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SUMMARY
Cancer progression is a complex process involving interactions that unfold across molecular, cellular, and
tissue scales. These multiscale interactions have been difficult to measure and to simulate. Here, we in-
tegrated CODEX multiplexed tissue imaging with multiscale modeling software to model key action points
that influence the outcome of T cell therapies with cancer. The initial phenotype of therapeutic T cells in-
fluences the ability of T cells to convert tumor cells to an inflammatory, anti-proliferative phenotype. This
T cell phenotype could be preserved by structural reprogramming to facilitate continual tumor phenotype
conversion and killing. One takeaway is that controlling the rate of cancer phenotype conversion is critical
for control of tumor growth. The results suggest new design criteria and patient selection metrics for
T cell therapies, call for a rethinking of T cell therapeutic implementation, and provide a foundation
for synergistically integrating multiplexed imaging data with multiscale modeling of the cancer-immune
interface. A record of this paper’s transparent peer review process is included in the supplemental
information.
INTRODUCTION

Cancer is a complex system of interactions that unfold across

molecular, cellular, and tissue scales (Figure 1A). Adoptive

T cell immunotherapy—in which patients are given T cells spe-

cific for cancer—causes a systems-level perturbation to cancer

and has shown decisive clinical results in certain types of cancer

but limited efficacy in solid tumors.1–9 Indeed, much still needs to

be learned about themanners by which infused cellular products

cause effective therapeutic results. For instance, it is well under-

stood that T cell phenotype matters, but how does cancer cell

phenotype influence T cell therapy efficacy? Can infused

T cells transform cancer phenotype, and is this related to T cell

phenotype at the time of therapeutic delivery? Are there addi-

tional mechanisms for T cell phenotype maintenance related to

their environment? How does the phenotype of the T cell product

affect restructuring of the tumor tissue?
322 Cell Systems 15, 322–338, April 17, 2024 ª 2024 The Author(s).
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Such questions remain unanswered given the difficulty of

interrogating the native cancer-immune state that provides suf-

ficiently reflective biological measurements that would allow re-

searchers to build models to simultaneously capture the multiple

scales (molecular, cellular, and tissue) of cancer. Single-cell

measurement technologies have allowed characterization of

molecular changes in intracellular processes but do not reveal

the spatial features of intercellular interactions in cancer.10,11

On the other hand, traditional histologic approaches can capture

spatial features of cancer but is limited to only a few molecular

markers at once—restricting the ability to co-define cell types

or cell phenotypes in situ.12–14 Computational modeling has

been largely restricted to a single biological scale for either

description or source of input data, which limits the ability of

modeling to accurately predict interactions across multiple

scales. Consequently, methods are needed that can provide

data that both deconstruct cancer’s interaction networks at
Published by Elsevier Inc.
eativecommons.org/licenses/by/4.0/).
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Figure 1. Cancer is a system of network interactions, and its analysis requiresmethods that can deconstruct and reconstruct the complexity

at multiple scales

(A) At the tissue scale, multicellular neighborhoods form to make larger tissue structures and organs. At the cellular scale, cells engage with each other through

intermolecular interactions, and intracellular interactions mediate cellular function.

(B) CODEX imaging enables multiplexedmolecular measurements of 50 ormore proteins that can be quantified at a single-cell level. Thesemolecular profiles can

be used to define both cell types and states. Using the spatial features of the data, multicellular structures can be identified based on conserved composition.

Finally, network interactions across these scales can be interpreted to fully ‘‘deconstruct’’ the complexity of a tissue.

(C) Multiscale modeling enables ‘‘reconstruction’’ of complex biology across scales. Models are defined by molecular rules for cell agents that facilitate in-

teractions. These interactions happen within a spatial microenvironment and result in emergent biological behavior. Models can guide hypothesis generation.
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multiple scales and allow accurate modeling and reconstruction

of such networks that in turn allow testing predictions or hypoth-

eses to be made.

Multiplexed imaging is a recently developed technology that

enables deconstructing the complexity of tissues from the top-

down with spatial features preserved (Figure 1B).15 The ability

to probe more than 50 markers simultaneously using the CO-

Detection by indEXing (CODEX) multiplexed imaging platform
makes it possible to identify molecules, cell states, cell types,

and network interactions in space.16,17 The concurrent develop-

ment of computational systems biology approaches has facili-

tated quantifying and identifying key network interactions from

this data such as multicellular neighborhoods.18

Multiscale modeling is a complementary approach for dis-

covering critical interactions, by reconstructing the complexity

of tissues from the bottom-up with computational simulations
Cell Systems 15, 322–338, April 17, 2024 323
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(Figure 1C).19–24 Vivarium is a recently introduced software tool

that simplifies multiscale modeling, making it possible to con-

nect modules of diverse mechanistic models into integrative

simulations that cover multiple spatial and temporal scales.25

This enables leveraging extensive prior knowledge about rele-

vant biological mechanisms that were measured separately, as

demonstrated previously with the construction of spatial bacte-

ria colony models.26

We leveraged both CODEXmultiplexed imaging and the Vivar-

iummultiscale modeling software to understand the interactions

of T cell therapies with cancer at multiple scales. To date, most

studies have employed either top-down (deconstructing the

data through analysis)27,28 or bottom-up (reconstructing the

data with mechanistic models)29,30 approaches to the study of

cancer. However, there is synergy in employing both approaches

simultaneously to drive discovery of a more accurate tissue rep-

resentation. As demonstrated here, multiscale modeling can be

used to identify key points of the system for perturbation.

This marriage of multiscale modeling and multiplexed imaging

share key data-driven features across scale, particularly the

spatial positioning of distinct cells andmolecules. Consequently,

information from multiplexed imaging feeds multiscale agent-

based models by providing more accurate parameter values,

initial states (e.g., cell types and positions), and update rules.

Multiplexed imaging data also represent a singular snapshot

captured from valuable experimental or patient samples. Contin-

uous monitoring at the individual cell level with similar detail is

currently unfeasible. However, multiscale modeling presents an

opportunity to augment our data, enabling the exploration of dy-

namic behaviors and the conduct of hypothetical experiments.

For example, starting with a biopsy or tissue section, we can

examine how different therapeutic approaches will play out.

By combining multiplexed imaging and multiscale modeling,

we demonstrated that both tumor and T cell phenotype are

key determinants of T cell therapeutic efficacy. T cell phenotype

control has been a main focus to promote T cell longevity for

killing cancer, with most approaches centering on intracellular

molecular perturbation of T cells.31,32 Much less attention has

been given to tumor phenotype. Here, we observed that the

conversion of tumor phenotype was a critical determinant in

the control of cancer growth. Tumor phenotype conversion

was dependent on a CD8+ T cell phenotype with ability to divide

rapidly (memory-like) and secrete IFNg (effector-like), suggest-

ing this as a design criterion/goal for T cell therapies as well as

a matching patient selection metric. The results suggest that

integrating a multiscale modeling approach with multiplexed im-

aging data can provide a roadmap toward such a goal and

establish it as a system for extending the dynamics of multi-

plexed imaging data.

RESULTS

Changing tumor phenotype to an inflammatory state
enhances T cell recognition and killing
Cell therapies have emerged as a transformative therapeutic

modality, with T cell therapies resulting in impressive clinical

outcomes.1–3,33 T cells achieve anti-tumor killing via direct

recognition of tumor antigen presented in the context of major

histocompatibility complex class I (MHC-I) through its cognate
324 Cell Systems 15, 322–338, April 17, 2024
T cell receptor (TCR). Upon recognition, they secrete a number

of effector molecules including cytotoxic granules that cause

death in the target cell locally. Consequently, T cells offer an

attractive approach to tumor therapy because of their antigen-

specificity, proliferation, and long-termmemory that enables du-

rable responses.

However, the effectiveness of T cell therapies has primarily

been observed in hematologic malignancies with genetically

modified chimeric antigen-receptor (CAR) T cells,4 which consti-

tute a minor fraction of cancer-related mortality (only 5% of can-

cer deaths34). Furthermore, the broader implementation of T cell

therapies has been hindered by systemic toxicities that limit their

applicability.35 Ongoing endeavors are focused on optimizing

T cell functionality through the modulation of T cell pheno-

type,27,36–38 designed to enhance capacity for self-renewal or

killing.31,32,39–42

In parallel, there have been a number of immunotherapies

developed to unleash endogenous, antigen-specific T cells

within tumors.43 For example, some checkpoint blockade thera-

pies block T cell inhibition with antibodies targeting inhibitory

signaling molecule programmed cell death protein 1 (PD-1)

found on T cells. Alternatively, therapeutic antibodies have

been made to block PD-1’s cognate receptor of programmed

death-ligand 1 (PD-L1), which tumor cells often express.44

Consequently, we hypothesized that the tumor cell phenotype

could be just as crucial in shaping T cell responseswithin a tumor

as the phenotype of T cells themselves.

To understand the influence of tumor cell phenotype on T cell

therapeutic efficacy, we evaluated how differences in tumor

phenotype influenced killing by T cells in vitro. We incubated

B16-F10 mouse melanoma cells with IFNg overnight to induce

intracellular signaling, which is known to be critical to the func-

tion and phenotype of cancer cells.45–48 As shown by CyTOF

analysis, there was a phenotype change in about half of the tu-

mor cells—characterized by upregulation of both anti-inflamma-

tory (PDL1) and inflammatory (H2Db) surface markers in the

group treated with IFNg (Figure 2A).

We hypothesized that a drastic change in tumor cell pheno-

type would be accompanied by a change in metabolism. Conse-

quently, we compared the tumor cells by staining with a CyTOF

panel focused on cellular metabolism (Table S2). Notably, we

observed that for IFNg-treated tumor, there is an increase in cells

that were quiescent or in the G0 phase of the cell cycle (negative

for IdU and pRb (S807 S811)) (Figure 2B). These reductions in

cellular proliferation were enriched for cells that expressed

high levels of MHC-I (H2Kb) (Figure S1A), and MHC-I (H2Kb)-

positive cells that entered the cell cycle had a lower mitotic index

than tumor cells that do not express high levels of MHC-I (Fig-

ure S1B). Furthermore, cells treated with IFNg also exhibited

lower levels of glucose-6-phosphate dehydrogenase (G6PD)

enzyme (Figure S1C). This result suggests a reduction in the

pentose phosphate pathway, indicating both an impaired cellular

antioxidant, DNA synthesis, and cell division processes. Overall,

these data suggest that the IFNg not only causes inflammatory

and anti-inflammatory markers like PD-L1 and MHC-I but also

substantial metabolic changes that inhibit proliferation of the tu-

mor cells.

The IFNg-treated tumor cells express both anti-inflammatory

and inflammatory molecules, but it was unclear whether this



Figure 2. Changing tumor phenotype to an inflammatory state enhances T cell recognition and killing

(A) PD-L1 and H2Db per cell levels as measured by CyTOF of B16-F10 tumor cells after being incubated with IFNg or no IFNg for 18 h.

(B) CyTOF staining of B16F10 tumor cells cultured either with or without the presence of IFNgmeasuring the IdU and pRb S807–S811 and gate indicating double-

negative populations in G0 phase of cell cycle.

(C) Percent killing of cognate tumor cells over time by expanded therapeutic T cells pre-incubated with IFNg or not. Tumor and T cells were incubated at a 1:1 ratio

(mean of n = 3 replicates with error bars showing SEM).

(D) Multiscale agent-based model of the tumor microenvironment used to understand critical components governing efficacy of adoptive T cell therapies at

multiple levels of scale.

(E) Evaluation of per cell levels of effector molecules, granzymeB and IFNg, of restimulated therapeutic PMEL CD8+ T cells after 10 days of activation.

(F) Snapshots of agent-based modeling results showing results from a simulation that was initialized to mirror in vitro killing by expanded therapeutic T cells pre-

incubated with IFNg or not.

(G) Cytotoxicity levels frommultiscale agent-basedmodeling of initializing simulationswith tumors that had similar phenotype to input tumor cells in (B), indicating

being treated with or without IFNg (mean of n = 5 replicates with shading showing SEM).
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phenotype would inhibit T cell killing or promote more efficient

killing. We performed a dynamic in vitro killing assay with a 1:1

ratio of cognate, antigen-specific (PMEL), activated CD8+ T cells

and B16-F10 tumor cells or IFNg-pretreated B16-F10 tumor

cells. IFNg-treated tumors were killed much more effectively

(50% vs. 7% at 13 h) (Figures 2C and S1D).

To formulate a mechanistic explanation why this tumor pheno-

type conversion led to such enhanced killing, we created amulti-

scale agent-based model using Vivarium. The ability to create

agents at multiple scales (e.g., molecular and cellular) governed

by defined biological rules within a spatial environment can be

used to test multiple hypotheses and detect critical inflection

points in network structures and dynamics. Figure 2D illustrates

how multiple biological scales of cell-state interactions are mod-

eled with Vivarium with a simplified wiring diagram (left panel).

We created the model to be focused on interactions between

two subsets of therapeutic T cells and the two subphenotypes of

cancer cells. We modeled fundamental immune-tumor interac-

tions in T cell therapy, for instance (1) PD-1+ T cells interaction

with PD-L1 on the surface of PD-L1+ MHC-I+ tumor cells; (2)

PD-1� T cells/PD1+ T cells recognition of tumor cells through in-

teractions of the TCR with MHC-I on tumor cells wherein PD-1�

T cells can be converted to PD-1+ T cells through repeated stim-

ulation of their TCR; (3) CD8+ T cells’ release of IFNg, which then

converts tumor cells to PD-L1+MHC-I+ tumor cells; and (4) CD8+

T cells’ release of cytotoxic granules that enable localized tumor

killing (Figure 2D, right panel).

To create this model required encoding prior knowledge and

lab-derived parameter values to create the rules governing indi-

vidual cancer cells and T cells (see Table S1; Figures S2 and S3).

These parameters include data sourced from both deep molec-

ular and time-resolved dynamic interactions of T cells and tu-

mors. For example, in our model, T cell migration reflects

observed physiological changes, with distinct velocities based

on biological input within the model, differing for PD-1� and

PD-1+ T cells and whether T cells are engaging with tumor cells.

Specifically, T cell motility is decreased upon encountering

MHC-I+ antigen-presenting tumor cells. These modeled behav-

iors are informed by empirical in vivo imaging, utilizing tech-

niques such as intravital and 2-photon microscopy to track

T cell dynamics within tumors.45,49 Such empirical grounding

of the model parameters ensures its simulation accurately cap-

tures the biological activity of T cells in the tumor microenvi-

ronment. We additionally encoded intracellular and intercellular

interactions in Vivarium and tuned the parameters by comparing

process performance with expected behavior standards. Vivar-

ium also enables environmental interaction such as migration

and diffusion of molecules. We provide much more extensive

documentation regarding model development, rationale, and

biological background within supplemental information accom-

panying the manuscript. Also, Jupyter notebooks explaining

the development and rationale behind the model are provided

on the project’s GitHub repository, where example notebooks

ran different permutations of the model for testing. A docu-

mented code base also describes the rules and parameters of

the model and can be found in the STAR Methods.

We then evaluated whether our in silicomodel would show the

expected higher T-cell-killing efficacy of an IFNg-induced tumor

phenotype. To accurately initialize our model, we measured
326 Cell Systems 15, 322–338, April 17, 2024
in vitro levels of PD-1, effector molecules involving killing (gran-

zyme B, perforin), and IFNg expression both on a single-cell level

and quantitatively over time from restimulated PMEL CD8+

T cells used for the in vitro killing assay (Figures 2E, S4A, and

S4B). We used these values, in addition to in-vitro-measured

PD-L1 and MHC-I expression by tumor cells (Figure 2A) and

changes in cellular metabolism (Figure 2B), as inputs to initialize

both T cells and tumor cells in the model and ran modeling sim-

ulations that mimicked our in vitro killing assay setup.

To observe cellular behavior from the T cell-killing simulation

we plotted ‘‘snapshots’’ as output for the IFNg-treated tumor

(Figure 2F, time of each snapshot shown above starting with

the initial state a 0–13.5 h). This figure thus contains rich informa-

tion across spatial, time, agent, and molecular dimensions,

where T cell migration, tumor proliferation, tumor phenotype

change, secretion of IFNg, and tumor killing can be observed

over the course of 13.5 h (Figure 2F, larger circles indicate tumor

cells, smaller circles indicate T cells, color represents the pheno-

type of a given cell type, and the red background color repre-

sents the local concentration of IFNg). For instance, zooming in

on the 5.8 h snapshot, there is a PD-1+ T cell (green) interacting

with a PD-L1+ tumor cell (light blue) and several other tumor cells

(upper left of zoomed figure) with no T cells next to them. In the

next snapshot (7.7 h), this tumor cell has been killed, and other

tumor cells have not moved or been killed, while the T cells

have all migrated. This zoomed-in area (5.8 h) also has a concen-

tration of soluble IFNg around 18 ng/mL with some variation in

the grid squares. IFNg has increased with the number of T cell

and tumor cell interactions from a starting concentration of 0 at

snapshot 0 h and decreases by the next snapshot (7.7 h) due

to some T cells beginning to downregulate TCR and tumor up-

take of soluble IFNg. This led to a majority of the tumor cells

changing phenotype, as can be noticed from 11.6 h to 13.5 h

window (salmon color to light blue color).

In this simulation, we quantified cytotoxicity to enable a com-

parisonwith our in vitro data. Cytotoxicity was quantified by eval-

uating the number of cell deaths and normalizing the results

against a simulation lacking T cells. In addition to using lab-

derived molecular parameters as input, we initialized the simula-

tion with identical cellular parameters used within the in vitro

experiment, such as the same effector-to-target ratio, percent-

age of T cell phenotypes, and duration in culture. Quantification

of killing by cytotoxicity indicated an important role of tumor

phenotype on T cell killing even at early time points (Figure 2G).

Moreover, when tumor cells were pretreated with IFN-g, we

observed a remarkable increase in cytotoxicity, reaching nearly

60% by 12 h compared with untreated tumor cells incubated

with an equivalent number and type of T cells. This finding mir-

rors the observed increase in our in vitro experiment’s cytotox-

icity (Figure 2C). Consequently, our simulation results not only

replicated the kinetics and magnitude of our in vitro killing data

but also reinforced the overall conclusion. This alignment vali-

dates both our model setup and molecular parameters with dy-

namic data.

Thus, starting with a population of tumor cells that have a PD-

L1+ MHC-I+ phenotype has a large impact, potentially due to

increased levels of interactions between tumor cells expressing

higher levels of MHC-I and T cells. In summary, with identical

cognate T cell inputs but different cancer cell phenotype ratio
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inputs, as observed in silico and in vitro data demonstrated that

conversion of tumor phenotype to an inflammatory state en-

hances the ability of T cells to kill tumor cells, resulting in fewer

total cancer cells and an inflammatory microenvironment condu-

cive to T cell killing.

Initial phenotype of the input therapeutic T cells drives
conversion of tumor cells to an inflammatory phenotype
Controlling T cell phenotype during ex vivo expansion prior to

therapeutic transfer is expected to be critical, especially since

cells are in foreign environments for extended periods of

time.37,50–52 Therapeutic T cell phenotype is known to cause dra-

matic differences in anti-tumor efficacy, especially from the

perspective of T cell persistence and effector molecule expres-

sion.31,32,39–42 Broadly, memory T cells are expected to persist

longer and give rise to more daughter cells, whereas effector

cells are expected to be shorter-lived and secrete effector mol-

ecules like perforin.53,54 However, because T cells are usually

isolated from subjects or dissociated from cancer tissues to be

measured, the manners by which their phenotype relates to tu-

mor phenotype, at the beginning and end of therapy, remain un-

known. Indeed, clinical challenges and outstanding questions in

targeting solid cancers are spatially related: e.g., T cell infiltra-

tion, local tumor antigen expression, and spatial co-enrichment

with stimulating or inhibiting immune cells.5–9,55–58 Thus, eluci-

dating how these spatial relationships and multicellular interac-

tions change based on therapeutic T cell features, particularly

cytokine and effector molecule secretion remains understudied.

One approach shown to generate T cells with these distinct

phenotypes, is via inhibition of acetyl-CoA production27 by incu-

bating CD8+ T cells with 2-hydroxycitrate (2HC) during expan-

sion (Figure 3A). Inhibition of acetyl-CoA formation pushes

T cells toward memory stemness resulting in significantly better

tumor control than conventionally activated T cells.27 Indeed,

cells incubated in vitro with 2HC had lower expression of PD-

1+ than the untreated cells (25% vs. 75% PD-1+) (Figure 3B).

Additional characterization by CyTOF showed further subpheno-

types that separate further beyond simple PD-1 staining,59 but

twomain categories of memory and effector T cells were broadly

separated by PD-1 status (Figure S4C), and we used these as in-

puts to our model.

We compared how these two phenotypes influence the ability

of T cells to alter tumor cell phenotype under conditions found

within the tumor microenvironment. For our previous in vitro ex-

periments, the ratio of tumor to T cells was controlled; however,

there are several barriers to entry into tumors in vivo (e.g., extra-

cellular matrix, trafficking to non-tumor organ sites). Therefore,

to create an accurate starting ratio of tumor to T cells in the tumor

microenvironments, we transferred onemillion therapeutic CD8+

T cells into each mouse bearing an established B16-F10 tumor

that had been grown for 10 days. Harvesting tumors after adop-

tive T cell therapy showed that the CD8+ T cell frequency in these

tumors was approximately 1% of all cells (Figure 3C).

With biologically and therapeutically relevant initialization con-

ditions for both phenotype and T cell ratio, we ran simulations

with 1%CD8+ T cells (12 T cells to 1,200 tumor cells) to compare

our two differentially activated T cell phenotypes (with 2HC: 25%

PD-1+; without 2HC: 75% PD-1+) as separate therapies over a

period of 72 h. Snapshots from the simulations show distinct dy-
namics of IFNg secretion, CD8+ T cell proliferation, and tumor

killing as well as different spatial phenomena relating to tumor

phenotype (Figure 3D; Videos S1, S2, and S3). For example, tu-

mor cells proliferated in all groups from 0 to 31.5 h. T cells also

proliferated by 31.5 h, started to kill tumor cells, and converted

tumor cells to PD-L1+ phenotype in pockets (black arrows) for

both 25% and 75%PD-1+ T cell conditions. These T cell pockets

have higher local concentration of IFNg (red/brown) than other

areas of the tumor, and highest levels of IFNg in the 25% PD-

1+ T cell condition. By 73.3 h, the T cells killed enough tumor cells

to coalesce into common pockets and escape the tumor bed

(magnified area, bottom right of Figure 3D).

Quantification of the simulations showed that the starting con-

dition of 25% PD-1+ T cells inhibits tumor growth more effec-

tively (�1,000 tumor cells at 60 h) than the starting condition of

75%PD-1+ T cells (�3,000 tumor cells at 60 h) (Figure 3E). Under

conditions without T cells, the tumor cells grew exponentially

(�5,000 tumor cells at 60 h). These results were expected based

on previous in vivo experiments.27

To explain the difference in tumor control in silico, we looked at

the number of tumor cells killed in each of the conditions.

Notably, control of tumor growth was not explained by the num-

ber of T-cell-induced killing events in the two conditions (25%

PD-1+ T cells, �1,300 cell deaths at 60 h; 75% PD-1+ T cells,

�1,200 deaths at 60 h) (Figures 3F and S5A). Since tumor

phenotype made a large functional difference in our in vitro ex-

periments and earlier simulations, we investigated the subphe-

notypes of tumor cells in these simulations. In the 25% PD-1+

T cell condition, there was an earlier (at 18 h indicated by black

arrow) and stronger conversion of tumors from a proliferative

to non-proliferating inflammatory phenotype than in the 75%

PD-1+ T cell condition (Figure 3G).

The improved tumor control was linked to increased numbers

of PD-1� T cells in the tumor, though in both conditions T cells

became PD-1+ over the course of the simulation (Figures 3H

and S5B). This is not surprising, since it is known that repeated

stimulation of antigen-specific T cells leads to exhaustion which

includes phenotype changes resulting in lower cytokine secretion

and cell division.60–62 Similarly, since we mimic the design of our

in vivo adoptive T cell therapy experiments, all CD8+ T cells follow

the same course ex vivo. Briefly, we use transgenic PMEL mice,

wherein all CD8+ T cells are specifically reactive to the mela-

noma-associated antigen gp100, expressed by the B16-F10 tu-

mor cell line. We harvest the immune cells from PMEL mice and

activate these cells for 10 days in vitro with cognate antigen and

anti-CD3 activation, upon which the cells undergo considerable

proliferation. The stimulatory regime for these transgenic, anti-

gen-specific T cells, results in a relatively homogeneous activa-

tion state across the cell population, allowing for the initialization

of treatment groups (e.g., with or without 2HC) with accurate

phenotypic proportions that we previously characterized by

CyTOF (Figures 3A–3C). Similarly, we inject B16-F10 tumor cells

to recipient wild-type mice and allow them to grow for 9 days,

lymphodeplete on day 9 with sublethal irradiation (mirroring clin-

ical practice for adoptive therapy), and transfer T cells into recip-

ient mice at day 10. Since all T cells are antigen-specific and all

tumor cells express antigen, there is a high probability of interac-

tion between antigen-specific T cells and gp100-expressing tu-

mor cells within the tumor microenvironment. Consequently, we
Cell Systems 15, 322–338, April 17, 2024 327



Figure 3. The initial phenotype of transferred therapeutic T cells influences the ability of T cells to convert tumor cells to an inflammatory

phenotype

(A) Experimental layout for controlling T cell phenotype during ex vivo T cell expansion. Stimulating T cells in the presence of 2HC leads to a phenotypic shift,

particularly in PD-1 where lower PD-1+ cells are found in 2HC-treated condition as denoted by blue, where T cells stimulated in the absence of 2HC have higher

levels of PD-1 and are denoted by orange.

(B) Histogram of per cell levels of PD-1 expression as measured by CyTOF of T cells treated with metabolic inhibitor 2HC or without the inhibitor.

(C) Percent of CD8+ T cells within tumors post-treatment with therapeutically expanded T cells determined by flow cytometry that are positive for both CD45 and

CD8. CD45+ and CD8� cells (7.8%) represent non-CD8+ immune cells within the tumor.

(D) Snapshots of simulation initialized with in-vivo-relevant cell numbers, ratios, and T cell phenotypes for 25% and 75%PD-1+ T cell conditions compared with a

simulation condition with no T cells. All simulations were initialized with a total of 1,200 tumor cells and 12 T cells with varying ratios of respective cell phenotypes.

(E) Total number of tumor cells over the course of the simulation that was 3 biological days under each condition.

(F) Number of tumor cell deaths over the time course of the simulation.

(G) Number of tumor cells separated by phenotype over the course of the simulation.

(H) Number of T cells separated by phenotype over the course of the simulation. For (E)–(H), mean of n = 4 replicates with shading showing SEM.
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Figure 4. T cells induce tumor cell phenotype conversion in vivo
(A) Experimental layout for in vivo adoptive T cell therapy and CODEX multiplexed imaging of tumors at day 3 post-treatment.

(B–D) CODEXmultiplexed imaging results in single-cell data that are spatially resolved. Scatter plots for each treatment condition plotted for each cell in (B) x vs. y,

(C) CD45 vs. TCRb, and (D) gated T cells (red) in the x axis vs. y axis together with PD-L1+ MHC-I+ tumor cells (blue)—to see spatial distribution of T cells in the

tumor samples.

(E) Multicellular neighborhood analysis for each of the simulations at the day 3 endpoint reveals differential structures created by each of the responses, where

responses are characterized into 5 overall neighborhoods.

(F–H) Correlation plots between percent of cells resulting after 3 days of T cell therapy for both CODEX multiplexed imaging of in vivo experiments and in silico

simulations for (F) PD-L1+ tumor cells, (G) PD-L1� tumor cells, and (H) PD-1� CD8+ T cells (n = 4–5 per treatment group and per in vivo and in silico experiments;

error bars represent SEM).

(I) PD-1� CD8+ T cell percentages of total cells on day 3 from in vivo experiments as measured by CODEX multiplexed imaging (n = 4–5 per treatment group and

per in vivo and in silico experiments; error bars represent SEM).
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would expect a phenotype shift from the T cells that we trans-

ferred into the tumor. However, what was not expected was

that the phenotype of the T cells would influence the ability to

convert tumor phenotype and that this would play such a critical

role in controlling the tumor growth rate. Thus, greater tumor con-

trol from phenotype-switched T cells was due to greater ability to

inhibit tumor proliferation rather than differences in inhibition from

T cell direct killing.

T cells induce tumor cell phenotype conversion in vivo

Our attempts to reconstruct the complexity of the system in both

in vitro and in silicomodels suggested the critical importance of a

tumor phenotype transformation by T cells. To study this in vivo,

we used CODEXmultiplexed imaging to enable measurement of
tumor phenotype changes in a spatial context in a therapeuti-

cally relevant adoptive T cell model (Figure 4A).27,63,64 Specif-

ically, we transferred T cells that were treated or not with 2HC

into B16F10 established tumors (day 10) and harvested them

3 days after treatment (day 13) for CODEX multiplexed imaging.

Imaging was performed with a 42-antibody panel designed to

detect cancer phenotypic markers (e.g., PD-L1, H2Kb, H2Db,

and Ki67); immune cell-type-defining markers (e.g., CD3, CD4,

CD8, and F4/80); and functional markers (e.g., PD-1 and

CD27).59

Because we observed spatial restriction of the T cells that was

also associated with proximity to PD-L1+ MHC-I+ tumor cells

within our simulations (Figure 3D), we predicted we would see

the same proximal events in our in vivo data. To compare results
Cell Systems 15, 322–338, April 17, 2024 329
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between in vivo and simulations, we first examined the positions

of T cells within tumor sections, since CODEX generates single-

cell data that enables cell-type identification.65 Because of this,

we can visualize each individual cell in x and y coordinates (Fig-

ure 4B). Each individual cell contains the quantification of each

protein marker, so we used this to gate T cells and PD-L1+

MHC-I+ tumor cells (Figure 4C). An analysis of the locations of

T cells (TCRb+ CD45+, red) and PD-L1+ MHC-I+ tumor cells

(blue) in each tumor section revealed spatial restriction of the

T cells and co-localization with inflamed tumor cells in both

T cell conditions (Figure 4D), mirroring the Vivarium modeling

prediction.

To further investigate this phenomenon, we compared the

in vivo CODEX data and in silico modeling output by performing

multicellular neighborhood analysis on our simulation data since

both datasets preserve spatial features (Figure 4E).17 In the in sil-

ico data, there are neighborhoods representing borders of im-

mune attack on the tumor from both T-cell-treated groups,

with larger borders in tumors treated with 25% PD-1+ T cells

than 75% PD-1+ T cells and disorganized tumor neighborhoods

in tumors without T cell treatment (Figure 4E, compare middle

figure to rightmost). Here, the borders were enriched in both

T cells and PD-L1+ MHC-I+ tumor cells. These features of the

in silico models were consistent with major structural compo-

nents in the in vivo data,59 suggesting the important role of coor-

dination of the neighborhood interactions, structure, and func-

tion. We verified that tumor cells that expressed PD-L1+ and

MHC-I+ were also Ki67� and that tumor cells that were Ki67+

were PD-L1� and MHC-I� (Figure S6A). Moreover, co-localiza-

tion of transformed T cells and tumor cells supports the hypoth-

esis that T cells are responsible for tumor phenotype conversion,

which we observe both in vitro and in vivo.

We also compared the cell-type percentages in the CODEX

data with in silico percentages at day 3 to understand whether

relative phenotype conversion rates were similar. We found

good correlations of ending percentages for PD-L1+ tumor cells

(Figure 4F, R = 0.99), PD-L1� tumor cells (Figure 4G, R = 0.97),

and PD-1+ T cells (Figure 4H, R = 0.99). Similarly, we also tested

the relationship of the cell populations at day 1 from our simula-

tions compared with in vivo data from our CODEX imaging and

saw good correlation in cell-type frequencies (Figure S6B). How-

ever, this was not the case for PD-1� T cells where the number of

PD-1� T cells were much lower in the in silico model, especially

by day 3 post-treatment, than we observed in the CODEX multi-

plexed imaging data (Figures 3H and 4I). Because the death rate

for PD-1� T cells was lower than for the PD-1+ T cells in the in sil-

icomodel, this suggests that death does not account for the ratio

difference (Figures S6C and S6D). This result suggested that

there was a mechanism for T cell phenotype maintenance

missing from our model.

Spatial location of T cells impacts the ability to maintain
phenotype
We hypothesized that discrepancies between our model and

in vivo data provide an avenue to uncover biological mechanisms

of T cell phenotype preservation by combining CODEX data with

our multiscale model. Part of the reason we chose an agent-

based model design is because it complements the spatial and

compositional structure of CODEX multiplexed imaging. Since
330 Cell Systems 15, 322–338, April 17, 2024
we quantify protein expression at the single-cell level with spatial

coordinates that are linked to cell type, we can directly import our

CODEX multiplexed imaging data as initial states of our multi-

scale simulations (Figure 5A). This uniquely allows us to use

the model to interpret complex CODEX data, extend the dy-

namics of static multiplexed imaging data, and establish more

accurate initial conditions.

We were particularly interested to see if initializing our simula-

tions with spatial information obtained from in vivo data would

reveal the reason that the ratio of PD-1+ T cells to PD-1�

T cells observed in the in silico model was higher than in the

CODEX multiplexed imaging data (Figure 4I). We took a region

of �2,000 cells from CODEX images to initialize our model and

then simulated the changes in the tumor microenvironment

over 3 days. Tumor cell growth rates from each condition

matched expectations and previous simulations (Figures 5B

and S7A–S7C). Similarly, we observed an exhaustion of the

T cells in both T cell treatment conditions after about 50 h; how-

ever, only in the 75% PD-1+ T-cell-treated condition did all the

T cells become exhausted, whereas in the 25% PD-1+ T-cell-

treated condition a proportion of PD-1� T cells remained at

72 h (�250 PD-1� T cells) (Figures 5C and S7D). This contrasts

with the results of our previous simulation (Figure 3H), where

both T cell treatments led to complete phenotype conversion

to PD-1+ by the end of 3 days (Figure 5D).

Since T cells become exhausted through chronic TCR stimu-

lation, we hypothesized that a spatial relationship might be

responsible for phenotype preservation. The snapshots from

the simulations initialized with CODEX data revealed that in the

in silico 25% PD-1+ T cell condition there is a front of attacking

T cells on the periphery of the tumor and that the tumor cells

on the border with these T cells are inflamed (Figure 5E). This

can be seen by the increased IFNg concentration at the edge

of the periphery of the tumor (brown) and by zooming in on the

interface of T cells and tumor cells at 30.8 h (Figure 5E, blue

square). In contrast, the T cells in the in silico 75% PD-1+ T cell

condition initially attacked from the periphery but were soon sur-

rounded by proliferating cancer cells seen at 30.8 h and re-

mained so until 72 h (Figure 5E, orange square). This suggests

that the spatial location of T cells on the periphery of tumors

may be critical for T cell phenotype maintenance.

Conversion of tumor cell phenotype is more critical for
tumor control than T cell phenotype preservation
We hypothesized that since T cells were on the periphery of the

tumor, they could escape chronic stimulation and thus delay

exhaustion (Figure 6A). To test this, we initialized our simulations

with 25% PD-1+ T cells conditions (as in Figure 3), except that

T cells were located outside the tumor bed rather than inside.

Similar to our CODEX-initialized experiment (Figure 5), we

observed tumor phenotype changes on the periphery of the tu-

mor where tumor cells contacted T cells (Figure 6B, increase in

light blue PD-L1+ tumor cells). When the T cells were initialized

outside the tumor, we saw a dramatic increase in total numbers

of T cells compared with the numbers when T cells were initial-

ized on the inside of the tumor (Figure 6C). This increase resulted

from a delay in T cell exhaustion (Figures S8A and S8B).

Interestingly, despite the much higher numbers of T cells

located outside the tumor, in our simulations, the tumors with



Figure 5. Spatial location of T cells impacts the ability to maintain phenotype

(A) Left: CODEX multiplexed data are amenable to initialize multiscale-agent-based models because it has single-cell information of cell type, x and y positions,

and molecular protein expression. Middle: cell-type maps of CODEX images of tumor sections. Rectangles indicate subsets of 2,000 cells used to initialize the

model. Right: high-magnification images of the areas indicated by rectangles in the middle panels.

(B) Number of tumor cells in T-cell-treated and control groups as a function of simulation time (mean of n = 4 replicates with shading showing SEM).

(C) Number of PD-1+ and PD-1� T cells in each T-cell-treated group as a function of simulation time (mean of n = 4 replicates with shading showing SEM).

(D) Percent of PD-1+ and PD-1� T cells at the end of the 72-h simulation started either with initial conditions of 25% PD-1+ T cells (used for Figure 3H) or the

conditions based on CODEX data (used in C) (average of n = 4 simulations for both conditions).

(E) Snapshots of the tumor from agent-based modeling condition 25% PD-1+ T cell and 75% PD-1+ T cells from simulations initialized with CODEX data that

illustrate spatial restrictions of T cells and zoomed-in regions to indicate phenotype status of T cells over time.
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T cells initialized outside the tumor grew more quickly than tu-

mors with T cells initialized inside (�4,500 cells vs. �2,500 cells

at 75 h) (Figure 6D). Consequently, delay of T cell exhaustion

came at the cost of enhanced early tumor growth rates (Fig-

ure 6E), which even larger numbers of T cells were not able to

overcome in the long run. Thus, trading less tumor engagement

over time for an increased number of T cells in the future essen-

tially gives the tumor a head-start in proliferation enabling expo-

nential growth rates that extra T cells are not able to counteract

through slightly enhanced killing later (Figures 6F and S8C). We

confirmed this result by setting the 75% PD-1+ T cell condition

from Figure 5 to start in the center, preventing T cells from

becoming trapped (Figure S8D). Here, we also observe an in-

crease in the tumor growth rate for the center condition that

the T cells are able to escape the tumor microenvironment and

preserve phenotype but limit the earlier tumor conversion
(Figures S8E and S8F). Since resting preserves phenotype, but

does not enhance tumor outcome, a mechanism for enhanced

tumor control in metabolically treated T cells is missing from

our model.

Separate microenvironments for T cell proliferation are
key for T cell phenotype preservation
We speculated therefore that T cells could come from outside

the tumor enabling founder T cells to reside in supportive micro-

environments such as the lymph node (LN), while daughter cells

migrate into the tumor. We therefore extended our model by

adding another cell type of the dendritic cell to our model. Den-

dritic cells are critical antigen-presenting cells that take up anti-

gen and stimulate antigen-specific T cells in the LN. T cells then

divide and leave the LN for effector function in the target tissue.

We built our model system after these principles, leveraging the
Cell Systems 15, 322–338, April 17, 2024 331



Figure 6. Conversion of tumor cell phenotype is more critical for tumor control than T cell phenotype preservation

(A) Theoretical sketch of how T cells are able to escape the tumor microenvironment to promote long-term survival and ability to control the tumor.

(B) Snapshots of the tumor from agent-basedmodeling of a tumor treatedwith 25%PD-1+ T cells that were initialized outside the tumor such that they can escape

chronic exposure to tumor and limit exhaustion.

(C) Total number of T cells over time of simulation when T cells are initialized outside the tumor bed or inside the tumor.

(D) Total number of tumor cells over time of simulation when T cells are initialized outside the tumor bed or inside the tumor.

(E) Number of tumor cells separated by phenotype over the course of the simulation.

(F) Number of tumor cell deaths over the time course of the simulation.

For (C)–(F), mean of n = 4 replicates with shading showing SEM.
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same approach we took of literature and lab-derived parameters

(Figure 7A). In particular, we encode the ability for dendritic cells

to uptake tumor antigen from dying tumor cells within the LN,

become activated by apoptotic debris, and migrate to the LN.

We also add in our model that some of the transferred antigen-

specific T cells move to and stay in the tumor-draining LN. There,

they encounter dendritic cells and are activated by MHC-I+ with

tumor antigen expressed by these dendritic cells. After this acti-

vation, they proliferate before leaving the LN to the tumor

microenvironment.

We compared simulations with 25% PD-1+ T cell treatment

conditions initialized with and without the extra LN process

that incorporated dendritic cells. There were increased and sus-

tained number of T cells over 3 days of simulation time in the con-

ditions where dendritic cells were able to activate T cells in LN

(Figure 7B). This came from added numbers of PD-1� T cells

to the tumor from the LN (Figures S9A and S9B). This result

more closely matches our CODEX multiplexed imaging results

of tumors (Figure 4), where a subset of the T cells within the tu-

mor are found to be PD-1� even several days after adoptive

transfer. Particularly, this reduces the complete switch in pheno-
332 Cell Systems 15, 322–338, April 17, 2024
type from PD-1� to PD-1+ we observed in previous simulations

such as Figure 3H, further suggesting the importance of both

preserving T cell phenotype and also multiple waves of non-ex-

hausted T cells in control of tumor growth.

The sustained levels of T cells and percentages PD-1� T cells

within the tumor over long periods of time had a drastic impact

on the total number of tumor cells past 36 h of simulated time

(Figure 7C). Part of the reason is due to increased T cell killing

of tumor cells from conditions with dendritic cells (�1,000 vs.

700 tumor T cell-associated deaths) (Figures S9C and S9D).

However, this only accounts for a total difference in 300 tumor

cell deaths, whereas we observe a difference in�900 total tumor

cells by 72 h of simulated time (Figure 7C). Most of this difference

instead was due to the ability to sustain the conversion of a

greater proportion of tumors to the inflamed, non-proliferative

PD-L1+ phenotype (Figure 7D). Thus, emphasizing the impor-

tance of tumor phenotype conversion as a method of tumor

cell containment within the anti-tumor immune response.

While there is a sustained supply of T cells in the tumor micro-

environment following incorporation of the LN process (Fig-

ure 7B), there is a rapid phenotypic conversion for many T cells
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Figure 7. Lymph nodes are sustained sources of T cells in the tumor microenvironment based on dendritic cell antigen presentation

(A) Schematic of added components to the model. We add dendritic cells that start in the tumor microenvironment and take up tumor antigen from dying tumor

cells and are activated by tumor debris. Lymph nodes (LNs) migrate to the tumor-draining lLN (tdLN) where they can encounter tumor-specific T cells. Upon

engagement between MHC-I and TCR of the T cells, T cells proliferate within the LN and leave the LN to the tumor microenvironment.

(B–D) Comparing simulations with added dendritic cells and LN processes vs. simulations without LN and dendritic cells: (B) total number of T cells, (C) total

number of tumors, and (D) number of tumor cells separated by phenotype over the time course of the simulation. For (B)–(D), mean of n = 8 replicates with shading

showing SEM.

(legend continued on next page)
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around 48 h post-initialization (Figure S9A). Despite uniform

treatment and exposure to an identical number of stimulations

across all cells, the stark nature of this phenotypic shift appeared

to be influenced by the deterministic mechanisms of T cell acti-

vation and the fixed refractory periods in the model that we

initially established. Upon modifying these timers to stochastic

events, we noted a more gradual shift in T cell phenotype within

the 25% PD-1+ T-cell-treated condition (Figure 7D). This obser-

vation suggests a potential delay in the transition to PD-1+ T cells

within the tumor microenvironment. Nonetheless, a decline in

PD-1– T cell numbers commenced around the 50-h mark, due

to established biological mechanisms where repeated T cell

stimulations lead to exhaustion.60–62 Also, consistent with our

previous results, the 25% PD-1+ T cells exhibited sustained effi-

cacy in suppressing tumor growth (Figure S9E), due to their

enhanced capacity for early conversion of the tumor phenotype

(Figure S9F).

Based on our LN simulations, we hypothesized that we would

have greater levels of T cells or greater percentages of PD-1-

T cells within tumor-draining LNs of mice treated with 25%

PD-1+ T cells based on these results. To test this hypothesis,

we harvested LNs from mice with tumors treated with 75%

PD-1+ T cells, 25% PD-1+ T cells, or no T cells treated 3 days

before. We then created a tissue array of all these LNs and

imaged them simultaneously with CODEX multiplexed imaging

(Figure 7F). Comparing the median marker expression of PD-1

for CD8+ T cells found in the LN to the CD8+ T cells in the tumor

showed increased levels of PD-1 in the tumor (Figure 7G). This

agrees with our hypothesis that founder T cells reside in pro-

tected LN environments sending daughter cells to tumors. How-

ever, we did not observe drastic differences of PD-1 expression

between treatment conditions and did not explain the discrep-

ancy between treatments.

To see if the percentage of CD8+ T cells were different between

the two conditions, we segmented and clustered cell types in the

CODEX LN datasets (Figure 7H). This analysis showed that there

were no differences in cell-type percentageswithin the lymph no-

des of both treatments (Figure 7I). Since we did not observe dif-

ferences between conditions within the LN, perhaps this concept

of supportive microenvironments for T cells extends to the tumor

(Figure 7J). We propose that T cells actively build microenviron-

ments within the tumor to support T cell phenotype and function.

This led us to perform extensive studies evaluating the tumor

microenvironment composition surrounding T cells and indicates

immune cell supportive microenvironments provide critical sup-

port for productive T cell killing.59
(E) Comparison simulations of tumors treated with 25% PD-1+ T cells simulate

mechanism and showing total number of T cells separated by phenotype over sim

code on an experimental branch (probabilistic-refractory) of tumor T cell reposito

(F) Representative CODEX images of tdLNs from B16-F10 tumors from mice trea

cells, 75% PD-1+ T cells) and harvested 3 days following treatment. Scale bar, 2

(G) PD1median fluorescent signal across all CD8+ T cells within tdLNs or LNs or th

cells (n = 2:3 replicates with error bars showing SEM).

(H) Representative images of cell types mapped to LN tissues that correspond t

(I) Cell type percentages from CODEX multiplexed imaging data of the tdLN of m

therapy (n = 4 replicates with error bars showing SEM).

(J) Model of T cells supported by immune cells in a microenvironment within the

locally.
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DISCUSSION

We developed a scalable agent-based model of T cell therapy of

tumors to complement, leverage, and probe CODEXmultiplexed

imaging datasets of T-cell-treated tumors. Despite the richness

of multiplexed imaging data, current analytical techniques are

not sufficient to interpret the multidimensional data that are rep-

resented by multiple scales (molecule, cell, and tissue) spatially,

leaving untapped biology within existing data. By connecting to

Vivarium, we use biological data to initialize the model, making it

possible to connect modules of diverse mechanistic models into

integrative simulations that cover multiple spatial and temporal

scales.

Adding dynamics to project behavior from static multiplexed

imaging datasets, captured at a single time point, is critical.

While we were able to compare our model through collecting

multiple time points in a mouse model, most often this will not

be the case because the majority of collected multiplexed imag-

ing data involve invaluable human biopsies, surgical resections,

or donor tissue obtained at a single time point from both healthy

and diseased tissues.15,66 While multiplexed imaging offers in-

sights into cellular interactions across space, it lacks the ability

to reveal the temporal evolution of these interactions. This limita-

tion hinders our capacity to make predictions or conduct

hypothetical experiments with authentic patient data, which is

inherently heterogeneous. Establishing a framework for inte-

grating data and multiscale modeling here serves as a founda-

tional step. It provides a starting point to construct models that

deepmultiplexed imaging-based biological data, thus extending

our understanding of cellular dynamics of tissues. This approach

will enable us to comprehend how interactions unfold over time

and will offer valuable insights into identifying effective therapies

for specific patients.

Using this system, we specifically explored the importance of

tumor phenotype on T cell therapy efficacy by incorporating

molecular switches of cellular phenotype and function that led

to tissue-level phenomena in our data-informed multiscale

agent-based model. We then used findings from the simulations

to guide design of an in vivo experiment and choice of antibodies

for use in CODEX imaging to catalog cell types and transitions

we saw within our models. This synergistic back-and-forth of

model and data across biological scales revealed critical design

components of effective T cell therapies.

The results indicated that tumor phenotype considerably influ-

ences the ability of T cells to control tumor cell growth through

inhibiting proliferation and increasing killing. The importance
d with either a timer or a probabilistic T cell activation and refractory timing

ulation time (n = 5–8 replicates with shading showing SEM). This was done with

ry.

ted on day 10 with activated PMEL therapeutic T cells (of either 25% PD-1+ T

50 mm.

e tumors frommice treated with 25% PD-1+ T cells, 75%PD-1+ T cells, or no T

o figure G images.

ice treated with either 25% PD-1+ T cells or 75% PD-1+ T cells 3 days post

tumor for preservation of phenotype, proliferation, killing, and tumor inhibition



ll
OPEN ACCESSArticle
andmagnitude of a tumor phenotype changewas only clear after

analysis of the multiscale model and was not intuitive from the

multiplexed imaging data alone. Most recent work has focused

on controlling T cell phenotype for both the secretion of killing

molecules and self-preservation.31,32 We found that T cell

phenotype also impacts its ability to change tumor phenotype,

and a focus on converting tumor phenotype results in greater

control than minimizing T cell exhaustion. Based on our findings,

T cell therapies should be designed with a profile capable of

concurrently inhibiting tumor cell proliferation, enhancing the in-

flammatory state of tumor phenotype, initiating tumor killing, and

sustaining T cell longevity and efficacy. Various methods have

previously been employed to modify T cells to achieve each of

these objectives.27,52,67,68 However, what has been lacking is

the ability to comprehensively investigate how alterations in

T cell phenotype impact all these parameters simultaneously.

With a new goal, there will arise a plethora of new strategies to

modify T cells that arise to accomplish this objective, but an im-

mediate example next step could be to engineer T cells to

secrete cytokines and observe whether they can produce anti-

proliferative and inflammatory effects while also preserving

T cell longevity.

Comparing in silico results to CODEX multiplexed imaging re-

inforced the importance of T cell phenotype and influence on tu-

mor phenotype. Our simulations indicated agreement both in

terms of percentages of different cell types and phenotypes

and also in the organization of these cells with respect to each

other. For example, inflamed tumor cells were found proximal

to T cells within both simulation and CODEX imaging results.

CODEX data also indicated that T cells were able to change tu-

mor phenotype andminimize T cell exhaustion. Most methods of

analysis of T cell phenotype preservation are focused on molec-

ular mechanisms of control since most assays require dissocia-

tion of tumors or ex vivo manipulation of T cells.10,11 In contrast,

both multiscale modeling and multiplexed imaging preserve

spatial features of the data, and our spatial analysis of CODEX

and in silico experiments demonstrated that the spatial posi-

tioning of T cells influenced T cell phenotype. In the comparison

with CODEX data, this suggested that our model was missing a

mechanism for T cell phenotype preservation. This led us to add

dendritic cells and a connection to lymph nodeswithin our model

system, which suggested a sustained source for non-exhausted

T cells in the tumor microenvironment. This result indicates that

while it is important to design T cells that traffic to the tumor, it

may be just as important to also have a subset that will traffic

to tumor-draining lymph nodes to be a constant supply of

T cells over time or additive effects of continual additions of

T cells over time. However, we did not detect differences by

CODEX multiplexed imaging in either the phenotype or number

of T cells from within the tumor-draining lymph nodes of mice

treated with T cell therapies with different phenotypes.

This incongruence motivated parallel research on T cell the-

rapies, where we observed that therapeutic T cell phenotype

changes the structure and cellular composition of the tumor

microenvironment.59 We found in this other work that T cells

create distinct multicellular neighborhoods based on their

phenotype and molecular expression profiles. For example,

2HC-T-cell-treated tumors result in more productive T cell and

tumor neighborhoods, whereas T cells not treated with 2HC
secretemore anti-inflammatory cytokines and have T cell and tu-

mor areas also enriched with regulatory neighborhoods. Thus,

T cells should be engineered to be agents of structural change

of the tumor microenvironment in addition to transforming tumor

cell phenotype.

The modularity of the model will enable our group and others

to build from this starting point to investigate the effects of

various T-cell-based therapies in solid tumors. Integration of

models and measurements across biological scales with spatial

features preserved will enable decoding of the rules that govern

complex networks from biological and clinical samples. Overall,

we and others can leverage this model as a template for inte-

grating and using the growing number of spatial datasets, such

as CODEX imaging datasets, in other disease settings.69–71 Inte-

gration of multiscale modeling and imaging data will enable

better interpretation through leave-one-out experiments and

ensemble simulations while simultaneously increasing the com-

plexity and accuracy of agent-based models. Finally, the ability

to simultaneously evaluate interactions across scales will guide

development of better therapies that interrupt problematic net-

works or create beneficial ones.66

Limitations of the study
In future work, driven by molecular data acquired through multi-

plexed tissue imaging, the model should be expanded to include

other cell types and anti-inflammatory molecules. Since the Vi-

varium framework for multiscale modeling is modular and

compositional, it will be straightforward to add additional cell

types with different representations of internal mechanisms

and environmental interactions, such as how we added the den-

dritic cell and LN process. Not straightforward are the selection

of molecular features and phenotypes that will increase the ac-

curacy of the model under a broader range of conditions.

Although we have some clues about missing components from

our CODEX and RNA dataset,59 additional data collection will

be needed. For example, single-cell RNA sequencing of the

cell types within the tumor will shed light on key molecular and

cellular interactions. Building this complexity within in silico

models will be necessary because as the number of intercellular

connections are increased, it will become more difficult to reca-

pitulate and deconvolute these networks within in vitro systems.

Similarly, we focused on one in vivo tumor model system to un-

derstand relationship between tumors and antigen-specific

T cells—in particular one that mimics tumor that lose or downre-

gulate MHC-I expression.72,73 This one model does not recapit-

ulate the diversity of human tumors, and consequently, addi-

tional tumor models and human tumor samples will need to be

studied and integrated to build future branches of the model.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Custom-conjugated CyTOF antibodies N/A All information on clones, companies,

RRIDs, etc. are included in Table S2.Custom-conjugated murine CODEX antibodies

anti-CD3 (clone 145-2C11) Bioxcell Catalog #BE0001-1; RRID: AB_1817016

anti-CD28 (clone 37.51) Bioxcell Catalog #BE0015-1; RRID: AB_1817016

TruStain FcX� (anti-mouse CD16/32) Antibody Biolegend Catalog #101319; RRID: AB_2783137

Chemicals, peptides, and recombinant proteins

Potassium hydroxycitrate tribasic monohydrate Sigma-Aldrich 59847-1G

gp100 - KVPRNQDWL AnaSpec AS-62589

Recombinant Human IL-2 (carrier-free) Biolegend 589106

Protein Transport Inhibitor (Containing Monensin) BD Biosciences 554724

Protein Transport Inhibitor (Containing Brefeldin A) BD Biosciences 555029

Recombinant Mouse IFN-g (carrier-free) Biolegend 575302

cis-Diammineplatinum(II) dichloride (cisplatin) Sigma-Aldrich P4394-25MG

EMS 16% Paraformaldehyde aqueous Fisher 50-980-487

Critical commercial assays

xCELLigence Real-Time Cell Analysis Agilent Single Plate

Experimental models: Cell lines

B16-F10 tumor cell line ATCC RRID:CVCL_0159

Experimental models: Organisms/strains

B6 - C57BL/6J Jackson Laboratories RRID:IMSR_JAX:000664

PMEL - B6.Cg-Thy1a/Cy Tg(TcraTcrb)8Rest/J Jackson Laboratories RRID:IMSR_JAX:005023

Software and algorithms

tumor-tcell 10.5281/zenodo.10779282 https://github.com/vivarium-

collective/tumor-tcell

CODEX Processor https://github.com/nolanlab/CODEX N/A

Segmenter https://michaellee1.github.io/

CellSegSite/index.html

N/A

Neighborhood analysis https://github.com/nolanlab/

NeighborhoodCoordination

N/A

ImageJ https://imagej.net/software/fiji/ N/A

Scanpy https://scanpy.readthedocs.

io/en/stable/

N/A

Other

Fisherbrand� Superfrost� Plus

Microscope Slides

Thermo Fisher Scientific 12-550-15
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Garry No-

lan (gnolan@stanford.edu).

Materials availability
This study did not generate new materials.
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Data and code availability
d Data: Data from the CODEX experiments and initializations can also be found within the repository folder data. All other data

reported in this paper will be shared by the lead contact upon request.

d Code: All original code has been deposited at https://github.com/vivarium-collective/tumor-tcell and is publicly available as of

the date of publication. The code was released with pypi with version number 1.0.0 for the version associated with this paper

https://pypi.org/project/tumor-tcell/1.0.0/. This version of the github code is https://zenodo.org/records/10779283 and is

listed in the key resources table. The README file documents how this can be used as a Python library or cloning the repository

locally.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
B6 and PMEL transgenic mice weremaintained per guidelines approved by Stanford University’s Institutional Review Board. C57BL/

6J and PMEL mice were purchased from Jackson

Laboratories.

METHOD DETAILS

Model Development
The Vivarium framework

Vivarium is an open-source software tool for multi-scale modeling. The aim was to make it easier for scientists to define any imagin-

able mechanistic model, combine it with existingmodels, and execute them together as an integrated simulation. It provides an inter-

face that makes individual simulation tools intomodules that can bewired together, parallelized acrossmultiple CPUs, and simulated

across many spatial and temporal scales.25

Vivarium’s basic elements are processes and stores (Figure 2C). A Vivarium process is an object that contains parameters and the

update function, which describes the inter-dependencies between the variables and how theymap from one time to the next. A store

is an object that holds the system’s state variables and applies the processes’ updates. Processes include ports, which allow users to

wire processes together through variables in shared stores with connections called a topology. Multiple processes can be wired

together as integrated models called composites. These models are implemented in a nested hierarchy, which has stores within

stores to allow an environmental model to run at the top of the hierarchy, with individual agents running in parallel within the model.

Cell Processes

The model is composed of two major cell types (T cells and tumor cells), each with two separate phenotypes. Each cell type has an

associated Vivarium process that represents the mechanisms that make a cell switch between phenotypes. These processes define

fundamental rules that govern cellular interactions with the other cell types and with the inputs it receives from the environment. The

tumor process is focused on two phenotypic states: proliferative with low levels of immunemolecules (MHC-I and PD-L1) and quies-

cent with high levels of immune molecules (MHC-I and PD-L1). Its transition from the proliferative state is dependent on the level of

IFNg secreted by T cells. Both tumor types can be killed by receiving cytotoxic packets from the T cells. The T cell process is focused

on two phenotypic states. The PD-1- T cells secrete larger amounts of immune molecules (IFNg and cytotoxic packets) than PD-1+

T cells. These immune molecules impact the state and death of tumor cells. The transition from the PD-1- state to the PD-1+ state is

dependent on the length of time the T cell is engaged with tumor cells. Each process was tested individually to meet expected out-

comes based on literature or lab data. Testing the processes individually reveals whether underlying parameters derived from liter-

ature values or primary data accurately represent behavior expected based on such research.

Cell Composites

The T cell and tumor processes are combinedwith additional processes to create T cell and tumor composite agents. These include a

division process, which waits for division to be triggered and then carries out division; a death process, which waits for death to be

triggered and then removes the agent; and a local field process, which interfaces the external environment to support uptake and

secretion for each agent. Testing individual composite cells adds additional complexity and is another accuracy check of the model.

Tumor Microenvironment

The Tumor Microenvironment is a composite model that simulates a 2D environment with agents that can move around in space,

exchange molecules with their neighbors, and exchange molecules with a molecular field. A neighbors process models individual

agents as circular rigid bodies that can move, grow, and collide. This process tracks the locations of individual agents and handles

the exchanges between neighboring cells. A diffusion process operates on the molecular fields of IFNg, and handles the cells uptake

and secretion from the environment.

Connecting Cell Composites in the Tumor Microenvironment

After validating all individual processes, we connected processes and composites and endowed individual elements with additional

behaviors like migration. In our model, the T cells can interact with tumor cells through 1) the TCR on T cells and MHC-I molecules on

tumor cells to activate T cells, induce IFNg and cytotoxic packet secretion, and inhibit T-cell migration, 2) PD-1 receptor on T cells and
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PD-L1 receptor on tumor cells that can inhibit T-cell activation and induce apoptosis, and 3) indirectly through secretion of IFNg by

T cells, which is taken up by tumor cells to cause a state switch to upregulate MHC-I and PD-L1 and decrease proliferation.

Initialization of Experiments

The number of T cells and tumor cells as well as the proportions of phenotypes for each were based on experimental data. Briefly,

most of the experiments started off with a total of 1200 tumor cells and 12 CD8+ T cells. For simulations in Figures 2 and 3, T cells

were initialized randomly in the tumor bed. For simulations in Figure 5, T cells were initialized based on the locations of CODEXmulti-

plexed imaging data. For simulations in Figure 6, T cells were located randomly inside or outside the tumor bed as specified.

For additional information on model development see our documented code base and README at https://github.com/vivarium-

collective/tumor-tcell.

T Cell Culture and Stimulation
Immune cell isolation

Murine cells were obtained from adult mouse lymph nodes and spleens. Obtained cells were treated with ACK lysis buffer to lyse red

blood cells, and lysates were filtered through cell strainers to isolate splenocytes.

T cell media

Supplemented media was made with RPMI 1640 media with glutamine, 1x non-essential amino acids, 1 mM sodium pyruvate, 0.4x

vitamin solution, 92 mM 2-mercaptoethanol, 10 mM ciprofloxacin, and 10% fetal bovine serum.

CD3-coated plate preparation

To each well of a 96-well, U-bottomed plate was added 50 mL of a solution of 5 mg/mL anti-CD3 (Bioxcell, clone 145-2C11) in PBS.

After incubation at 4 �C overnight, liquid was decanted.

T-cell stimulation

Isolated murine immune cells were stimulated by incubation with 1 mM cognate peptide GP100 (KVPRNQDWL) and 50 IU/mL IL-2.

For 2-hyroxycitrate (2HC) conditions, 2HC was added to culture media at a concentration of 5 mM. Cells were seeded at a density of

2-53106 cells/mL. Cells were fed with additional IL-2 in T-cell media every other day. On day 5, cells were added to CD3-coated

plates in culture media containing 2 mg/mL anti-CD28 (Bioxcell, clone 37.51). On day 8 cells were removed from plates and plated

on uncoated plates and fed with IL-2-containing media until day 10.

IFNg ELISA

T cells were stimulated in the presence of 2HC per the above T-cell stimulation protocol. On day 10 the T cells were removed from

culture plates, spun down and refreshed with new T-cell media. T cells were then placed on 96-well, U-bottomed CD3-coated plates

in culture media containing 2 mg/mL anti-CD28 (Bioxcell, clone 37.51) for 24 hrs. A total of 36 wells, each with 100 mL of media was

sampled by taking 5 mL of media per well and centrifuged to remove any cellular debris. 150 mL of this media was then used within a

LEGEND MAX Mouse IFNg ELISA Kit as specified per manufacturer’s instructions (Biolegend, #430807).

In Vitro T-cell Killing Assay
T-cell killing and tumor cell growth rates were determined using the xCELLigence Real-Time Cell Analysis platform. Wells of xCEL-

Ligence E-plates were coated with gold nanoparticles and electrical potential was passed across the plate every 15 min. Monitoring

of changes in the electrical impedance enabled quantification of adherent cells over time. For these assays, T cells were expanded.

B16-F10 melanoma cells were split and then left as control cells or treated with 10 ng/mL IFNg for 24 hours prior to plating. After the

pretreatment, 10,000 B16-F10 cells were plated in each well of the xCELLigence E-plate and allowed to adhere for 12 h. Next, T cells

were added at 1:1 effector to target ratio. The growth of tumor cells and killing by T cells was monitored for up to 24 h. Killing was

calculated by normalizing the cell index of each well to the time point just before addition of the T cells and then quantifying the dif-

ferences between T cell and control wells without T cells over time.

CyTOF Phenotyping
Heavy metal conjugation of Antibodies

Primary antibody transition metal-conjugates were prepared in-house using 100-mg antibody lots and the MaxPAR antibody conju-

gation kit (DVS Sciences) according to the manufacturer’s recommended protocol. Following conjugation, antibodies were diluted in

Candor PBS Antibody Stabilization solution and stored at 4 �C.
Tumor Metabolic CyTOF Staining

Following incubation with IFNg, 23106 B16-F10 tumor cells were pulsed with IdU for DNA labeling by incubating with 100uM of IdU in

Ham’s F-12 medium (LifeTechnologies), 1% ITSX, 10 mM HEPES, 1% P/S/G, 0.1% polyvinyl alchol (PVA) at 37�C with 5% CO2 for

30 mins. After 30 mins, IdU was quenched and diluted by adding PBS. Cells were spun down at 300 x g, RT, 5 mins. Cells were fixed

with 1.6% PFA (Electron Microscopy Sciences) at RT for 10 mins. After fixation, fixative was quenched by adding CSM (CSM; PBS

with 0.5% bovine serum albumin and 0.02% sodium azide) and cells were spun down at 300 x g, RT, 5 mins. Cells were blocked with

FcBlock (0.25 mg/13106 cells) for 15 min at RT. Cell surface antibody master mix in CSM was filtered through a pre-wetted 0.1-mm

spin-column (Millipore) to remove antibody aggregates and added to the samples. After incubation for 30 min at RT, cells were

washed once with CSM. To enable intracellular staining, cells were permeabilized by incubating with ice-cold MeOH for 10 min

on ice and washed two times with CSM to remove any residual MeOH. Intracellular antibody master mix in CSM was added to
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the samples and incubated for 1 hour at RT. Cells were washed once with CSM and resuspended in intercalation solution (1.6% PFA

in PBS and 0.5 mM rhodium intercalator (Fluidigm)) for 20 min at RT or overnight at 4�C. Before acquisition, samples were washed

once in CSM and twice in ddH2O and filtered through a cell strainer (Falcon). Cells were then resuspended at 1 3 106 cells per ml

in ddH2O supplemented with 13 EQ Four Element Calibration Beads (Fluidigm) and acquired on a CyTOF2 mass cytometer

(Fluidigm).

Tumor and T cell Phenotype CyTOF Staining

Following T-cell stimulation on day 10, 23106 cells were stainedwith cisplatin at 25 mM in PBS in 1mL for 1min at 4� C, quenchedwith

1 mL of fetal bovine serum, and washed with cell staining medium (CSM; PBS with 0.5% bovine serum albumin and 0.02% sodium

azide). Cells were blocked with FcBlock (0.25 mg/13106 cells) for 15min at room temperature, then the surface antibody cocktail was

added and incubated 1 h at room temperature on a shaker at 100 rpm. Cells were washed with CSM and then with PBS. Cells were

fixed and stained with intercalators overnight at 4� C in a solution of 1.6%PFA in PBS. The next day, the cells were washed once with

CSM and twice with doubly distilled water, resuspended in doubly distilled water, and analyzed using CyTOF.

Flow Cytometry for Intratumoral T Cell Measurement
In vivo tumor model

On day 0, B6 mice were injected with 23105 B16-F10 melanoma tumor cells. On day 0, immune cells were isolated from a PMEL

mouse and stimulated as described above for 10 days to produce stimulated T cells for adoptive transfer. On day 9, mice were given

a central dose of 500 cGy, which induces transient lymphopenia.74 On day 10, T cells cultured ex vivowere harvested and adoptively

transferred intravenously in volumes of 100 mL with 13106 stimulated T cells per mouse. Tumors were harvested 3 days after treat-

ment with stimulated T cells.

Flow cytometry staining

Harvested tumors were dissociated by maceration over a sterile 70-mm cell strainer with frequent washes of PBS. Cells were then

stained with a mixture of a 1:100 PBS solution of APC-conjugated rat anti-mouse CD8a, clone 53–6.7 (BD Pharmingen), PerCP-con-

jugated rat anti-mouse CD45, clone 30-F11 (Biolegend), and 1:1000 of LIVE/DEAD Fixable Violet Dead Cell Stain (ThermoFisher) for

15min at 4 �C. Cells were then washed with FACSwash buffer and analyzed using a BD FACSCalibur flow cytometer with CellEngine

gating for live cells.

CODEX multiplexed imaging of tumor-draining lymph nodes
Tumor model

On day 0, B6 mice were injected with 23105 B16-F10 melanoma tumor cells. On day 0, immune cells were isolated from a PMEL

mouse and stimulated as described above with or without 2HC for 10 days to produce stimulated T cells for adoptive transfer. On

day 9, mice were given a central dose of 500 cGy, which induces transient lymphopenia.67 On day 10, T cells cultured ex vivo

were harvested and adoptively transferred intravenously in volumes of 100 mL with 13106 of conventionally stimulated or 2HC-acti-

vated T cells per mouse. Tumor draining lymph nodes were harvested 3 days after adoptive transfer.

Array creation

Imaging data was collected from multiple mice from multiple experiments. We included all tdLNs into two arrays, which were sub-

sequently cut onto the same coverslip. Arrays were constructed on the cryostat and sectioned at a width of 7 mm.

CODEX antibody conjugation and panel creation

CODEX multiplexed imaging was executed according to the CODEX staining and imaging protocol.29 CODEX imaging involves iter-

atively annealing and stripping of fluorophore-labeled oligonucleotide barcodes complimentary to the barcodes attached to 40+ an-

tibodies used to stain the tissue. Antibody panels were chosen to include targets that identify subtypes of tumor, stromal, innate, and

adaptive immune cells. Detailed panel information can be found in Table S2. Each antibody was conjugated to a unique oligonucle-

otide barcode, after which the tissues were stained with the antibody-oligonucleotide conjugates. We validated that staining patterns

matched patterns observed by immunohistochemical analysis within positive control tissues of tumor or mouse spleen. Antibody-

oligonucleotide conjugates were first tested and titrated in low-plex fluorescence assays, and signal-to-noise ratio was evaluated,

then antibody-oligonucleotide conjugates were tested together in a single CODEX multicycle. Signal-to-noise ratio was again eval-

uated, and the optimal dilution, exposure time, and appropriate imagine cycle was determined for each conjugate.

CODEX multiplexed imaging

The tissue arrays were stained with the validated panels of CODEX antibodies and imaged.29 Briefly, this entailed cyclic stripping,

annealing, and imaging of fluorescently labeled oligonucleotides complementary to the oligonucleotide conjugated to the antibody.

QUANTIFICATION AND STATISTICAL ANALYSIS

CODEX multiplexed imaging data analysis
CODEX data processing

Raw imaging data were processed using the CODEX Uploader for image stitching, drift compensation, deconvolution, and cycle

concatenation. CODEX enables single-cell resolution protein quantification that can be used for evaluating cell type definition, state,

and location. To obtain quantitative single cell information, we processed the multiplexed imaging data, segmented individual cells,

and extracted single-cell protein expression. Processed data were then segmented using the CellVisionSegmenter, a neural network
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R-CNN-based single-cell segmentation algorithm.68 Both the CODEX Uploader and Segmenter software can be downloaded from

our GitHub site (https://github.com/nolanlab/CODEX), and the CellVisionSegmenter software can be downloaded at https://github.

com/michaellee1/CellSeg. After the upload, images were evaluated for specific signal: Any markers that produced an untenable

pattern or a low signal-to-noise ratio were excluded from the ensuing analysis. Uploaded images were visualized in ImageJ

(https://imagej.nih.gov/ij/).

Cell-type analysis

Single cells were identified and classified into cell types and states based on marker expression for murine studies. Cell type iden-

tification were done following the strategies we have developed.29,53 Briefly, nucleated cells were selected by gating DRAQ5,

Hoechst double-positive cells, followed by z-normalization of protein markers used for clustering (some phenotypic markers were

not used in the unsupervised clustering). The data were overclustered with Leiden-based clustering with the scanpy Python package.

Clusters were assigned a cell type based on average cluster protein expression and location within image. Impure clusters were split

or reclustered following mapping back to original fluorescent images.

Neighborhood Analysis of Simulation Output
Neighborhood analysis was performed as described previously17 on simulation output for day 3 after treatment of tumors with T cells

of different phenotype compositions. Briefly a window size of 10 nearest neighbors was taken across the tissue cell type maps clus-

tered into 5 neighborhoods. These clusters were mapped back to the tissue and evaluated for cell type enrichments to determine

overall structure.
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