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Abstract

Background
Changing cell-type proportions can confound studies of differential gene expression or DNA methylation
(DNAm) from peripheral blood mononuclear cells (PBMCs). We examined how cell-type proportions
derived from the transcriptome versus the methylome (DNAm) in�uence estimates of differentially
expressed genes (DEGs) and differentially methylated positions (DMPs).

Methods
Transcriptome and DNAm data were obtained from PBMC RNA and DNA of Kenyan children (n = 8)
before, during, and 6 weeks following uncomplicated malaria. DEGs and DMPs between time points were
detected using cell-type adjusted modeling with Cibersortx or IDOL, respectively.

Results
Most major cell types and principal components had moderate to high correlation between the two
deconvolution methods (r = 0.60–0.96). Estimates of cell-type proportions and DEGs or DMPs were
largely unaffected by the method, with the greatest discrepancy in the estimation of neutrophils.

Conclusion
Variation in cell-type proportions is captured similarly by both transcriptomic and methylome
deconvolution methods for most major cell types.

Background
Human peripheral blood mononuclear cells (PBMCs) are commonly studied in immunology because they
contain both innate and adaptive immune cells, are relatively easy and inexpensive to collect, and are
readily preserved in biobanks. Interrogation of PBMCs offers a snap shot of the immune response with
respect to epigenetic regulation of gene expression since many critical cell types are captured
simultaneously. In contrast, studies with puri�ed cell subsets are easier to interpret, but do not capture the
overall immune response and require extensive laboratory resources to isolate cell subsets well. For
example, bulk transcriptional signatures from antigen-stimulated PBMCs before and after live malaria
sporozoite immunization can predict protection against subsequent experimental malaria challenge (1).
A trade-off in using PBMCs for epigenetic and gene expression studies is that information about cell-type
proportions is necessary to interpret the source of differential responses, making the understanding of
studies with heterogeneous cell populations challenging (2–5).
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Cell-type composition can act as a confounder, mediator, precision variable, or biomarker of immune
response analyses (2, 5, 6). Each cell type is characterized by a unique gene expression and DNA
methylation pro�le. Therefore, when cell-type heterogeneity is present, such as in peripheral blood, gene
expression and DNA methylation pro�les can be largely driven by the cell types present (2, 3). For
example, variation in cell-type proportions was identi�ed as a confounding factor in the analysis of
differential gene expression of placental tissues between preeclampsia cases and controls that caused
false positive associations (2).

Cell-type heterogeneity can be addressed by different study designs. These include single-cell sequencing,
negative or positive isolation of cell subsets, or cell-type adjusted modeling strategies of bulk samples
(6). These methods vary greatly in feasibility, cost, and biases. Single-cell technology remains
inaccessible in many contexts due to its high cost when large sample sizes are required. Additionally,
depth of coverage per gene in a single cell is often low, resulting in gene expression pro�les that are
subject to high levels of noise and missing data (7). Alternatively, PBMCs can be puri�ed into various cell
subsets prior to analysis. Both of these methods are constrained by sample quantity, involve extra steps
in processing that can alter cellular activation states, and do not fully eliminate heterogeneity (8). Lastly,
cell proportions can be estimated from bulk gene expression or DNA methylation using statistical
inference approaches. There are many reference-based and reference-free deconvolution methods that
estimate cell-type composition from RNA sequencing data, but fewer exist for use with epigenetic data
(9–12).

Cell proportion estimates produced by deconvolution methods generally correlate well with estimates
measured by �ow cytometry (10). However, validation and generalization of these deconvolution
algorithms and reference matrices is inherently challenging. Arti�cial nucleic acid mixtures, computer-
simulated mixtures, and/or �ow cytometry are used as ground truth measurements to assess quality of
cell-type proportion estimates under the assumption that all the cell types are represented (10, 11, 13). It
is questionable how well reference-based cell proportion estimates perform across diverse human
populations, age ranges, or immune states that are not represented in the validation comparisons. Current
evidence based on some deconvolution methods (14) indicates less accurate estimates in females than
males, older individuals, smokers, and neonates.

In the analysis described here, whole transcriptome RNA sequencing data and genome-wide DNA
methylation data were collected from the same PBMC samples and independently used to infer cell-type
proportions in Kenyan children before, during, and following uncomplicated febrile malaria. We addressed
two major issues relevant to cell-type heterogeneity: 1) how estimated cell-type proportions derived from
two independent deconvolution methods correlate with each other, and 2) how cell proportion estimates
derived from transcriptome data versus DNA methylation (DNAm) data in�uence the detection of
differentially expressed genes and differentially methylated positions over time.

Materials and Methods
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Peripheral blood mononuclear cell collection and
processing
PBMC were isolated from anticoagulated whole blood of Kenyan children by hypaque �coll density
gradient centrifugation and cryopreserved at baseline before febrile malaria ("baseline" time point), during
uncomplicated febrile malaria immediately preceding administration antimalarial drugs ("malaria" time
point), and 6 weeks after recovery ("recovery" time point) as described previously (15). An exploratory
subset of 24 samples from 8 children were examined. All children had non-life-threatening uncomplicated
malaria de�ned by fever (temp > 37.90C) and a positive blood smear for Plasmodium falciparum (Pf)
parasites. The study participants were all of Luo ethnicity, 5–8 years old, and included 3 males and 5
females. All children had negative blood smears for Pf and other Plasmodium species at baseline and
recovery that were retrospectively con�rmed negative by PCR for Pf 18S ribosomal RNA gene.
Cryopreserved PBMCs were thawed using the 10X genomics protocol (Fresh Frozen Human Peripheral
Blood Mononuclear Cells for Single Cell RNA sequencing CG00039 revD, 10X Genomics). The studies
were approved by the IRB of the Kenya Medical Research Institute (SSC Protocol 2207) and University
Hospitals Cleveland Medical Center/Case Western Reserve University (#06-11-22 and #20190666).

RNA and DNA were extracted from the same PBMC sample from each individual at each time point using
the Allprep DNA/RNA mini kit (QIAGEN®). RNA and DNA quality were assessed with Agilent TapeStation
ScreenTapes and quanti�ed by Qubit assay prior to analyses. Whole genome RNA sequencing was
obtained from paired, stranded 100bp read-lengths on an Illumina platform performed at the Cleveland
Clinic Genomics Core. DNAm data were obtained with the In�nium Methylation EPIC BeadChip Kit. EPIC
assays were run at the Case Western Reserve University School of Medicine Genomics core facility. These
combined assays consumed the entire nucleic acid sample due to small sample volumes from this
pediatric population. Figure 1 depicts the general methods followed in this analysis.

Data processing
Transcriptomics: After visual inspection of fastQC plots (16), gene counts were calculated from raw fastq
�les using STAR for alignment and HTSeq for gene counts (17, 18). All annotations and reference
genomes used for gene-count calculations were obtained from GENCODE (19).

DNA methylation: The Min� package in R was used to complete quality control, normalization with
FunNorm, BMIQ adjustment for probe-type, �ltering off-target probes, and �ltering of age-associated
probes (20–22). A batch correction was not applied to correct for slide-level differences since this could
introduce bias given the slide design (23).

Deconvolution methods
Transcriptome: Transcriptome derived cell-type proportions were estimated using Cibersortx (13) and the
LM22 reference panel (24) with B-mode batch correction in relative mode. LM22 was originally generated
from previously published microarrays of puri�ed cell subsets and included 22 immune cell types. The
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Cibersortx B-mode corrects for cross-platform variation and extends the utility of LM22 to RNA-seq data
(13). LM22 has been validated for use in PBMCs (24).

Differences in cell-type proportion between time points were detected using the nonparametric paired
Friedman test followed by Wilcoxon signed-rank tests with Bonferroni correction for multiple testing to
obtain contrast-level resolution (25). Nonparametric tests were used to account for the non-normal
behavior of proportional data.

DNA methylation: DNA methylation (DNAm) derived cell-type proportions were calculated using methods
with the extended blood reference as previously described (11). The reference panel was made with EPIC
chip DNA methylation pro�les of puri�ed cell subsets from a mixed population and includes 12 immune
cell types present in whole blood. Differences in cell-type proportion between time points were detected as
described above for RNA-seq data.

Detecting differential gene expression and methylation
between baseline, febrile malaria, and recovery
Unadjusted or cell-type adjusted linear mixed models were created to detect differentially expressed
genes (DEGs) or differentially methylated positions (DMPs) between baseline, malaria, and recovery with
the limma package in R (26, 27). Subject level gene expression or DNA methylation variation was
accounted for by including a random effect (28). For transcriptomic data, the limma-voom (29)
transformation was used to adjust for the non-normality of gene count data. For the DNA methylation
data, a logit transformation was applied to convert beta values that are bound by 0 and 1 to m-values
(30).

Two approaches of adjusting for cell-type composition were used: 1) adding each estimated cell
proportion as a covariate or 2) adding the �rst two principal components of cell-type proportions as
covariates. In the �rst approach, 5 separate models with adjustments were constructed for only
monocytes, naïve B cells, naïve CD4 T cells, CD8 T cells, or memory CD4 T cells to avoid over�tting. The
second approach was included to capture a multidimensional cell-type adjustment with the small sample
size. Centered and un-scaled principal components were calculated from the transcriptome-derived or the
DNA-methylation-derived cell-type proportion estimates using the singular value decomposition algorithm
in the prcomp() function in R following methods previously described (2). For each cell-type adjusted
model, corresponding models were created using the estimates from the transcriptome or DNA
methylation array, respectively.

Comparative statistics
Between cell-type proportion estimates: Pearson correlations between cell-type proportion estimates from
the two deconvolution methods were calculated for each cell subset. Linear regressions were �t to
describe the shape of the association between deconvolution methods. Owing to differences between cell
types represented in reference matrices, some estimated proportions were added together to match the
cellular categorization when necessary (Supplementary Table S1). The differences between reference
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matrices are: the LM22 reference divided the CD4 memory T cells into activated and resting while the
extended blood reference only estimated total CD4 memory T cells; CD8 T cells were divided into naïve
and memory subsets in the extended blood reference and estimated as total CD8 T cells in LM22; NK
cells were divided into activated and resting in the LM22 reference but only estimated as total NK cells in
the extended blood reference. Additionally, the �rst and second principal components from each
deconvolution approach were tested for correlation with Pearson method.

Differential gene expression and methylation analyses: The number of DEGs or DMPs was calculated at
multiple P-value thresholds for each model and compared across models. Additionally, the logFC for gene
expression or DNA methylation CpG locations were compared between deconvolution approaches for the
genes with the 100 smallest p-values in any of the models between any of the 3 time points: baseline;
during malaria; and recovery. These comparisons resulted in 779 high-interest genes (supplementary
dataset 1). Similarly, 1356 high-interest CpG locations were identi�ed as those with the 100 smallest p-
values among any of the 3 time points or any of the differential methylation models (supplementary
dataset 2). Genes or CpG locations were considered "deconvolution-sensitive" when the orthogonal
distance between the estimated point and the 1:1 line was in the lower 0.15 percentile or higher than the
99.85 percentile, which represents extreme events in the dataset. These percentile values are equivalent to
those more than 3 standard deviations (sd) from a normally distributed variable. The distribution of the
orthogonal distances is over-dispersed and follows a Laplace's distribution with µ = 0 and b = sd/2,
meaning that the sd measurement is an underestimate of true variance. Distribution percentiles were
therefore used to select deconvolution sensitivity.

Results

Deconvolution estimates and changes in cell-type
composition at baseline, during malaria, and at recovery
Transcriptome derived deconvolution estimates detected three statistically signi�cant changes in cell-
type proportions across time points (Fig. 2a, Supplementary Table S2). First, CD8 T cell proportions
differed (p-value = 0.01). At baseline, CD8 T cells averaged 11.96% of cells, dropped to 7.47% during
malaria, and returned to 11.61% at recovery. Similarly, memory resting CD4 T cells showed a drop in cell
proportion during malaria from 19.09% at baseline to 13.85%, and then returned to 19.28% at recovery (p-
value = 0.03). Lastly, in spite of overall low proportions, there was a statistically signi�cant increase in M0
macrophages during malaria, starting at 0.03%, increasing to 0.33%, and returning to 0.01% (p-value = 
0.02). Monocytes, natural killer cells, naïve B cells, and naïve CD4 T cells showed no detectable changes;
all were estimated to be between 10% and 33%. The remainder of the cell types included in LM22
estimated proportions between 0% and 3.18% (Supplementary Figure S1).

DNA-methylation-derived deconvolution estimates (Fig. 2a, Supplementary Table S3) also had three cell
types with detectable differences across time points. Consistent with the RNA-derived proportions, there
was a reduction of the memory CD8 T cells during malaria with the average percent cells dropping from
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10.40% at baseline to 4.55% during malaria and returning to 8.51% at recovery (p-value = 0.01). Natural
killer cell proportions also differed with the average cell percent dropping from 9.04–5.60% at baseline
versus malaria and returning to 7.69% at recovery (p-value = 0.01). Lastly, neutrophils had an increase
during malaria from baseline measure of 2.78–10.38%, followed by a decrease at recovery to 4.48% (p-
value < 0.01). The cell types that had proportions greater than 10%, but did not show signi�cant shifts,
were monocytes, naïve B cells, memory CD4 T cells, and naïve CD4 T cells. Cell types with lower average
estimates (Supplementary Figure S1) included regulatory T cells (total average across time points 4.00%),
memory B cells (total average 6.91%), naïve CD8 T cells (total average 8.25%), eosinophils (undetected),
and basophils (total average 0.24%).

Correlation between transcriptome-derived and DNAm-derived cell
proportion estimates
Monocytes were the most correlated cell type between the two deconvolution methods with a Pearson
correlation coe�cient of 0.96 (p-value < 0.001; Fig. 2b, Supplementary Table S4). Other highly correlated
cell types were naïve B cells and naïve CD4 T cells, each with a correlation coe�cient of 0.82 (p-values < 
0.001). Natural killer and CD8 T cell proportions were less correlated with 0.78 and 0.60 coe�cients,
respectively (p-values < 0.001) The cell-types that were not signi�cantly correlated (p-value > 0.05) were
neutrophils, memory CD4 T cells, memory B, regulatory T cells, and eosinophils. The subsets that were
estimated as lower in the DNAm-derived deconvolution were monocytes, naïve B cells, and natural killer
cells. The cell subsets that had higher DNA-methylation-derived estimated proportions compared to RNA
sequencing were naïve CD4 T cells and CD8 T cells. The most striking discrepancy of cell-type percent
estimates was for neutrophils, which ranged between 0 and 0.0056% in the transcriptome-derived
deconvolution compared to 0.9–22.1% in the DNAm-derived proportions. There was a high correlation
between the transcriptome-derived and DNAm-derived �rst and the second principal components (Fig. 3).
The Pearson coe�cients were 0.90 and 0.85 (p-values < 0.001) for the �rst and second principal
components, respectively. Additionally, the top loading vectors for both transcriptome-derived and DNAm-
derived principal components identi�ed monocytes, naïve CD4 T cells, and CD8 T cells as top
contributors to cellular variation (Supplementary Figure S2).

Effect of deconvolution approach on differential gene
expression analysis
The number of differentially expressed genes varied by time point, cell-type adjustment, p-value threshold,
and deconvolution approach (Fig. 4a). Adjusting differential gene expression for monocytes, naïve CD4 T
cells, CD8 T cells, or the principal components resulted in the most variation in the number of DEGs
compared to other cell-type adjusted models. Less variation was observed in the number of DEGs
detected in models adjusted for naïve B, natural killer, or memory CD4 T cell proportions. Monocyte-
adjusted models showed the most consistency across deconvolution approaches, with nearly identical
numbers of DEGs between the two methods, an increase in the number of DEGs for the baseline to
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recovery comparison, and a decrease for the malaria to recovery comparison. Adjusting for
transcriptome-derived naïve CD4 T cell proportions resulted in the smallest number of DEGs in the
baseline to recovery contrast and the largest number in the baseline to malaria or malaria to recovery
compared to any other model. However, this pattern with naïve CD4 T cell adjustment differed from the
DNAm-derived adjusted numbers. Lastly, the largest discrepancy in the number of DEGs observed
between the deconvolution methods came from adjustment with CD8 T cells. In the baseline to recovery
contrast, DNAm-derived adjustment detected double the number of DEGs as the transcriptome-derived
correlate. However, there was an increase in the number of DEGs with both adjustment sources relative to
the unadjusted model. Conversely, when comparing malaria to the baseline or recovery, there was a
dramatic reduction in the detection of DEGs when using the DNAm-derived CD8 T cell estimates that was
not observed in the corresponding transcriptome derived model. The multi-cell-type adjusted models that
used the top 2 principal components of cell-type proportions as covariates decreased the number of
DEGs detected in the baseline to malaria and the malaria to recovery contrasts and increased the number
of DEGs in the baseline to recovery contrast with both deconvolution methods.

Genes detected with the principal component adjusted models showed a large overlap between the
deconvolution approaches highlighted by the Venn diagrams in Fig. 4b (genes in supplementary dataset
3). Principal component models from both deconvolution approaches had nearly complete overlap with
~ 90% of the DEGs detected with the transcriptome-derived model matching those from the DNAm-
derived model. The principal component models only shared ~ 50–70% of the DEGs with the unadjusted
models in the baseline to malaria or malaria to recovery contrasts. In the baseline to recovery contrast,
100% of the genes detected in the unadjusted model were also found with the principal components
models.

After cell-type adjustment, the estimated log fold-changes (logFCs) in gene expression between times
were similar and follow closely to the identity line. Figure 5 demonstrates the association between the
logFC estimates after cell-type adjustment with transcriptome-derived versus DNAm-derived cell
proportions in the 779 genes with 100 smallest p values in at least one of the models used.
Deconvolution-sensitive genes are labeled in red and are de�ned as genes with an orthogonal distance
between logFC and the identity line in the extreme 0.3 percentile (detailed information in supplementary
dataset 4). Estimated logFCs of gene expression were nearly identical in the monocyte, naïve B cell,
natural killer, and memory CD4 T cell adjusted models with 0 to 1 deconvolution-sensitive genes found in
each cell type (Supplementary Table S5 contains a summary of deconvolution-sensitive DEGs). The
highest number of deconvolution-sensitive genes were found within the CD8 T cell adjusted models that
identi�ed 18 and 13 of the 779 compared genes in the baseline to malaria and malaria to recovery
contrasts, respectively.

Effect of deconvolution approach on differential
methylation analysis
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The number of differentially methylated positions (DMPs) detected by the cell-type adjusted models
varied similarly to the differential gene expression analyses (Fig. 6a). Monocyte, naïve CD4 T cell, CD8 T
cell, or principal component adjusted models showed the biggest difference in the number of DMPs
compared to the unadjusted model. Smaller differences in the number of DEGs were noted from the
models adjusted with naïve B cells, natural killer cells, or memory CD4 T cells. Monocyte adjusted models
detected nearly the same number of DMPs across the deconvolution approaches regardless of
comparison. Monocyte adjustment resulted in more DMPs in the baseline versus recovery contrast and a
reduced number of DMPs detected in the baseline versus malaria and the recovery versus malaria
contrasts. Adjustment with only the transcriptome-derived naïve CD4 T cell proportions resulted in the
most DMPs compared to any other model in the baseline to malaria and malaria to recovery contrasts. In
the baseline to recovery contrast, the number of DMPs did not change after adjustment with naïve CD4 T
cell proportions regardless of deconvolution method. Adjustment with CD8 T cell proportions resulted in
the most reductions in estimated DMPs with the number decreasing by more than two-thirds when
malaria is compared to either baseline or recovery, regardless of the deconvolution method used.
Similarly, models that adjusted with principal components also resulted in a large reduction in the number
of DMPs when comparing malaria to the other time points. This was observed with both deconvolution
methods.

The transcriptome-derived and DNAm-derived principal component models shared most DMPs with the
unadjusted model in the baseline versus recovery contrast (Fig. 6b left panel, supplementary dataset 5).
The baseline versus malaria or malaria to recovery contrasts were less consistent, where approximately
only one-third of the DMPs were shared between the principal component models from the two
deconvolution approaches. However, more notable is that models with the principal components
adjustment eliminated ~ 90% of the signal detected by the unadjusted models regardless of
deconvolution approach in the baseline versus malaria or malaria versus recovery contrasts.

For most cell-type adjustments, the deconvolution approach did not substantially affect the estimated
logFC in methylation level between time points as demonstrated by the proximity of the logFC estimates
to the identity line (Fig. 7). CpG sites sensitive to deconvolution method are labeled in red on Fig. 7 and
are de�ned as methylation sites with an orthogonal distance between logFC and the identity line in the
outer 0.3 percentile (detailed information in supplementary dataset 6). Similar to the differential gene
expression analyses, logFCs in monocyte, naïve CD4 T, or naïve B cell-type adjusted models were nearly
identical with no deconvolution sensitive DMPs for any contrast in the 1356 CpG sites that have one of
the smallest 100 p-values in at least one of the models. Memory CD4 T cells only had 2 deconvolution
sensitive genes in the baseline versus malaria and malaria versus recovery contrasts. CD8 T cell adjusted
models had the largest discrepancy in logFC between deconvolution methods with 45 and 14 DMPs that
were deconvolution-sensitive in the baseline to malaria and recovery to malaria comparisons, respectively
(Supplementary Table S6). Unique to the differential methylation analyses, the NK cell adjusted models
detected the second most deconvolution-sensitive DMPs with 14 in the baseline to malaria.
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Discussion
Results of our study show that human PBMC cell-type proportion estimates were highly consistent when
comparing transcriptome-derived versus DNAm-derived deconvolution methods in a cohort of Kenyan
children before, during, and after a febrile malaria illness. Most major cell types that made ~ 10% or
greater proportion of the total had correlation coe�cients that ranged from r = 0.60–0.96. The top two
principal components calculated from each deconvolution approach were also highly correlated and
identi�ed three cell types, monocytes, CD8 T cells, and naive CD4 T cells, that drive the variation in cell-
type proportions in PBMCs. Cell-type adjustments with these same three cell types were associated with
the biggest differences in the number of DEGs or DMPs relative to the unadjusted models. Similarly,
multi-cell-type adjustment using the top two principal components resulted in the largest change in
number of DEGs and DMPs regardless of deconvolution approach. The effect estimates for log-fold
change in either differential gene expression or differential methylation in any time point comparisons
were largely unaffected by deconvolution method in the cell-type adjusted models. Collectively, these
analyses show that both deconvolution methods performed similarly and captured the major sources of
cell-type variation despite being based on different nucleic acids, assay platforms, processing pipelines,
and reference matrices in a population that differs in age and ethnicity from the deconvolution validation
datasets.

During febrile malaria there was a statistically signi�cant decrease in the estimated average CD8 T cell
proportions relative to baseline and recovery regardless of the deconvolution method. Adjustment with
CD8 T cells substantially reduced the total number of both DEGs and DMPs when comparing malaria to
either baseline or recovery samples. Additionally, the most deconvolution-sensitive genes and CpG
locations were found in models adjusted for CD8 T cells. This pattern indicates that the decreased CD8 T
cell proportions during malaria is confounding the differential gene expression and differential
methylation estimates between time points. Reductions in both absolute counts and proportions of CD8
T cells in peripheral blood measured by �ow cytometry has been previously reported in children with
acute febrile malaria (31–33). The confounding effect of the change in CD8 T cell proportions highlights
the need to account for this cell type in bulk expression or epigenetic study designs related to infectious
diseases such as malaria and perhaps other in�ammatory states such as bacterial sepsis and
autoimmune diseases.

The greatest discrepancy between the deconvolution approaches was found in the estimation of
neutrophil proportions, e.g. ranging from ~ 0.001–10% from the transcriptome-derived and DNAm-derived
estimate, respectively. Two proposed sources of this discrepancy could be the presence of neutrophil
extracellular traps (NETs) in the PBMC compartment or neutrophil contamination and subsequent
degradation of neutrophil subsets through cryopreservation processes. Typically, cryopreserved PBMCs
contain few neutrophils because they localize to a different layer following hypaque �coll centrifugation
of anticoagulated whole blood and likely do not remain viable following cryopreservation of PBMCs (34,
35). During febrile malaria illness, NETs have been implicated as major contributors to innate immune
pathogenesis (36–38). Neutrophils release NETs that are composed of cell-free DNA along with other
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antimicrobial factors to activate innate immune system pathways (39, 40). NETs could remain in the
PBMC compartment during hypaque-�coll PBMC puri�cation and be detected by the DNA methylation
assay. Hence, we speculate that substantially different estimates in neutrophil proportions can in part be
explained by the underlying biological differences between analyzing RNA versus DNA in PBMCs.

There are limitations to the methods used and the results presented here despite the overall consistency
between these two deconvolution approaches. In some cell-types, namely memory B cells, regulatory T
cells, and memory CD4 T cell subsets, estimates did not correlate between deconvolution approaches.
Memory B cells and regulatory T cells are present in small proportions in peripheral blood and harder to
detect accurately. The memory CD4 T cells estimates were an exception to this rule but are likely
uncorrelated because the transcriptome-derived deconvolution had two sub-categories, activated and
resting, whereas the DNAm-derived deconvolution had one total memory CD4 T cells estimate.
Nonetheless, cell-type adjusted modeling that accounted for memory CD4 T cells from either
deconvolution approach did not substantially affect differential methylation or differential gene
expression results. Lastly, the sample size in the current study is small and constrained the assessment
of methods available for cell-type adjustment. More cell-type adjusted modelling approaches exist but
depend on complex models with many parameters. The challenging logistics surrounding the collection
and processing for study designs such as this highly matched, longitudinal study of a pediatric
population in rural Africa are re�ected in the sample size and are a common problem. Although we
cannot determine which method is better when the correlations are poor, the results indicated that, in
general, the deconvolution methods do not change the main biological interpretations.

Conclusions
Cell-type proportion estimates from PBMCs were concordant between transcriptome-derived and DNAm-
derived deconvolution approaches in a cohort of Kenyan children before, during, and after a febrile
malaria illness with a few exceptions. Furthermore, the estimates for log-fold change in either differential
gene expression or differential methylation were similar between deconvolution approaches when applied
to cell-type adjusted modelling. Together, these analyses demonstrate the robustness of the
deconvolution approaches with the major sources of cell-type variation detected by both deconvolution
approaches regardless of different nucleic acids, assay platforms, processing pipelines, and reference
matrices.
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Figures

Figure 1

Steps for data collection and analyses. Blue lines represent DNA-methylation-derived deconvolution
methods and red lines represent transcriptome-derived deconvolution methods.
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Figure 2

a. Cell percent estimates derived from the transcriptome (column labeled "RNA-derived") and DNA
methylome (column labeled "DNAm-derived"). Black bars indicate a statistically signi�cant change in cell-
type proportion. b. Scatter plots and linear model �ts of association between cell proportion estimates
from transcriptome-derived methods and DNAm-derived methods. The Pearson correlation value r is
labeled in correlation plots. Each individual is labeled a different color.
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Figure 3

Correlation between the �rst and second principal components from RNA-derived and DNAm-derived
deconvolution methods. Dotted lines represent the identity line. The percent of total variation captured by
each respective principal component is in parentheses. The Pearson correlation coe�cient is labeled in
the bottom right corner with r (both correlations have a p-value < 0.001). The x-axes represent the values
for the �rst (PC1) and second (PC2) that were calculated with the transcriptome-derived deconvolution.
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The y-axes represent the values for the �rst (PC1) and second (PC2) from the DNAm-derived
deconvolution.

Figure 4

a. The number of differentially expressed genes detected by each model is on the y-axis at multiple p-
value thresholds. The models are indicated by cell-type adjustment labeled across the top, contrast
labeled along the right side, and deconvolution approach labeled along the x-axis. Transcriptome-derived
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and DNAm-derived cell-type adjustments are marked by RNA and DNAm, respectively. As colors become
darker, the signi�cance threshold becomes lower. b. Venn diagrams showing the overlap in DEGs detected
with p-value < 0.003 from the unadjusted, transcriptome-derived principal components, and the DNAm-
derived principal components models.

Figure 5

Log fold-change estimates are represented on the x-axis after transcriptome-derived cell-type adjustment
versus the corresponding logFC from the DNAm-derived model. Cell-type adjustments are labeled along
the top and contrasts along the right side. Red points represent deconvolution-sensitive DEGs (genes
whose estimates vary the most using the difference deconvolutions) and their count is listed in the
bottom right of each panel if n > 0. The dashed line represents the identity line.
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Figure 6

a. The number of differentially methylated positions is on the y-axis at several p-value thresholds as
detected by cell-type adjustment (labeled across the top), contrast (labeled along the right side), and
deconvolution approach (along the x-axis). Transcriptome-derived and DNA-methylation-derived cell-type
adjustments are marked by RNA and DNAm, respectively. As colors become darker, the signi�cance
threshold becomes higher and are listed in the legend. "Prin. Comp." refers to the principal component-
adjusted models. b. Venn diagrams depict the overlap in DMPs selected with p-value < 0.001 in
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unadjusted, transcriptome-derived principal components, and the DNAm-derived principal components
models.

Figure 7

Relative logFC estimates in high interest CpG locations using transcriptome-derived vs DNAm-derived cell-
type adjustments by model (labeled along the top) and contrast (labeled along the right side). Red points
are deconvolution-sensitive DMPs and their count is listed in the bottom right corner of each panel if n >
0. Dashed lines represent the identity line. Deconvolution-sensitive CpG sites vary the most with different
deconvolution approaches.
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