The 496 
PGSCovariate terms were calculated using the European ancestry Neale Lab summary statistics 497 
(URLs) and PRS-CS (39). To standardize effect sizes across analyses, PGSBMI  and Covariate 498 
were first converted to mean zero and standard deviation of 1 (binary covariates were not 499 
standardized). We demonstrate inclusion of PGSCovariate terms successfully reduced significance 500 
of the PGSBMI*Covariate term (Supplemental Figure 1). The final model used to evaluate 501 
PGSBMI and Covariate interactions was: 502 
 503 
log(BMI) ~ PGSBMI*Covariate + PGSBMI + Covariate + PGSCovariate + PGSBMI*PGSCovariate + Age + Sex + PCs1-5 504 
 505 
We report the effect estimates of the PGSBMI*Covariate term, and differences in model R2 with 506 
and without the PGSBMI*Covariate term. Again for GERA, BMI was not transformed. 507 
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 508 
Correlation between R2 differences, interaction effects, and main effects 509 
We estimated main effects of each covariate on BMI with the following model: 510 
 511 
log(BMI) ~ Covariate + Age + Sex + PCs1-5 512 
 513 
Note that we ran new models with main effects only, instead of using the main effect from the 514 
interaction models (as the main effects in the interaction models depend on the interaction terms, 515 
and main effects used to create interaction terms are sensitive to centering of variables despite 516 
the scale invariance of linear regression itself (40)). We then estimated the correlation between 517 
main effects, interaction effects, and maximum R2 differences across all cohorts and ancestries 518 
weighting by sample size, analyzing quantitative and binary variables separately. 519 
 520 
Quantile regression to measure PGS effect across percentiles of BMI 521 
The effect of PGSBMI on BMI at different deciles of BMI was assessed using quantile regression. 522 
Tau – the parameter that sets which percentile to be predicted – was set to .10, .20, …, .90. 523 
Models included age, sex, and the top 5 genetic PCs as covariates. Analyses were stratified by 524 
ancestry and cohort, and BMI was first log transformed. GERA was excluded from these 525 
analyses, as a portion of the models failed to run (as BMI values from GERA were already 526 
binned, some deciles all had the same BMI value – additionally, difference in effects between 527 
bins would be harder to evaluate as BMI within each decile would be more homogeneous). 528 
 529 
Machine learning models 530 
UKBB EUR and GERA EUR models were restricted to 30,000 random individuals, for 531 
computational reasons – BMI distributions did not differ from the full-sized datasets 532 
(Kolmogorov-Smirnov p-value of 0.29 and 0.57, respectively). PGSBMI and top five genetic 533 
principal components were included as features in all models. Two sets of models were 534 
evaluated for each cohort and ancestry: including age and sex as features, and including all 535 
available covariates in each cohort as features. Interactions terms between PGS and each 536 
covariate were included for models using interaction terms. ‘Ever Smoker’ status was used in 537 
favor of ‘Never’ vs ‘Current smoking’ status (if present), as individuals with ‘Never’ vs 538 
‘Current’ status are a subset of those with ‘Ever Smoker’ status. UKBB AFR with all covariates 539 
was excluded due to small sample size (N=53). 540 

Neural networks were used as the model of choice, given their inherent ability model 541 
interactions and other nonlinear dependencies. Prior to modeling, all features were scaled to be 542 
between 0 and 1. We used average 10-fold cross validation R2 to evaluate model performance. 543 
Separate models were trained using untransformed and log(BMI). L1-regularized linear 544 
regression was used with 18 values of lambda (1.0, 5.0x10-1, 2.0x10-1, 1.0x10-1, 5.0x10-2, 2.0x10-545 
2, …, 1.0x10-5, 5.0x10-6, 2.0x10-6). Models were trained without inclusion of interaction terms 546 
(which neural networks can implicitly model), using 1,000 iterations of random search with the 547 
following hyperparameter ranges: size of hidden layers [10, 200], learning rate [0.01, 0.0001], 548 
type of learning rate [constant, inverse scaling], power t [0.4, 0.6], momentum [0.80, 1.0], batch 549 
size [32, 256], and number of hidden layers [1, 2].  550 
 551 
GxAge PGSBMI creation and assessment 552 
Analyses were conducted in the European UKBB (N=376,629), as was done in a study on a 553 
similar topic (13). Three sets of analyses were performed, using GWAS conducted in a 60% 554 
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random split of individuals using the following models (BMI was rank-normal transformed 555 
before GWAS): 556 
 557 
1) BMI ~ SNP + Age + Sex + PCs1-5 558 
 559 
2) BMI ~ SNP + Age*SNP + Age + Sex + PCs1-5 560 
 561 
3) Using the model in 1) but stratified into quartiles by age. BMI was rank-normal transformed 562 

within each quartile. 563 
 564 
Using each set of GWAS, PGS was first calculated in a 20% randomly selected training set of 565 
the dataset using pruning and thresholding using 10 p-value thresholds (0.50, 0.10, …, 5.0x10-5, 566 
1.0x10-5) and remaining settings as default in Plink 1.9. For 2), GxAge PGSBMI were calculated 567 
using SNPs clumped by their main effect p-values from 1), and additionally incorporating the 568 
GxAge interaction effects per SNP. In other words, instead of typical PGS construction as: 569 
 570 
PGSi = β1k1 + β2k2 + … + βnkn 571 
 572 
For an individual i’s PGS calculation, with main SNP effect β, and n SNPs, PGS incorporating 573 
GxAge effects (PGSGxAge) was calculated as: 574 
 575 
PGSGxAge,i = β1k1 + βGxAge,1k1Agei + β2k2 + βGxAge,2k2Agei … + βnkn + βGxAge,nknAgei 576 
 577 
Where βGxAge is the GxAge effect for each SNP n and Agei is the age for individual i.  578 
 579 
For each of the three analyses, the parameters and models resulting in the best performing PGS 580 
(highest incremental R2, using same main effect covariates as in the three GWAS) from the 581 
training set were evaluated in the remaining 20% of the study individuals. For 3), models were 582 
first trained within each quartile separately. To maintain sense of scale across quartiles (after 583 
rank-normal transformation), R2 between all predicted values and true values was calculated 584 
together. For R2 confidence intervals, the training set was bootstrapped and evaluated on the test 585 
set 5,000 times. 586 
 587 
URLs 588 
Neale Lab UKBB summary statistics: http://www.nealelab.is/uk-biobank 589 
 590 
Data Availability statement 591 
UK Biobank data was accessed under project #32133. eMERGE data is available at dbGaP in 592 
phs001584.v2.p2.  GERA data is available at dbGaP in phs000674.v3.p3. Summary statistics for 593 
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Figure 1. A flowchart of the project. 794 
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Figure 2. PGS R2 stratified by quintiles for quantitative variables and by binary variables. a) 811 
Continuous covariates with significant (p < 8.1x10-4) R2 differences across quintiles in UKBB 812 
EUR. Pork and processed meat consumption per week were excluded from this plot in favor of 813 
pork and processed meat intake. b) Covariates with significant differences that were available in 814 
multiple cohorts. When traits had the same or directly comparable units between cohorts we 815 
show the actual trait values (and show percentiles for physical activity, alcohol intake frequency, 816 
and socioeconomic status, which had slightly differing phenotype definitions across cohorts) 817 
plotted on x-axis. Townsend index and income were used as variables for socioeconomic status 818 
UKBB and GERA, respectively. Note that the sign for Townsend index was reversed, since 819 
increasing Townsend index is lower socioeconomic status, while increasing income is higher 820 
socioeconomic status. Abbreviations: physical activity (PA),  International Physical Activity 821 
Questionnaire (IPAQ). 822 
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831 
 832 
Figure 3. Relative percentage changes in PGS effect per unit change in covariate, for covariates 833 
that significantly changed PGS effect (i.e., significant interaction beta at Bonferroni p < 8.1x10-4 834 
– denoted by asterisks) and were present in multiple cohorts and ancestries. Same covariate 835 
groupings and transformations were performed as in Figure 1. Similarly, actual values were used 836 
when variables had comparable units across cohorts, and standard deviations (SD) used 837 
otherwise. 838 
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 847 
 848 
Figure 4. Relationships (Pearson correlations weighted by sample size) between maximum R2 849 
differences across strata, main effects of covariate on log(BMI), and PGS-covariate interaction 850 
effects on log(BMI). Main effect units are in standard deviations, interaction effect units are in 851 
PGS standard deviations multiplied by covariate standard deviations. Only continuous variables 852 
are plotted and modeled. GERA was excluded due to slightly different phenotype definitions.       853 
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 862 

863 
Figure 5. Quantile regression effects of PGSBMI (in units of log(BMI)) on log(BMI) at each 864 
decile of BMI in each cohort and ancestry. The effect of PGSBMI increases as BMI itself 865 
increases, suggesting that no individual covariate-PGS interaction is responsible for the nonlinear866 
effect of PGSBMI. 867 
 868 
 869 
 870 
 871 
 872 
 873 
 874 

 

ar 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 10, 2024. ; https://doi.org/10.1101/2023.05.10.23289777doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.10.23289777
http://creativecommons.org/licenses/by/4.0/


875 
 876 
Figure 6. Model R2 from different machine learning models across cohorts and ancestries using 877 
age and gender as covariates (along with PGSBMI and PCs 1-5). Across all cohorts and ancestries, 878 
LASSO with PGS-age and PGS-gender interaction terms had better average 10-fold cross-879 
validation R2 than LASSO without interaction terms, while neural networks outperformed 880 
LASSO models.  881 
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896 
Figure 7. PGS R2 based on three sets of GWAS setups. “Main effects” were from a typical main 897 
effect GWAS, “GxAge” effects were from a GWAS with a SNP-age interaction term, and “Age 898 
stratified” GWAS had main effects only but were conducted in four age quartiles. PGS R2 was 899 
evaluated using two models: one with main effects only, and one with an additional PGS*Age 900 
interaction term. 901 
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Supplemental Figures: 918 

919 
S Figure 1. PGS-covariate interaction term -log10(p-values) in UKBB EUR, with and without 920 
including the covariate PGS in the model – the mean -log10(p) is reduced from 18.0899 to 921 
14.97072 with their inclusions.  Note age and sex PGS were not calculated, and their interaction 922 
p-values are excluded from this figure. 923 
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924 
S Figure 2. Three sets of simulated data with varying regression line slopes, showing how model 925 
R2 changes when regression line slope changes, all else being equal. Residuals were sampled 926 
from a normal distribution (mean=0, sigma=sqrt(π/2)) to give mean squared error=1. 5,000 x-927 
values were sampled for each line, uniformly distributed from 0-10. Despite having the same 928 
mean squared error, model R2 increases as beta increases. 929 
 930 
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931 
S Figure 3. Univariable association of PGSBMI and log(BMI) in European UKBB, separately for 932 
the bottom and top quintiles of age. R2 is higher in younger individuals, which is partially a 933 
consequence of the larger effect (as shown in S Figure 2), despite the mean squared error 934 
actually being higher. 935 
 936 
Table 937 

Variable type Covariate 
 % change in βPGS per 
covariate unit change Interaction P 

R2 increase with 
interaction term 

Continuous 
 
 
 
 
 
 
 
 
 
 
 
 

HDL cholesterol -15.29 1.71x10-96 0.0012 328

Total cholesterol -12.70 1.64x10-71 0.00082 359

IPAQ -12.50 3.11x10-66 0.001 304

Moderate-vigorous PA -11.41 8.92x10-65 0.001 304

Diastolic BP 10.84 6.06x10-60 0.0007 352

Townsend Index 6.78 2.86x10-58 0.00089 376

Age -9.02 3.60x10-57 0.00061 376

FVC -9.66 4.69x10-56 0.0008 343

Drink frequency/wk -19.96 2.62x10-55 0.0024 122

LDL cholesterol -9.86 2.63x10-51 0.00058 358

N days vigorous PA/wk -9.37 2.42x10-35 0.0007 299

 

N 

28719 

59221 

04951 

04951 

52804 

76283 

76729 

43467 

22281 

58556 

99963 
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 938 
Table 1. Model descriptive statistics on 28 of 62 covariates, which have significant (p<.05/62) 939 
PGS-covariate interaction terms, in UKBB EUR. The third column is the percentage change in 940 
PGS effect per unit change (standard deviations for continuous variables, binary variables 941 
encoded as 0 or 1) in covariate. The fifth column is the increase in model R2 with a PGS-942 
covariate interaction term versus a main effects only model. Abbreviations: blood pressure (BP), 943 
physical activity (PA), forced vital capacity (FVC), forced expiratory volume in 1-second 944 
(FEV1), International Physical Activity Questionnaire (IPAQ). 945 

 
 
 

FEV1 -7.38 7.15x10-35 0.0005 343544 

Mean alcohol consumption -7.38 7.65x10-22 0.00113 126756 

HbA1c 4.63 5.37x10-14 0.0002 358798 

Mean drinks/wk -7.66 1.01x10-13 0.0008 112204 

Water intake 4.60 2.97x10-13 0.00014 347472 

Processed meat intake 3.70 2.38x10-7 0.0002 376205 

Starch mean 5.51 3.15x10-7 0.00018 128346 

Smoking pack years 4.78 3.68x10-7 0.0002 114135 

Protein mean 4.82 6.52x10-7 0.00018 128181 

Saturated fat mean 4.92 1.23x10-6 0.00017 127899 

Fat mean 4.40 1.64x10-5 0.00013 128092 

Saturated fat grams/wk 2.46 1.79x10-5 4.00E-05 364629 

Retinol mean 3.77 3.54x10-4 9.00E-05 126029 

Binary 
 
 

IPAQ -12.68 5.30x10-62 0.0009 304951 

Vigorous PA/wk -20.55 9.07x10-54 0.0009 304951 

Sex -11.02 1.41x10-24 0.00025 376729 

Diabetes 27.19 1.83x10-7 0.0004 375903 
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