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Abstract
Genome wide association studies (GWASs) have identi�ed numerous risk loci associated with prostate
cancer, yet unraveling their functional signi�cance remains elusive.  Leveraging our high-throughput
SNPs-seq method, we pinpointed rs4519489 within the multi-ancestry GWAS-discovered 2p25 locus as a
potential functional SNP due to its signi�cant allelic differences in protein binding. Here, we conduct a
comprehensive analysis of rs4519489 and its associated gene, NOL10, employing diverse cohort data
and experimental models. Clinical �ndings reveal a synergistic effect between rs4519489 genotype and
NOL10 expression on prostate cancer prognosis and severity. Through unbiased proteomics screening,
we reveal that the risk allele A of rs4519489 exhibits enhanced binding to USF1, a novel oncogenic
transcription factor (TF) implicated in prostate cancer progression and prognosis, resulting in elevated
NOL10 expression. Furthermore, we elucidate that NOL10 regulates cell cycle pathways, fostering
prostate cancer progression. The concurrent expression of NOL10 and USF1 correlates with aggressive
prostate cancer characteristics and poorer prognosis. Collectively, our study offers a robust strategy for
functional SNP screening and TF identi�cation through high-throughput SNPs-seq and unbiased
proteomics, highlighting the rs4519489-USF1- NOL10 regulatory axis as a promising biomarker or
therapeutic target for clinical diagnosis and treatment of prostate cancer.

Introduction
Prostate cancer is the second most common cancer and the �fth leading cause of cancer-related
mortality among men worldwide, with around 1.4 million new cases and 400,000 deaths annually1. The
disease’s incidence and mortality rates vary signi�cantly by region, with the highest incidence observed in
Northern and Western Europe and the lowest in Asia1. Notably, mortality rates have decreased in regions
like Northern America, Oceania, and Northern and Western Europe. However, recent years have seen an
increase in both incidence and mortality rates in Asia, Central and Eastern Europe, and sub-Saharan
Africa1, 2. This rise is likely due to improved awareness, widespread use of prostate-speci�c antigen (PSA)
testing, alongside rising incidence trends and challenges in accessing effective treatment options1–7.

Prostate cancer development is in�uenced by a complex interplay of factors, including age, familial
history, genetic background, germline mutations, and lifestyle/environmental factors like smoking,
obesity, and diet1, 8. Oncogenic pathways in prostate cancer features a range of genetic alterations,
including somatic mutations in crucial genes (SPOP, FOXA1, TP53, AR, RB1), PTEN deletions, MYC
ampli�cations, and gene fusions like TMPRSS2-ERG1, 8. Our previous research highlighted the intricate
interplay between the somatic TMPRSS2-ERG fusion and the 17q12/HNF1B locus9, underlining their
signi�cant roles in prostate cancer risk and progression.

Large-scale twin studies and epidemiological evidence have revealed a signi�cant genetic component to
prostate cancer, estimating its heritability at 57%10, 11. The introduction of genome-wide association
studies (GWASs) has fundamentally enhanced our understanding of the genetics underlying prostate



Page 4/43

cancer10, 12, identifying over 450 susceptibility variants since the �rst GWAS in 2005, as documented in
the NHGRI-EBI GWAS Catalog10, 12–15. Post-GWAS research is now focused on exploring the biological
mechanisms underpinning these susceptibility loci, uncovering risk loci that affect crucial processes in
prostate tumorigenesis, such as cell cycle regulation, DNA repair, in�ammation, and metabolism16, 17. A
key challenge remains from association studies to functional investigations, with a keen emphasis on
their potential clinical implications and applications17–21.

Recent progress in high-throughput screening approaches has signi�cantly enhanced the annotation of
functional single nucleotide polymorphisms (fSNPs), connecting GWAS outcomes to disease
mechanisms. Techniques such as the massively parallel reporter assay (MPRA) allow for the
examination of thousands of sequences for potential transcriptional activation, enabling detailed
analysis of transcriptional regulatory elements with genetic variations22, 23. The self-transcribing active
regulatory region sequencing (STARR-seq) method quantitatively evaluates enhancer activity across
millions of sequences harboring regulatory SNPs24, 25. We and others have employed CRISPR interference
(CRISPRi) to identify regulatory elements and their target genes, clarifying the role of noncoding genetic
variation in prostate cancer26, 27. Pooled chromatin immunoprecipitation sequencing (pooled ChIP-seq)
links genetic variants in transcription factor binding to disease risk28. Additionally, our team previously
developed an innovative high-throughput technique called single-nucleotide polymorphisms sequencing
(SNPs-seq)29, together with the type IIS enzymatic restriction approach developed by Li and colleagues30,
enables the identi�cation of fSNPs in�uencing allele-speci�c regulatory protein binding and thereby
further bridging the gap between genetic variants and their functional impact on diseases.

Our SNPs-seq method capitalizes on the selective retention of protein-bound DNA oligonucleotides in a
protein puri�cation column, followed by massively quantitative sequencing. Using it for a broad analysis
of fSNPs at prostate cancer risk loci, we identi�ed numerous candidate fSNPs29. Notably, rs4519489 at
the 2p25 locus, located in an intron of the nucleolar protein 10 (NOL10) gene, showed signi�cant allelic
variation in protein binding. Further underlining its signi�cance, several large-scale GWASs have
discovered the 2p25 locus as signi�cant for prostate cancer susceptibility and severity with two lead
SNPs, rs9287719 and rs199061314, 15, 31, 32, showing strong linkage disequilibrium with rs4519489 and
thus emphasizing its functional role in prostate cancer causality. Herein we conducted a thorough
functional analysis of rs4519489 and its eQTL target gene, NOL10. We discovered that the transcription
factor USF1 plays a crucial role in modulating NOL10 expression through rs4519489, using an unbiased
proteomics approach. Our research further investigates the impact of NOL10 and USF1 on prostate
cancer predisposition and progression.

Results

Identi�cation of functionally critical variants and eQTL
genes underlying GWAS loci of prostate cancer
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Identifying functionally critical variants and their linked expression quantitative trait loci (eQTL) genes
within GWAS loci is crucial for unraveling the genetic complexity of prostate cancer. This requires
integrating various techniques, including high-throughput screening, allele-speci�c assays, and analyses
correlating genotypes with phenotypes. Our recent work leverages our innovative SNPs-seq method to
study 374 prostate cancer risk loci, examining allelic differences in protein binding29. Results showed
notable allele-dependent binding variations (Fig. 1a); speci�cally, the A allele of rs4519489 had stronger
protein binding than the T allele, with signi�cant biased allelic binding (BAB) scores in different samples
(Fig. 1b, c). Critically, the A allele of rs4519489 strongly correlates with the two major GWAS risk SNPs,
namely the C allele of rs9287719 (R2 = 0.67, D’= 0.82)31, 32 and the T allele of rs1990613 (R2 = 0.8,
D’=0.98)14, 15, underscoring its potential functional importance in prostate cancer genetics.

To con�rm the distinct protein binding a�nities of rs4519489 T and A alleles, we performed an
electrophoretic mobility shift assay (EMSA). The A allele showed stronger binding to nuclear protein
binding in LNCaP cells than the T allele. Binding for the A allele was signi�cantly reduced by a consensus
competitor but unaffected by mutant or random competitors (Fig. 1d). Additionally, we investigated
transcriptional regulation differences using an allele-speci�c enhancer reporter assay. A 571 bp DNA
segment containing either allele of rs4519489 was cloned into luciferase reporter vectors. The A allele
produced a higher luciferase activity than the T allele in both 22Rv1 and LNCaP cells, with or without
dihydrotestosterone (DHT) treatment, indicating its stronger transcriptional activation potential (Fig. 1e).

Subsequently, to assess if the rs4519489 SNP genotype correlates with gene expression nearby, we
conducted an eQTL analysis using the Chinese Prostate Cancer Genome and Epigenome Atlas (CPGEA)
cohort33. The analysis linked the aggressive prostate cancer-associated A allele of rs4519489 with higher
NOL10 mRNA expression (Fig. 1f; Supplementary Dataset 1), suggesting an involvement of NOL10
aggressive prostate cancer predisposition.

Further, to examine the potential enhancer functionality of the rs4519489 region, we performed chromatin
immunoprecipitation sequencing (ChIP-seq) experiments for epigenetic markers in various cell lines and
clinical specimens. The results, shown in the Integrative Genomics Viewer, indicated active epigenetic
marker enrichment (H3K27ac, H3K4me1, H3K4me3) at the rs4519489 locus (Fig. 1g), hinting at
regulatory elements presence. Expanding ChIP-seq to include histone modi�cations in both normal and
tumor prostate tissues from the CPGEA cohort33 con�rmed enhancer/promoter activity at rs4519489
(Fig. 1g), reinforcing its functional gene regulatory role.

To explore if the rs4519489 region acts as an enhancer affecting NOL10 expression, we utilized CRISPR
interference (CRISPRi) in PC3 cells. We �rst established a cell line with stable dCas9 expression, then
designed and integrated two sgRNAs targeting the rs4519489 enhancer region into a humanized pgRNA
vector (including an sgRNA targeting HPRT as a positive control). After infecting these dCas9-expressing
cells with a lentivirus carrying the sgRNA plasmids, RT-qPCR analysis showed a notable decrease in
NOL10 mRNA levels upon targeting the rs4519489 enhancer (Fig. 1h), indicating its role in modulating
NOL10 expression.
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In summary, our high-throughput SNPs-seq screening identi�ed rs4519489 as a functional causal SNP
closely linked with key GWAS lead SNPs at the 2p25 prostate cancer susceptibility locus. Genotype-
expression analysis revealed NOL10 as the eQTL gene for rs4519489, indicating the rs4519489/2p25
region likely functions as an enhancer modulating NOL10 expression.

NOL10 upregulation and rs4519489 eQTL correlate with
prostate cancer severity
To ascertain the functional signi�cance of NOL10 in the clinical settings, we initially analyzed the CPGEA
data33, and revealed signi�cant upregulation of NOL10 mRNA in prostate cancer tumors compared to
normal tissues (Fig. 2a). This �nding was supported by further analysis of data from TCGA PRAD34,
Health Study Prostate Tumor Cohort35, 36, and another Chinese prostate cancer dataset37, all of which
consistently indicated higher NOL10 expression in tumor tissues (Fig. 2b, c and Supplementary Fig. S1a).
Independent validation using samples from the Fudan University Shanghai Cancer Center (FUSCC)
cohort38, through RT-qPCR and Western Blot, con�rmed signi�cant overexpression of NOL10 in prostate
tumor tissues (Fig. 2j). Additionally, analysis of the GSE10645 dataset39 showed a notable association
between NOL10 expression and metastatic progression in prostate cancer patients (Fig. 2d), underscoring
NOL10 upregulation and its rs4519489 eQTL correlation with the severity of prostate cancer..

Our in-depth analysis of clinical features in prostate cancer patients revealed that elevated NOL10
expression correlates signi�cantly with more advanced tumor stages34, 40 (Fig. 2e and Supplementary
Fig. S1b), lymph node metastasis34 (Fig. 2f), higher Gleason scores34 (Fig. 2g), and increased
biochemical recurrence rates33 (Fig. 2h). Moreover, survival analysis utilizing the Grasso dataset41

indicated that higher NOL10 levels are linked to reduced overall survival times (Fig. 2i), underscoring the
potential of NOL10 as a critical prognostic biomarker for prostate cancer.

We also explored how NOL10 expression relates to genome instability in clinical samples. By examining
three indicators of genome instability (altered genome fraction, aneuploidy score, and mutation count) in
TCGA PRAD samples34, we discovered a positive correlation between NOL10 expression and these
genomic instability markers (Supplementary Fig. S1c-e), further implicating NOL10 in the complexity of
prostate cancer pathology.

Given the signi�cant link between the rs4519489 risk allele A and elevated NOL10 expression, alongside
the association of NOL10 upregulation with prostate cancer severity, we investigated if the rs4519489
genotype directly impacts prostate cancer patient survival outcomes. Our analysis indicated that the
patients carrying the risk genotype A/A at rs4519489 had shorter overall survival times and a higher risk
of disease progression (Fig. 2k-m). Furthermore, those carrying the risk genotype with prostate tumors
exhibiting higher NOL10 levels showed markedly lower overall and progression-free survival rates
compared to patients with A/T or T/T genotypes and lower NOL10 expression (Fig. 2n,o).
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In summary, our comprehensive analysis of clinical data demonstrates that the rs4519489 risk allele A
and NOL10 expression, either independently or in combination, are associated with aggressive
characteristics in prostate cancer. This suggests their viability as biomarkers for assessing disease
severity and predicting progression.

NOL10 as an oncogene potentiates proliferation and
metastasis of prostate cancer
We next sought to investigate tumor biology effect of NOL10 in prostate cancer and thus performed
shRNA-mediated knockdown of NOL10 in PC3 cells (Supplementary Fig. S2a, b). The results showed that
the capability of proliferation, colony formation, migration, and invasion of PC3 cells transfected with
NOL10 shRNAs were signi�cantly reduced compared with control shRNA transfected cells (Fig. 3a-d).
Furthermore, we conducted sgRNA mediated knockout assay of NOL10 in PC3 cells and con�rmed the
successful knockout e�ciency through RT-qPCR and Western blot (Supplementary Fig. S2c, d).
Subsequent cellular biology assays (CCK8, colony formation, trans-well with or without Matrigel) yielded
results aligning with the NOL10 shRNA knockdown �ndings (Supplementary Fig. S2e-h), further
underscoring signi�cant in�uence of NOL10 on tumor cell behavior.

To further substantiate the oncogenic properties of NOL10 in prostate cancer, we employed a doxycycline
(Dox)-inducible lentiviral system for overexpressing NOL10 in 22Rv1 cells (Supplementary Fig. S2i, j). The
cellular function assays revealed that NOL10 overexpression signi�cantly increased oncogenic behaviors,
including proliferation, colony formation, migration, and invasion, compared to controls (Fig. 3e-h).
Complementing this, shRNA-mediated knockdown of NOL10 in 22Rv1 cells replicated the inhibitory
effects on oncogenic activities previously seen in PC3 cells, reinforcing NOL10's critical contribution to
oncogenic traits in prostate cancer (Supplementary Fig. S2k-p).

Building on the signi�cant link between NOL10 expression and prostate cancer proliferation, we
expanded our study to assess the impact of NOL10 on tumor growth in vivo. We injected nude mice with
PC3 cells in which NOL10 expression was diminished through shRNA-mediated knockdown. The results
indicated that tumors from the NOL10 knockdown group were markedly smaller in both volume and
weight compared to those from the control group (Fig. 3i-k). Histological examination with Hematoxylin
and Eosin (H&E) staining demonstrated that the NOL10 knockdown tumors had cells with notably smaller
nuclei and fewer atypical features than control tumors (Fig. 3l). Immunohistochemical (IHC) analysis
reinforced these �ndings, revealing increased E-cadherin expression and decreased Vimentin expression
in the NOL10 knockdown tumors, indicating a shift towards epithelial characteristics and reduced
mesenchymal traits (Fig. 3l). Furthermore, Ki67expression, which signals cell proliferation, was notably
lower in the NOL10 knockdown tumors (Fig. 3l), supporting the role of NOL10 in promoting tumor growth
and suggesting its potential as a target for therapeutic intervention.

Recognizing the critical importance of epithelial mesenchymal transition (EMT) and androgen receptor
(AR) signaling in the progression of prostate cancer, we explored the relationship between NOL10
expression and EMT or AR signaling activity in patients. Through a detailed analysis spanning multiple
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cohorts, including MSKCC40, NPC42, SMMU43, and SU2C44, we consistently found a positive correlation
between elevated NOL10 expression and higher EMT or AR signaling scores (Fig. 3m-q and
Supplementary Fig. S2q-s), highlighting a potential role of NOL10 in modulating key pathways involved in
prostate cancer advancement.

Collectively, our results underscore the signi�cant contribution of NOL10 to promoting key oncogenic
activities in prostate cancer, both in vitro and in vivo. NOL10 notably boosts cell proliferation, migration,
and invasion, and markedly ampli�es the EMT process in subcutaneous tumor models in nude mice,
underscoring its importance in cancer progression.

NOL10 promotes cell cycle progression contributing to
prostate cancer severity
We next sought to elucidate the potential mechanisms through which NOL10 contributes to prostate
cancer progression, and began with a gene set enrichment analysis (GSEA) using the TCGA PRAD
dataset, which showed NOL10 expression signi�cantly associated with critical cell cycle pathways,
notably E2F targets and G2M checkpoint pathways (Fig. 4a). Subsequently, to assess the impact of
NOL10 knockdown on downstream gene expression, we performed RNA sequencing analysis to identify
differentially expressed genes (DEGs) in PC3 cells treated with control siRNA or siRNA targeting NOL10
(Supplementary Fig. S3a). Our analysis revealed a substantial correlation between two technical
replicates, identifying 267 genes as upregulated and 402 genes as downregulated upon NOL10
knockdown (Supplementary Fig. S3b-d and Supplementary Dataset 2). Furthermore, GSEA of these
downregulated DEGs highlighted their signi�cant enrichment in cell cycle pathways for the NOL10
knockdown group (Fig. 4b, c). Con�rmatory RT-qPCR analysis on selected DEGs from the cell cycle
pathway validated these RNA sequencing �ndings (Fig. 4d, e), reinforcing the role of NOL10 in
modulating cell cycle-related gene expression in prostate cancer.

To assess the clinical impact of NOL10 target genes in prostate cancer, we developed a cell cycle
signature (CCS) based on these genes. Our analysis showed that the NOL10 CCS positively correlates
with cell cycle progression (CCP) scores across diverse cohorts, including CPGEA33, TCGA PRAD34,
SU2C44, FHCRC45, and GSE6287235 (Fig. 4f and Supplementary Fig. S4a-d). Further, we discovered that
the NOL10 CCS was signi�cantly higher in metastatic prostate cancer compared to normal prostate
glands and primary tumors (Fig. 4g). Additionally, an elevated NOL10 CCS was linked to more aggressive
prostate cancer features, such as advanced T stage, lymph node metastasis, higher Gleason scores,
increased PSA levels, seminal vesical invasion, person neoplasm status, and biochemical recurrence
indicator (BRI) in various cohorts (Fig. 4h-n and Supplementary S4e-m). Importantly, a higher NOL10 CCS
also predicted with poorer patient survival outcomes, including overall, recurrence-free, and metastasis-
free survival (Fig. 4o-q and Supplementary S4n-p), underscoring the potential of the NOL10 CCS as a
prognostic marker for prostate cancer aggressiveness and patient prognosis.
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To validate the strength of the observed associations, we performed a comprehensive meta-analysis
assessing the correlation between the NOL10 CCS and survival outcomes in prostate cancer patients
across various cohorts. Our �ndings demonstrated that a higher NOL10 CCS signi�cantly correlates with
shorter biochemical recurrence-free and overall survival (OS) (Fig. 4r and Supplementary S4q).
Furthermore, intriguingly, multivariate analyses revealed that an elevated NOL10 CCS serves as an
independent risk factor for both biochemical recurrence-free survival and OS across multiple cohorts
(Fig. 4s and Supplementary S5a-c), reinforcing the prognostic value of the NOL10 CCS in predicting
outcomes for prostate cancer patients.

In summary, our research indicates that NOL10 potentially regulates genes crucial to cell cycle pathways,
with a signi�cant correlation observed between NOL10 target genes and prostate cancer progression,
highlighting its importance in promoting the advancement of prostate cancer.

Unbiased proteomics approach identi�ed USF1 as an allele-
speci�c mediator between rs4519489 and NOL10
Given the established role of regulatory SNPs in modulating disease susceptibility via alterations in
transcription factor (TF)-DNA binding46, we further sought to identify TFs that might account for binding
differences between the T and A alleles of rs4519489. We thus employed a proteome mass spectrometry
approach inspired by the proteome-wide analysis of SNPs (PWAS) technique47 (Fig. 5a). By comparing
mass spectrometry data for both alleles of rs4519489, we discovered that several TFs, notably USF1,
TBX3, and TFAP4, showed speci�c interactions with the A allele, suggesting their potential roles in
mediating the allele-speci�c effects on gene expression and prostate cancer progression.

We further explored if rs4519489 directly in�uences the DNA binding a�nity of any speci�c TFs identi�ed
in our proteomics study. Utilizing computational analysis with the enhancer element locator (EEL)
algorithm48 and integrating it with DNA binding position weight matrix data for human TFs49, we found
that rs4519489 resides within the binding motifs of USF1, TBX3, and TFAP4. Notably, USF1 was
identi�ed as the most signi�cant among them (Fig. 5b). This suggests a pivotal interaction between
rs4519489 and key TFs, especially USF1, potentially clarifying how this SNP contributes to the genetic
risk of prostate cancer.

To validate the binding of TFs to the rs4519489 locus, we performed ChIP-qPCR assays using the
antibodies against USF1, TBX3, or TFAP4. Remarkably, the results revealed a signi�cant enrichment of
USF1 at the 2p25/rs4519489 locus compared to the IgG control, under both ETH and DHT treatments
(Fig. 5c), consistent with our EEL analysis predictions. Moreover, extending this analysis to various
prostate cancer cell lines, including PC3, VCaP, 22Rv1, and LNCaP, yielded similar ChIP-qPCR results,
con�rming signi�cant USF1 enrichment at the rs4519489 locus (Fig. 5d). These results collectively
support the hypothesis that USF1, among other TFs, plays a pivotal role in binding to the rs4519489
locus, indicating its involvement in the regulatory processes governing gene expression linked to prostate
cancer pathogenesis at this genomic site.
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To elucidate the allele-speci�c binding differences of rs4519489 with USF1, we assessed the genotypes
of rs4519489 in �ve prostate cancer cell lines. Sanger sequencing unveiled that only the 22Rv1 cell line
was heterozygous, harboring both A and T alleles (Supplementary Fig. S6). Subsequently, ChIP-AS-qPCR
targeting rs4519489 demonstrated a notably higher enrichment of USF1 at the A allele compared to the T
allele (Fig. 5e). To corroborate these �ndings in vivo, we conducted ChIP-qPCR assays in normal prostate
or tumor tissues using USF1 antibody or IgG control. The qPCR results a�rmed the enrichment of USF1
at the rs4519489 region in prostate specimens (Fig. 5f), indicating a potential role of USF1 in regulating
NOL10 expression in clinical settings.

Further investigating the regulatory effect of USF1 on NOL10, we initially established a stable PC3 cell
line with USF1 shRNA knockdown. RT-qPCR and Western blot analyses revealed a downregulation of
NOL10 expression following USF1 knockdown (Fig. 5g-h and Supplementary S7a). Additionally, we
generated a USF1 sgRNA knockout stable cell line in 22Rv1 cells. Western blot results validated a
signi�cant decrease in NOL10 expression following USF1 knockout (Supplementary Fig. S7b), consistent
with the knockdown assay results in PC3 cells. Further validation was conducted by transiently
transfecting 22Rv1 cells with a USF1 overexpression plasmid or an empty vector. Western blot analysis
demonstrated elevated NOL10 expression levels in the USF1 overexpression samples compared to the
empty vector controls (Supplementary Fig. S7c). These experiments were replicated in LNCaP cells,
yielding consistent results (Supplementary Fig. S7d).

Taken together, our unbiased allele-speci�c proteomics analysis identi�ed USF1 as a TF interacting with
the rs4519489 regulatory region, independent of androgen signaling pathways. USF1 exhibited a
preference for the A allele of rs4519489 and positively regulated the expression of NOL10 at both the
mRNA and protein levels.

USF1 positively correlates with NOL10 expression and
functions as an oncogene in prostate cancer
To explore the association between USF1 and NOL10 expression, we conducted a comprehensive
analysis across multiple datasets, revealing a consistent positive correlation between the mRNA
expression levels of USF1 and NOL10. This correlation was observed in diverse cohorts, including
CPGEA33, TCGA PRAD34, GTEx50, Stockholm camcap51, SMMU43, and NPC cohorts42 (Fig. 6a-d and
Supplementary S7e, f), indicating a potential role for USF1 in upregulating NOL10 expression in clinical
contexts.

Further investigating the clinical relevance of USF1 expression, we analyzed two large-scale clinical
datasets. In the CPGEA cohort33, high USF1 expression showed a signi�cant association with advanced
tumor stages in prostate cancer (Fig. 6e). Similarly, analysis of the TCGA PRAD cohort34 revealed that
elevated USF1 expression was signi�cantly correlated with malignant characteristics of prostate cancer,
including tumor stage, lymph node metastasis, Gleason score, biochemical recurrence, person neoplasm
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status, and progression-free survival (Fig. 6f-g and Supplementary S7g-j). These �ndings underscore the
potential prognostic value of USF1 expression in prostate cancer.

To validate our �ndings from the clinical databases, we conducted RT-qPCR veri�cation using eight pairs
of prostate cancer tissues and their adjacent normal tissues from the CPGEA cohort. This veri�cation
reinforced our database analysis, showing higher expression of USF1 in prostate cancer tissues
compared to adjacent normal tissues (Fig. 6h). These results collectively underscore the signi�cant
correlation between USF1 expression and prostate cancer progression, highlighting USF1 as a potential
biomarker for disease severity and as a target for therapeutic intervention.

Recognizing the pivotal role of TFs in cancer development52, and considering the regulatory in�uence of
USF1 on the oncogene NOL10, we hypothesized that USF1 might possess critical biological functions in
prostate cancer. To test this hypothesis, we established a stable PC3 cell line with shRNA-mediated USF1
knockdown (Supplementary Fig. S8a, b). Subsequently, we performed a series of tumor cell biology
assays, including CCK8 cell proliferation, colony formation, and cell migration and invasion experiments.
The results indicated that, compared to the control shRNA group, the USF1 knockdown group exhibited
signi�cantly reduced cell proliferation, colony formation, migration, and invasion abilities (Fig. 6i-l). In
addition, we generated a stable 22Rv1 cell line overexpressing USF1 and conducted similar cell function
experiments (Supplementary Fig. S8c, d). The outcomes of these experiments revealed that cell
proliferation, colony formation, migration, and invasion in the USF1 overexpressed 22Rv1 cells were
signi�cantly enhanced compared to the cells with the empty vector control (Supplementary Fig. S8e-h).
These �ndings provide compelling evidence that USF1 plays a critical role in the modulation of prostate
cancer cell behaviors, potentially driving the progression and aggressiveness of the disease.

To validate our in vitro �ndings in an in vivo setting, we carried out subcutaneous tumor transplantation
experiments using nude mice. These mice were injected subcutaneously with PC3 cells control stably
transduced with either control or USF1 target shRNAs. The results showed that both the volume and
weight of the tumors in the USF1 knockdown groups were signi�cantly reduced compared to the control
group (Fig. 6m-o). Additionally, histopathological examination, including H&E staining and IHC analysis
of the tumor tissues from the USF1 knockdown groups, displayed similar patterns to those observed in
the NOL10 knockdown group, showing a diminished capacity for subcutaneous tumor formation and
inhibition of the epithelial-mesenchymal transition (EMT) process in the tumors (Fig. 3l and
Supplementary Fig. S8i).

In summary, our comprehensive analysis demonstrates a positive correlation between USF1 and NOL10
expression, with clinical data indicating a connection between USF1 and malignant characteristics of
prostate cancer. Furthermore, our �ndings demonstrate that USF1 enhances the aggressiveness of
prostate cancer cells in vitro and promotes tumor formation and the EMT process in vivo in mice.

Combined effects of NOL10 and USF1 on prostate cancer
progression
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To explore the combined impact of NOL10 and USF1 on prostate cancer progression, we conducted an
analysis of their synergistic expression and its correlation with clinical pathology characteristics. Using
data from both the CPGEA and TCGA datasets, we found that patients with elevated co-expression levels
of NOL10 and USF1 showed a signi�cant association with increased tumor stage, lymph node
metastasis, PSA levels, Gleason score, and biochemical recurrence (Fig. 6p-s and Supplementary Fig.
S9a, b). This suggests that the joint expression of NOL10 and USF1 could serve as a potential biomarker
for assessing disease severity and progression in prostate cancer. The observed correlation underscores
the importance of these two molecular entities in the pathophysiology of the disease and highlights their
potential as targets for therapeutic intervention.

To further understand the clinical implications of NOL10 and USF1 co-expression in prostate cancer, we
calculated hazard ratios (HR) for biochemical recurrence, metastasis, and overall survival based on the
levels of NOL10 and USF1 expression across several cohorts, including CPGEA33, TCGA34, and SU2C44.
The results consistently showed that higher co-expression of NOL10 and USF1 was associated with
increased hazard ratios in these cohorts (Fig. 6t and Supplementary Fig. S9c-e), indicating that patients
with elevated levels of both NOL10 and USF1 expression are at a greater risk of disease progression.

To further evaluate the predictive power of NOL10 and USF1 expression in prostate cancer prognosis, we
constructed time-independent Receiver Operating Characteristic (ROC) curves. These analyses
demonstrated that the combined effect of NOL10 and USF1 outperformed the predictive accuracy of
either gene alone. Moreover, time-dependent ROC curves were generated to assess the predictive
capability for 1-, 3-, 5-, and 10-year survival outcomes. These analyses indicated that the combination of
NOL10 and USF1 offered superior prognostic prediction over either gene alone across various cohorts,
including CPGEA33, TCGA34, SU2C44, and DKFZ53 (Fig. 6u-v and Supplementary S10a-l).

Furthermore, we explored the combination effect of NOL10 and USF1 expression on the prognosis of
prostate cancer patients. Our analysis revealed that the synergistic co-overexpression of NOL10 and
USF1 was associated with poorer overall survival, biochemical recurrence-free survival, and metastasis-
free survival in patients with prostate cancer, consistently across multiple cohorts including CPGEA33,
TCGA34, SU2C44, and DKFZ53 (Fig. 7a-g). These �ndings underscore the signi�cant prognostic value of
assessing both NOL10 and USF1 expression levels in prostate cancer patients. The synergistic effect of
their co-overexpression serves as a robust indicator of disease progression and patient outcomes,
highlighting their potential as critical biomarkers in the clinical management and treatment of prostate
cancer.

Discussion
In this study, we have revealed the regulatory relationships among the prostate cancer risk locus
rs4519489, USF1, and NOL10 (Fig. 7h). By integrating high-throughput SNPs-seq and unbiased
proteomics, we uncovered the prostate cancer risk SNP rs4519489 (2p25) within a functional enhancer,
where USF1 exhibits a preference for binding the risk allele A, thereby upregulating NOL10. This
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highlights a direct regulatory pathway mediated by USF1 at this speci�c genomic locus. Moreover, NOL10
is implicated in the regulation of cell cycle pathways, thereby facilitating the progression of prostate
cancer supported by cell line and mouse model experiments. Notably, both NOL10 and USF1 are linked to
aggressive prostate cancer phenotypes, underscoring their clinical relevance as potential prognostic
markers and therapeutic targets. 

Identifying functional causal SNPs and understanding their biological roles within hundreds of GWAS-
reported risk loci remains a formidable challenge12, 20, 54. While various methods have been developed to
address this, there is an ongoing need for more comprehensive studies to bridge the gap between GWAS
�ndings and disease mechanisms17, 55-57. In the context of prostate cancer, our team introduced an
advanced approach called SNPs-seq29, designed for high-throughput screening of SNPs for allele-speci�c
protein binding differences. One notable �nding was rs4519489 in the 2p25 locus, which exhibited
signi�cant protein binding bias between its A and T alleles. Moreover, rs4519489 showed strong LD with
two GWAS lead SNPs, rs928771931, 32 and rs199061314, 15, suggesting a robust association with prostate
cancer susceptibility and indicating its potential role in disease etiology and progression.

Herein we conducted a comprehensive investigation to validate the allele-speci�c protein binding and
regulatory function of rs4519489, along with its clinical implications. Our eQTL analysis, using data from
the CPGEA cohort, revealed a signi�cant association between the rs4519489 A/A risk genotype and
increased expression of NOL10. While the roles of NOL10 in cancer have been underexplored, previous
studies identi�ed it as an essential nucleolar protein crucial for maintaining nucleolar structural
integrity58, 59. To elucidate its potential oncogenic role, we performed functional analyses demonstrating
NOL10 status as a novel oncogene with prognostic potential in prostate cancer. Mechanistically, NOL10
likely in�uences the expression of genes associated with critical cell cycle pathways, including E2F
targets and the G2M checkpoint. These �ndings collectively suggest that NOL10 actively contributes to
prostate cancer progression rather than being a passive bystander. Its ability to modulate key cellular
processes central to cancer development underscores its potential as a therapeutic target in prostate
cancer intervention.

Our study re�ned an allele-speci�c proteomics screening method to investigate how SNPs can in�uence
gene expression by modulating the binding a�nity of key TFs. Analytical outcomes indicated that USF1
is the most likely TF to mediating the genetic effect of the rs4519489/2p25 locus. We con�rmed USF1
chromatin occupancy at the rs4519489 site and its positive regulation of NOL10 expression, linking USF1
for the �rst time with the genetic predisposition to prostate cancer. Moreover, USF1 was signi�cantly
associated with malignant characteristics of prostate cancer, as evidenced by clinical data showing
correlations with higher tumor stages, lymph node metastasis, elevated Gleason scores, biochemical
recurrence, and poorer progression-free survival. Additionally, analysis of clinical prostate cancer samples
revealed higher USF1 expression in tumor tissues compared to normal prostate tissues. These �ndings
collectively suggest that USF1 not only serves as a potential biomarker for prostate cancer severity but
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also actively promotes disease progression. Its ability to drive tumorigenesis and in�uence key cancer cell
behaviors underscores its potential as a therapeutic target in prostate cancer intervention. 

In summary, our study unveils a pivotal regulatory mechanism underlying prostate cancer pathogenesis,
centered around the genetic risk variant rs4519489 at the 2p25 locus. We demonstrate that this region
acts as an enhancer, modulating the binding a�nity of the newly identi�ed regulator USF1. This
regulatory shift subsequently governs the expression of NOL10, a key contributor to prostate cancer
progression. By delving into the functional aspects of the 2p25/NOL10 genetic risk locus, we signi�cantly
enhance our understanding of prostate cancer development. Our �ndings highlight the importance of
rs4519489 and NOL10 in the molecular landscape of prostate cancer, offering potential as both a
diagnostic biomarker and a therapeutic target. Targeting the regulatory axis involving rs4519489, USF1,
and NOL10 holds promise for innovative therapeutic strategies aimed at curtailing prostate cancer
progression and severity.

Methods
Ethics Statement

The utilization of clinical human specimens in our study, along with the meticulous review of relevant
patient records, received the endorsement of the Ethical Committee and Institutional Review Board of the
School of Basic Medical Sciences at Fudan University (Approval number: 2021-005). All procedures
involving human samples were conducted in strict adherence to the ethical guidelines set forth in the
Declaration of Helsinki. Informed consent was duly obtained from each participating patient, ensuring the
utmost respect for patient con�dentiality throughout the study. 

Furthermore, all animal experiments conducted as part of this study were approved by the Animal Care
and Use Committee of the School of Basic Medical Sciences at Fudan University (Ethical approval
number: 20200713-002). These experimental protocols were rigorously aligned with the Guide for the
Care and Use of Laboratory Animals, underscoring our commitment to the ethical and humane treatment
of all animals involved in our research endeavors. This compliance is a testament to our dedication to
maintaining the highest standards of ethical conduct in all aspects of our research.

Tissue samples 

Tissue samples employed in our study were meticulously selected to provide robust insights into the
molecular mechanisms underlying prostate cancer. For ChIP-seq of histone modi�cations, including
H3K27ac, H3K4me1, and H3K4me3, we utilized both normal and tumor prostate tissues from the CPGEA
cohort33. For USF1 ChIP assays, we collected chromatin from normal prostate as well as prostate tumor
tissues obtained from the FUSCC (Fudan University Shanghai Cancer Center) cohort38. Furthermore, to
validate the expression levels of NOL10 and USF1 in patient tissues, we extracted RNA from �ve tissue
pairs comprising prostate tumor tissues and their adjacent normal counterparts. We also isolated protein
samples from two of these tissue pairs, all of which were acquired from the FUSCC cohort.
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Mice

Male nude mice aged 6 weeks were acquired from Gempharmatech Company, China, for conducting in
vivo experiments. The mice were maintained under controlled environmental conditions to ensure their
wellbeing and the validity of our experimental outcomes. The housing conditions included a 12-hour light-
dark cycle, with the mice accommodated in sterilized plastic cages. The ambient temperature of housing
facility was regulated between 21.7-22.8 ℃, and the humidity was maintained within a range of 40-60%.
To ensure the highest standards of hygiene and health, the water provided to the mice was autoclaved,
and their cages were replaced once every week. The health and wellbeing of the mice were continuously
monitored through a dirty bedding sentinel program, which is a well-established method for detecting
health issues in laboratory animals. For all in vivo studies conducted as part of this research, we adhered
to a protocol that included cohorts of three or more mice per experimental group.  This approach was
designed to ensure the reliability and reproducibility of our results. The experiments were repeated two to
three times independently, further strengthening the robustness of our �ndings.

Cell lines

The human prostate cancer cell lines, including PC3 (#CRL-1435), DU145 (#TCHu222), 22Rv1 (#TCHu
100), LNCaP (#CRL-1740), VCaP (#TCHu220), and the human embryonic kidney (HEK) 293T (#CRL-
11268) were obtained from the American Type Culture Collection (ATCC, USA) and the Cell Bank of the
Chinese Academy of Sciences (China). The culture conditions for these cell lines were carefully
maintained to ensure their optimal growth and viability. The PC3, 22Rv1, and LNCaP cells were cultured in
RPMI 1640 medium, whereas the DU145, VCaP, and HEK 293T cells were grown in DMEM medium. The
cell culture media for all these lines supplemented with 10% fetal bovine serum (FBS) (#FSP500,
Genetimes Technology) and 1% penicillin/streptomycin (#MA0110, MeilunBio). The cell cultures were
housed in a 37 ℃ incubator with a humidi�ed atmosphere containing 5% CO2. To ensure the integrity
and reliability of our research, all cell lines underwent regular testing for mycoplasma contamination, with
consistently negative results. Additionally, these cell lines have been authenticated by short tandem
repeat (STR) �ngerprinting.

Molecular cloning

For construction of shRNA plasmid, primers were designed based on the mRNA sequences of NOL10
(NM_024894.4) and USF1 (NM_007122.5) obtained from the National Center for Biotechnology
Information (NCBI). Post primer annealing, the shRNA sequences were cloned into the pLKO.1 puro vector
(#8453, Addgene).

For construction of sgRNA plasmid, sgRNA oligos were designed using an online tool
(http://crispor.tefor.net). For annealing, we mixed 5 μl sense sgRNA oligos (100 μM) and 5 μl anti-sense
sgRNA oligos (100 μM) with 10 μl annealing buffer (5×), and 30 μl ddH2O. The oligos were annealed in a
thermocycler at 95 ℃ for 5 minutes, followed by a gradual temperature decrease to 25 ℃ at a rate of
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1 ℃/minute. The annealed oligos were then inserted into the Lenti CRISPR V2 Puro vector (#52961,
Addgene). 

For construction of overexpression plasmid, the coding regions of NOL10 or USF1 were ampli�ed from
mixed cDNA obtained from prostate cancer cells. The ampli�ed products were cloned full-length into the
pcDNA3.1 V5 vector (#V81020, Thermo Fisher Scienti�c) or Lenti-X Tet-One Inducible Puro V5 vector
(modi�ed from vector of #631847, Takara Bio). This was achieved using either restriction enzymes or
homologous recombination techniques. 

Details of the primer sequences utilized were provided in Supplementary Table 1.

Electrophoresis mobility shift assay (EMSA) 

We employed an electrophoresis mobility shift assay (EMSA) to validate the allele-dependent protein
binding differences. This assay was performed using the LightShift Chemiluminescent EMSA Kit
(#20148, Thermo Fisher Scienti�c). The oligonucleotides required for this experiment were synthesized by
Tsingke Biotech. The target oligonucleotide, 29 base pairs in length with the SNP positioned centrally,
was labeled using the Biotin 3’ End DNA Labeling Kit (#89818, Thermo Fisher Scienti�c). The nuclear
proteins were extracted from LNCaP cells to be used in the binding reactions. The 20 μl reaction mixture
included 1x binding buffer, 1 μg of Poly (dI-dC), 1 μl of nuclear extract, a 2-fold or 200-fold excess of
unlabeled oligo for competitive assays, and 20 fmol of 3’ end labeled oligo. The reaction mixtures were
subjected to electrophoresis on a 6% polyacrylamide gel using 0.5x TBE buffer. Following electrophoresis,
the samples were transferred onto a nylon membrane (#77016, Thermo Fisher Scienti�c). After cross-
linking, protein-DNA complexes were detected using the Chemiluminescent Nucleic Acid Detection
Module. Visualization was achieved using the Tanon 5200 Imaging System (Tanon, China). The
sequences of the oligonucleotides used in the assay are detailed in Supplementary Table 2.

Luciferase enhancer reporter assay

To investigate the regulatory potential of SNP rs4519489, we employed an allele-dependent luciferase
reporter assay. This assay involved cloning allele-speci�c sequences (either the T or A allele, achieved
through site-directed mutagenesis) from the genomic DNA of human prostate cancer cells into a �re�y
luciferase pGL4.23 minimal promoter vector (#E8411, Promega) or the pGL3 promoter vector (#E1761,
Promega) to assess enhancer activity. The constructs were transiently transfected into 22Rv1 or LNCaP
cells. For hormonal treatment, cells were exposed to either dihydrotestosterone (DHT) or ethanol (ETH).
Transfection was facilitated using Lipofectamine 3000 DNA Transfection Reagent (#L3000015, Thermo
Fisher Scienti�c). To normalize the results, we co-transfected cells with the renilla luciferase pGL4.75
plasmid (#E6931, Promega) as an internal control. The experiments were conducted in 96-well plates,
with each well containing 100 μl of medium seeded with 3 × 105 22Rv1 or LNCaP cells/ml. Post-
transfection, the cells were incubated at 37 ℃ in a 5% CO2 atmosphere for 48 hours. The luciferase
activity was measured using the Dual Luciferase Reporter Assay System (#E1960, Promega) on a
bioluminometer. Each construct was tested in at least three replicate wells. The results were then
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statistically analyzed using a two-tailed Student’s T-test. Details of the primer sequences, cloning
methods, and enzymes used are available in Supplementary Table 1.

CRISPRi

We generated stable PC3 cell lines expressing CRISPR dCas9 KRAB by transfecting cells with the pLX303-
ZIM3-KRAB-dCas9 plasmid (#154472, Addgene). Post-transfection, cells underwent antibiotic selection
with 6 μg/mL blasticidin for two weeks. Guide RNAs (gRNAs) were speci�cally designed to target the
active epigenetically marked chromatin region encompassing rs4519489. To ensure comprehensive
analysis, we included a negative control (scramble sgRNA) and a positive control (HPRT1 promoter
targeting gRNA). These gRNA cassettes were synthesized by Tsingke Biotech and subsequently cloned
into the pgRNA humanized vector (#44248, Addgene). The PC3 cells stably expressing KRAB-dCas9 were
then infected with the gRNA vectors. Following infection, the cells underwent selection with 2 μg/mL
puromycin for �ve days. The primers used for all gRNAs are detailed in Supplementary Table 3. 

CRISPR/Cas9 mediated genome editing assay 

The cells were seeded in a 6-well plate, ensuring they were at the appropriate density for transduction.
The sgRNA lentivirus speci�c to NOL10 was prepared in advance. Virus Addition: For each well, 1 ml of
the lentivirus-containing medium was combined with an equal volume of the cell culture medium. To
enhance the e�ciency of viral transduction, 10 μg/ml polybrene was added to this mixture. Incubation
Period: The cells were incubated for 48 hours to allow su�cient time for the viral transduction to occur.
Medium Change and Selection: Post-transduction, the medium in each well was replaced with fresh
medium containing 1 μg/ml puromycin. This step was crucial for selecting cells that had successfully
incorporated the sgRNA, as puromycin resistance is conferred only to those cells where the viral
transduction (and thus the sgRNA incorporation) was successful. 

siRNA and shRNA knockdown assay

PC3 cells were grown to 70-80% con�uency for optimal transfection conditions. Cells were transfected
with either control siRNA or siRNAs targeting NOL10 using Lipofectamine RNAi MAX Transfection
Reagent (#13778150, Thermo Fisher Scienti�c). The medium was replaced after 12 hours post-
transfection, and cells were collected after 48 hours for further analysis. The speci�c sequences of
siRNAs used are detailed  in Supplementary Table 3. 

Lentiviral constructs with shRNA targeting NOL10 or USF1 were produced in 293T cells using a third-
generation packaging system. Cells were seeded in a 6-cm dish at 70%-80% con�uency a day before
transfection. A mix of four plasmids (pCMV-VSV-G, #14888, Addgene; pRSV-Rev, #12253, Addgene;
pMDLg/pRRE, #12251, Addgene and the lentiviral target vector) was prepared in a 1:1:1:3 ratio, totaling
10 μg, and diluted in Opti-MEM with PEI reagent. After 24 hours, the medium was replaced with 2 ml fresh
medium, and the virus-containing medium was collected every 24 hours for three days, �ltered through a
0.45 μm �lter, and stored -80 °C. For virus transduction, the desired cells were seeded in a 6-well plate and
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incubated with the lentivirus-containing medium supplemented with 8 μg/ml polybrene (#TR-1003-G,
Sigma). In case of puromycin selection construct, after 24 hours the medium was replaced with pre-
warmed medium, and 48 hours after transduction the medium was changed with fresh medium
containing puromycin (2 μg/ml; #MA0318, MeilunBio) in a �nal concentration of 2 μg/ml for selection.
Non-transduced cells served as controls for determining cell survival upon puromycin selection.

Overexpression assay 

Both 22Rv1 and LNCaP cells were grown to 70-80% con�uency for optimal transfection e�ciency. The
transfection mixture consisted of the pcDNA3.1 construct, P3000 reagent, Lipofectamine 3000 reagent
(#L3000015, Thermo Fisher Scienti�c), and Opti-MEM (#11058021, Thermo Fisher). The prepared
mixture was added to the cells and incubated for 48 hours to allow for gene expression. Post-incubation,
cells were harvested for subsequent analyses. For establishing stable overexpression cells, 22Rv1 cells
were infected with Lenti-X Tet-One inducible Puro V5 constructs. Post-infection, cells were selected and
maintained under appropriate conditions to ensure stable integration and expression of the target gene.

RNA isolation, reverse transcription, and quantitative PCR

Total RNA was isolated using the EZ-10 DNAaway RNA Mini-Preps Kit (#B618133, Sangon Biotech). 1 ug
total RNA was reverse transcribed using the HiScript III RT SuperMix for qPCR kit (#R323-01, Vazyme)
and the resulting cDNA was diluted 20 times. RNA expression was quanti�ed using the ChamQ universal
SYBR qPCR master mix (#Q711-02, Vazyme) on the Light Cycler 480 (Roche). GAPDH, a stable
housekeeping gene, was used as a reference for normalizing gene expression levels in the samples. Each
sample was measured in triplicate to ensure the accuracy and reliability of the data. Relative gene
expression was calculated using the ΔΔCT (ΔCT [sample] – ΔCT [control average]) method. The
sequences of all oligonucleotides used in these procedures are provided in Supplementary Table 2.

Western blot

The cell pellet was resuspended in lysis buffer, followed by centrifugation. The supernatant containing
the extracted proteins, was collected. Protein concentrations were determined using the BCA Protein
Assay Kit (#P0012S, Beyotime Biotechnology). Equal amounts of protein lysate (30 μg) were denatured
using protein loading buffer (#P0015F, Beyotime Biotechnology). The denatured proteins were separated
by SDS-PAGE, and transferred to 0.45 μm PVDF membranes (#IPVP00010, Millipore). The membrane was
blocked for 1 hour at room temperature using blocking buffer (5% nonfat milk in TBST) while gently
shaking. The blocked membrane was incubated overnight at 4 ℃ with primary antibodies diluted in
blocking buffer, under gentle rotation. Post-incubation, the membrane was washed �ve times for 5
minutes each with TBST. The membrane was then incubated with HRP-conjugated secondary antibody
diluted in blocking buffer for 1 hour at room temperature on a rotor. Afterwards, the membrane was
washed �ve times for 5 minutes each using TBST. Finally, the membrane was developed using Omni-ECL
Western Blotting Substrate (#SQ202L, Epizyme) or Omni-ECL Femto Maximum Sensitivity Substrate
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(#SQ201, Epizyme). The developed blot was imaged using the ChemiDoc Imaging System (Bio-Rad). The
speci�c antibodies used in this study are listed in Supplementary Table 4.

Tumor cell biology experiments

For cell proliferation assay, cells were seeded in 96-well plates (1 × 103 cells per well for PC3, 3 × 103 cells
per well for 22Rv1 in 100 μl medium). Cell viability and proliferation were measured using CCK 8 Kit
(#MA0218, MeilunBio) or MTT (#SY316, Beyotime Biotechnology) kits. Absorbance readings at 450 nm
(CCK-8) or 490 nm (MTT) were taken at speci�c time points. Data, obtained from at least triplicate wells,
were analyzed using two-tailed Student’s T-test or two-way ANOVA. 

For colony formation assay, cells (1 × 103 for PC3, 4 × 103 for 22Rv1) were seeded in 6-well or 12-well
plates. After two weeks, colonies were �xed in 4% paraformaldehyde and stained with crystal violet
(#A600331-0100, Sangon Biotech). 

For cell migration assay, cells were trypsinized, resuspended in serum-free medium, and 200 μl were
placed into 8 μm transwell inserts (#353097, BD). Lower chambers were �lled with 600 μl of normal
growth medium and cells were incubated for 36 hours. Post-incubation, cells were �xed with 4%
formaldehyde and stained with crystal violet.

For cell invasion assay, the transwell inserts were coated with 100 μl Matrigel (#40183ES10, Yeasen)
diluted in serum-free medium. Invasive cells on the bottom surface of the �lters were counted in �ve
microscopic �elds per membrane. Both the migration and invasion assays were statistically analyzed
using two-tailed Student's T-test or two-way ANOVA, with each assay performed in three replicates.

In vivo nude mice subcutaneous xenograft model

Male nude mice from Gempharmatech Company, China, were randomly divided into different groups, with
six mice in each group. Control shRNA, NOL10 shRNA or USF1 shRNA stable PC3 cells were harvested,
trypsinized, and washed with PBS. Each mouse received a subcutaneous injection of 5 x 106 PC3 cells in
50 μl PBS mixed with 50 μL Matrigel (#40183ES10, Yeasen) into the right dorsum. Tumor sizes were
measured weekly using a vernier caliper, and volumes calculated using the formula: V = 0.5 x (Length x
Width2). After four weeks, mice were sacri�ced, and subcutaneous tumors were removed for further
analysis.

Immunohistochemistry (IHC) 

Subcutaneous tumor tissues from each group of mice were collected and �xed in 4% paraformaldehyde,
dehydrated, and embedded in para�n. Para�n sections (5 μm thickness) were depara�nized,
rehydrated, and stained with haematoxylin and eosin (H&E). Sections underwent hydrogen peroxide
treatment, antigen retrieval, and blocking. Overnight incubation with primary antibodies (NOL10, E-
cadherin, Vimentin, Ki67 or USF1) at 4 ℃ was followed by application of biotinylated secondary
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antibodies and streptavidin conjugated HRP. Detection was developed using DAB substrate solution.
Details of the antibodies used are provided in Supplementary Table 4.

RNA-seq and differential expression genes (DEG) analysis

PC3 cells were transfected with either siRNA targeting NOL10 or a negative control siRNA, incubated for
48 hours under standard cell culture conditions, with two biological replicates. Total RNA was extracted
using Trizol reagent (#15596018, Thermo Fisher Scienti�c). RNA-seq libraries were prepared using the
Stranded mRNA-seq Lib Prep Module (RK20349, Abclonal). The quality of libraries was assessed using
LabChip Touch, and sequencing was conducted at Annoroad Company with Illumina sequencing
platforms. 

Raw sequence data were preprocessed using FastQC (v.0.11.9)
(www.bioinformatics.babraham.ac.uk/projects/fastqc/) for quality assessment. AdapterRemoval
(v.2.3.2)60 was used for quality trimming and adapter removal with default parameters. The processed
reads were aligned to the human genome (hg38) using STAR (v.2.7.9a)61 and the aligned BAM �les were
sorted using SAMtools (v.1.13)62. HTSeq (v.0.13.5)63 was employed to quantify aligned sequencing reads
against UCSC gene annotation with the parameters “-s reverse, -i gene_id”. DESeq2 (v.1.30.1)64 was used
for DEG analysis from the read count matrix. Genes with low expressions (<5 cumulative read count
across samples) were �ltered out. An adjusted P value < 0.05 was applied to generate the list of
differentially expressed genes. DEGs were ranked according to their fold change. Statistical tests were
applied to control or treatment to ensure high correlations between technical replicates. Data
normalization was performed using the variance Stabilizing Transformation (VST) method. A heatmap
presenting DEGs between siRNA control and siRNA NOL10 samples was generated using the R package
“pheatmap” (v.1.0.12). Detailed information about the software and algorithms used is provided in
Supplementary Table 5.

Gene set enrichment analysis (GSEA)

We applied GSEA (v.4.0.3) to interpret the RNA-seq results of NOL10 knockdown. A pre-ranked gene list
was compiled by calculating data following the formula sign (logFC) *-log (p value), and the data were
sorted in a descending order. The GSEA Preranked test was used to test the enrichment of phenotypic
genes in Hallmark gene sets (H collection). Parameters were set as follows: Enrichment statistic =
“weighted”, Max size (exclude larger sets) = 5000, number of permutations = 1000. All other parameters
remained as default. GSEA enrichment plots were generated using R packages “clusterPro�ler”
(v.3.14.3)65 and “enrichplot” (v.1.12.0). The software and algorithms were listed in Supplementary Table
5.

Allele speci�c unbiased proteomics screening

To determine the transcription factors (TFs) contributing to the allelic binding difference of rs4519489,
we adapted the PWAS (Proteome Wide Analysis of SNPs) mass spectrometry method46. This
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modi�cation enabled us to identify speci�c TFs that preferentially bind to different alleles of rs4519489.
Firstly, we synthesized a 29-base pair oligonucleotide containing either the T or A allele of rs4519489. The
oligonucleotide was labeled using the Biotin 3’ End DNA Labeling Kit (#89818, Thermo Fisher Scienti�c).
Secondly, the biotin-ds-oligos were incubated with freshly prepared nuclear extract from LNCaP cells
using NE-PER nuclear and cytoplasmic extraction reagents (#78833, Thermo Fisher Scienti�c). The
binding reactions (total 100 μl) of DNA and nuclear protein included 54 μl ultrapure water, 10 μl binding
buffer at 10x, 5 μl poly(dI•dC) of 1 μg/μl, 20 μl nuclear extract, 1 μl proteinase inhibitor, and 10 μl biotin-
ds-oligos were incubated at room temperature for 15 minutes. Thirdly, the Dynabeads M280 streptavidin
(#11205D, Thermo Fisher Scienti�c) were washed three times with washing buffer, and then incubated
with the biotin-ds-oligos-nuclear protein complex for 20 minutes at room temperature. The complex was
washed �ve times using a magnetic stand and resuspended in 50 µl of 50 µM ammonium bicarbonate
buffer. Finally, the allele-speci�c complexes (for alleles T and A of rs4519489) were analyzed using a LC-
MS/MS mass spectrometer (LTQ XL, Thermo Fisher Scienti�c). The sequences of oligonucleotides used
in this allele-speci�c unbiased proteomics screening are detailed in Supplementary Table 2.

Chromatin immunoprecipitation (ChIP) 

PC3, 22Rv1, LNCaP, and VCaP cells were cross-linked with 1% formaldehyde for 10 minutes and �xation
was stopped with 125 mM Glycine at room temperature for 5 minutes with gentle shaking. Cell pellets
were suspended in hypotonic lysis buffer (with protease inhibitor cocktail) for 45 minutes. Nuclei were
washed with cold PBS and re-suspended in SDS lysis buffer (�nal 0.5% SDS). Chromatins was sonicated
to ~400 bp for ChIP-qPCR and ChIP-AS-qPCR, and ~200 bp for ChIP-seq (Diagenode bioruptor or Covaris
M220). Dynabeads Protein G (#10004D, Thermo Fisher Scienti�c) were washed twice by blocking buffer,
and then incubate the beads with antibodies (6 μg for TF and 2 μg for histone modi�cation antibodies) at
4 °C overnight. The sonicated chromatin (300 μg for TF, and 20 μg for histone ChIP assay) was diluted in
IP buffer to �nal volume of 1.3 ml, then added to 40 μl of Dynabeads antibody complex. After incubation
overnight at 4 °C, the complex was washed six times with washing buffers. The DNA protein complex will
be separated from beads by extraction buffer. DNA-protein complexes were reverse cross-linked with
Proteinase K and NaCl at 65 ℃ overnight. The DNA was puri�ed using the MinElute PCR Puri�cation Kit
(#28006, Qiagen). 

For tissue ChIP assay, the samples were cut into small pieces by tiny scissors, �xed in 1.5% formaldehyde
for 10 minutes at room temperature, and then quenched with Glycine. The tissues were mechanically
extracted by applying 8 cycles using a tissue freezing grinder (Jingxin, China). To isolate nuclei, we
suspended the tissue pellet in hypotonic lysis buffer (with DTT and protease inhibitor cocktail) for 40
minutes at 4 ℃. The tissue mass was �ltered out with a sterile 100 μm �lter. Chromatin was sheared to
200-500 bp using a high power Bioruptor plus sonicator or Covaris. For each ChIP, the chromatin (30 μg
for a TF and 1.5 μg for a histone modi�cation ChIP assay) were incubated with antibodies (4 μg for TF
and 2 μg for histone) overnight at 4 ℃. The antibody chromatin complex were conjugated with washed
Protein G Dynabeads overnight at 4 ℃. The 100 ul eluted chromatin protein complex were reverse cross-
linked by adding 6 μl of 5M NaCl and 5 ul of Proteinase K and then incubating overnight at 65 ℃. The
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immunoprecipitated and input DNA was puri�ed using the MinElute PCR Puri�cation Kit (#28006,
Qiagen). The speci�c antibodies used for these experiments are listed in Supplementary Table 4.

ChIP-qPCR, ChIP-AS-qPCR, and ChIP-seq

For ChIP-qPCR, qPCR was performed at the SNP site in triplicates. The enrichment of TFs at target DNA
fragments was quanti�ed relative to IgG controls. Before ChIP-AS-qPCR, primers for allele-speci�c
ampli�cation of the rs4519489 region were designed, with a product length of 234 bp while rs4519489 in
the middle of the fragment. Genomic DNA from prostate cancer cell lines (PC3, DU145, 22Rv1, VCaP, and
LNCaP) was used as a template for PCR, with Sanger sequencing determining the genotypes at
rs4519489. The sequences of oligonucleotides used are listed in Supplementary Table 2. 

ChIP-seq libraries were prepared using the NEBNext Ultra II DNA Library Prep Kit (#E7103L, NEB)
according to the manufacturer’s instructions. Sequencing was performed at Annoroad company. The
histone modi�cation (H3K27ac, H3K4me1, and H3K4me3) ChIP-seq libraries were sequenced to yield 150
bp pair-end reads. FastQC (v.0.11.9) was for quality assessment of raw data. Adapters and short reads
were removed using TrimGalore (v.0.6.7, RRID: SCR_011847). The trimmed reads were mapped into the
human genome Hg38 using Bowtie2 (v.2.2.5)66 with the default parameters. Low-quality alignment reads
were excluded via SAMtools (v.1.13)62 via applying the parameters “-q 30 -F 3844.” Duplicate reads were
identi�ed and removed using the Picard toolkit (v.2.25.1, RRID: SCR_006525). MACS2 (v.2.1.4)67 was
employed for peak calling with default parameters. We utilized the Integrated Genome Viewer (IGV,
v.2.12.3) for peak visualization and analysis.

Expression quantitative trait loci (eQTL) analysis

To evaluate the associations between genotypes of rs4519489 and NOL10 expression levels, we
performed an eQTL analysis using the R package “Matrix eQTL” (v.2.2) in the CPGEA cohort comprised of
134 normal prostate samples. The eQTL analysis was applied by �tting a linear regression model
(“useModel = modelLINEAR”) between the expression and genotype data, setting up other parameters as
default (pvOutputThreshold = 0.05, errorCovariance = numeric ()”). The transcriptional pro�ling in CPGEA
cohort was assessed by RNA-Seq and the CPGEA cohort was genotyped using whole genome sequencing
(WGS) strategy.

EMT score and AR signaling score

The EMT score was based on a set of 76 genes68, from which the EMT signature was found correlated
with known EMT markers. The AR signaling score was estimated using a gene expression signature from
30 genes42, including MPHOSPH9, ADAM7, FOLH1, CD200, FKBP5, GLRA2, NDRG1, CAMKK2, MAN1A1,
MED28, ELL2, ACSL3, PMEPA1, GNMT, ABCC4, HERC3, PIP4K2B, KLK3, EAF2, CENPN, MAPRE2, NKX3-1,
KLK2, AR, TNK1, MAF, C1ORF116, TMPRSS2, TBC1D9B, and ZBTB10, that was chosen based on their
robust activation or inhibition upon androgen stimulation.
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NOL10 cell cycle signature (CCS) and cell cycle progression (CCP) score

The NOL10 cell cycle signature, composed of 32 genes as previously described9, was derived from the
four top enriched cell cycle related pathways identi�ed via GSEA. The genes from these enriched
pathways were then intersected with the 267 genes that were found to be downregulated in our RNA-seq
data upon NOL10 knockdown. The CCP score was calculated using a prede�ned set of 31 CCP genes69.

Multivariate analysis

We investigated the association of the prostate cancer patient biochemical recurrence and overall
survival with the NOL10 cell cycle signature and clinical variables, including age, tumor stage, Gleason
score, PSA level, seminal vesical status, surgical margin status, and extraprostatic extension status.
These factors are critical in understanding the progression and prognosis of prostate cancer. The Cox
proportional hazard model was applied to investigate the relation between patient prognosis and NOL10
cell cycle signature. Based on the NOL10 cell cycle signature, samples were strati�ed into two groups –
those with higher expression and those with lower expression. The criterion for strati�cation was the
mean value of the NOL10 cell cycle signature.

Univariate analysis

For the univariate analysis, we investigated the association of the prostate cancer patients’ biochemical
recurrence and metastasis with single or pairwise combinations of gene expression levels of NOL10 and
USF1. The z-score sum of gene expression was calculated and patients with prostate cancer were then
strati�ed into two groups – these with higher expression and these with lower expression. The median
value of these cumulative expression levels served as the threshold for strati�cation. Statistics were
summarized and presented in forest plots.

Gene expression correlation analysis

We performed the co-expression analysis to evaluate the expression correlation between NOL10, USF1,
NOL10 CCS, CCP, or EMT score from multiple independent cohorts with cancerous prostate tissues. Both
Pearson’s product-moment correlation and Spearman’s rank correlation rho methods were applied in all
linear expression correlation tests.

Receiver Operating Characteristic (ROC) analysis

To evaluate the predictive potential functions of the expressions of NOL10 and USF1 for 1- year, 3- year, 5-
year, 10- year survival of prostate cancer patients in multiple cohorts, ROC analyses were performed by
adding the expression data that were statistically associated with survival to a multivariable adjusted
logistic regression model70.

Survival analysis
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The Kaplan-Meier survival analysis was conducted to evaluate the impact of SNP genotype or expression
levels of NOL10, USF1, or NOL10 CCS on patient prognosis in multiple independent clinical prostate
cancer data sets. Patients were strati�ed based on the SNP genotype or the median value of gene
expression levels. For the investigation of the synergistic effect of NOL10 and USF1 on patient survival,
we included prostate cancer patients with consensus dual high or low expression levels of NOL10 and
USF1. Kaplan-Meier survival analysis was conducted using R package “Survival” (v.3.2.13) and assessed
by using the log-rank tests.

Statistical analysis and data visualization

Throughout the study, continuous variables are presented using the median and interquartile ranges.
Discrete variables are reported as the actual number or percentages. All statistical analyses were
performed using RStudio (v.1.2.5033) with R environment (v.3.6.3) or unless speci�ed. To determine the
expression of NOL10, USF1, or NOL10 CCS on human samples, we compared their expression among
normal prostate tissue, primary prostate tumor, and tumor metastasis in multiple prostate cancer clinical
cohorts. We evaluated the association of candidate gene expression with other clinicopathological
features such as clinical T stages, lymph node metastasis, Gleason score, prostate speci�c antigen (PSA)
level, seminal vesical, person neoplasm status, and BCR. The Mann Whitney U test was used for gene
expression in clinical cohorts with two groups, while the Kruskal Wallis H test was applied for cohorts
having three or more groups. For the experimental part, data were presented as means ± SD using the
GraphPad Prism 6 software. Differences between two groups were estimated using the two tailed
student’s T test. The variables in three or more groups were compared using the two-way ANOVA test.
Asterisks indicate the signi�cance levels (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). For
comparative analyses, P < 0.05 was considered statistically signi�cant. The software and algorithms
were listed in Supplementary Table 5.
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Figure 1

Analysis of allele-speci�c protein binding at rs4519489/2p25 locus and its association with NOL10
expression.

aIdenti�cation of signi�cant SNPs with allele-dependent protein binding differences using SNPs-seq.
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bMethodology for calculating the biased allelic binding (BAB) score.

c Enhanced binding preference of the A allele over the T allele of rs4519489 with ETH or DHT treatment,
as evidenced by SNPs-seq results.

dElectrophoresis mobility shift assay (EMSA) demonstrating higher binding a�nity of the A allele (lane 4)
compared to the T allele (lane 3) of rs4519489. Binding is displaced by a 200× consensus competitor
(lane 6) and diminished by a 200× mutant competitor (lane 8), but unaffected by a 200× random
competitor (lane 10).

eLuciferase reporter assay indicating increased enhancer activity (571 bp DNA segment, chr2:
10,598,681-10,599,251, Human GRCh38) with the A allele of rs4519489 compared to the T allele in 22Rv1
and LNCaP cells under ETH or DHT treatment (E, enhancer; P, promoter; Luc, luciferase).

fAssociation of the risk allele A at rs4519489 with elevated NOL10 expression in the CPGEA cohort.

gChIP-seq data revealing histone modi�cation enrichment (H3K4me1, H3K4me3, and H3K27ac) at the
4519489/2p25 locus in prostate cancer cell lines (LNCaP and VCaP) and prostate tissues (normal and
cancerous).

hInvestigation of sgRNA-targeted CRISPRi effects on NOL10 expression at the rs451948 region.

*P<0.05, **P<0.01, via two-tailed student’s T test.
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Figure 2

Correlation of NOL10 expression, rs4519489 genotype with prostate cancer risk and severity.

a-cElevated NOL10 expression in prostate adenocarcinoma compared to normal prostate glands across
CPGEA, TCGA, and GSE62872 cohorts.
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d-h Association of high NOL10 expression with various clinical features: increased tumor metastasis (d,
n=31), higher tumor stage (e, n=144), lymph node metastasis (f, n=409), higher Gleason score (g, n=497),
and biochemical recurrence (BCR) (h, n=122) in prostate cancer patients.

i Higher NOL10 levels correlating with reduced overall survival in the GSE35988 cohort. j Analysis of
NOL10 expression in prostate cancer versus paracancerous tissues using qRT-PCR and western blot, with
GAPDH as a loading control.

k-mProstate cancer patients with rs4519489 AA genotype in the TCGA cohort showing lower overall
survival, disease-free, and progression-free probability.

n-o Worse overall survival and progression-free probability in TCGA cohort patients with rs4519489 AA
genotype and higher NOL10 expression tumors.

*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001; analyzed using two-way ANOVA.
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Figure 3

Impact of NOL10 modulation on prostate cancer phenotypes in vivo and in vitro.

a-dKnockdown of NOL10 in PC3 cells leading to reduced cell proliferation, colony formation, migration,
and invasion.
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e-hOverexpression of NOL10 in 22Rv1 cells enhancing cell proliferation, colony formation, migration, and
invasion.

i-kXenograft experiments showing decreased tumor weight and volume in PC3 cells treated with NOL10-
speci�c shRNAs compared to control.

lHistological and immunohistochemical analysis of NOL10, E-cadherin, Vimentin, and Ki67 in tumor
tissues from nude mice.

m-qPositive correlation between NOL10 expression and EMT score, as well as AR signaling score, in
human prostate cancer tumors across multiple cohorts.

*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001; assessed using two-way ANOVA.
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Figure 4

Association of NOL10 gene signature with prostate cancer progression in clinical settings.

a GSEA analysis in the TCGA prostate cohort, ranking NOL10 expression against HALLMARK collection
pathways.



Page 37/43

b,c GSEA on RNA-seq data from NOL10-knockdown PC3 cells, highlighting increased E2F and G2M gene
set expression.

dHeatmap depicting changes in cell cycle-related gene expression from RNA-seq data following NOL10
siRNA knockdown.

eRT-qPCR validation con�rming results from (d) using NOL10 shRNA knockdown assay. f-n Correlation
between NOL10 cell cycle signature (CCS) score and various clinical parameters: cell cycle progression
(CCP) score, tumor metastasis, T stage, lymph-node metastasis, Gleason score, PSA level, seminal
vesical, person neoplasm status, or biochemical recurrence indicator (BRI) in different prostate cancer
cohorts.

o-qKaplan-Meier curves showing relationships between overall survival (OS), recurrence-free survival
(RFS), and metastasis-free survival (MFS) with the NOL10 cell cycle signature in prostate cancer patients;
analyzed using the log-rank test.

r Forest plots for meta-analysis of hazard ratio estimates of NOL10 CCS for biochemical recurrence-free
survival across multiple prostate cancer cohorts. Horizontal error bars represent 95% CIs with HR as the
center measure. P values calculated using a two-way Fixed-Effects Model.

sMultivariate analysis (MV) of BCR in prostate cancer patients, including NOL10 cell cycle signature as a
factor in the CPGEA cohort.

*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001; assessed using two-way ANOVA.
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Figure 5

Unbiased proteomics identi�cation of USF1 as interacting transcription factor with the rs4519489
enhancer region.

aOutline of the proteomics screening method to identify transcription factors interacting rs4519489
region.
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bEnhanced Element Locater (EEL) analysis showing matching scores between the rs4519489 A or T
allele and motifs of potential interacting transcription factors.

cChIP-qPCR validation con�rming the binding of transcription factor (USF1, TBX3, or TFAP4) at the
rs4519489 region in VCaP cells treated with ETH or DHT.

dChIP-qPCR analysis con�rming USF1 binding at the rs4519489 region across PC3, VCaP, 22Rv1, and
LNCaP cell lines.

e ChIP allele-speci�c qPCR (ChIP-AS-qPCR) demonstrating allele-speci�c binding of USF1 at rs4519489 in
22Rv1 cells.

fChIP-qPCR results indicating USF1 binding at rs4519489 in both normal prostate glands and tumor
tissues.

g-hRT-qPCR and western blot analyses showing decreased NOL10 expression following USF1 knockdown
in PC3 cells.
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Figure 6

Correlation of USF1 with NOL10 expression and their combined effect on prostate cancer progression.

a-dCorrelation of mRNA expression between NOL10 and USF1 in prostate cancer patients across various
cohorts.
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e-gAssociation of higher USF1 expression with lymph node-positive status, advanced tumor stage, and
reduced progression-free survival in prostate cancer.

hRT-qPCR analysis of USF1 expression in eight prostate cancer versus paracancerous tissue pairs, with
GAPDH as a loading control.

i-lInhibition of prostate cancer cell proliferation, colony formation, migration, and invasion in PC3 cells
following USF1 knockdown.

m-oChanges in tumor weight and volume in xenograft models using PC3 cells treated with control or
USF1-speci�c shRNAs.

p-sComparison of tumor stage, lymph node metastasis, PSA levels, and biochemical recurrence (BCR)
between groups with low and high co-expression of NOL10 and USF1 in CPGEA and TCGA cohorts.

tCombined impact of NOL10 and USF1 on BCR in CPGEA patients. HR: hazard ratio, CI: con�dence
interval, P: p value.

u-vReceiver Operating Characteristic (ROC) curves predicting survival in prostate cancer patients,
illustrating the combined effect of NOL10 and USF1 in CPGEA and TCGA cohorts.
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Figure 7

Joint in�uence of NOL10 and USF1 on prostate cancer progression in clinical settings.

a-gCorrelation of combined NOL10 and USF1 expression with overall survival (OS), biochemical-
recurrence-free survival (BFS), or metastasis-free survival (MFS) in prostate cancer patients across
various cohorts. Hi, higher; Lo, lower.
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hSchematic model illustrating how the 2p25 locus interaction with USF1 regulates NOL10, thereby driving
prostate cancer cell growth and increasing tumor severity.

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

SupplementaryTableS16.xlsx

DongetalFigS1S10.pdf

SourcedatatoFig17.zip

SourcedatatoFigS1S10.zip

SupplementaryDataest1.xlsx

SupplementaryDataest2.xlsx

https://assets.researchsquare.com/files/rs-3943095/v1/798a67483ee81557721a3ec9.xlsx
https://assets.researchsquare.com/files/rs-3943095/v1/ba425669b0bb90e19b1c2da5.pdf
https://assets.researchsquare.com/files/rs-3943095/v1/abca249bf2e70fe38da84c4e.zip
https://assets.researchsquare.com/files/rs-3943095/v1/0cf831307d2ebf4e0cefb735.zip
https://assets.researchsquare.com/files/rs-3943095/v1/aaea51b65058b290bdac1b12.xlsx
https://assets.researchsquare.com/files/rs-3943095/v1/b5244f8c280f20eb82325708.xlsx

