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Abstract The discovery of tumor-associated antigens,
which are either selectively or preferentially expressed by
tumors, together with an improved insight in dendritic cell
biology illustrating their key function in the immune sys-
tem, have provided a rationale to initiate dendritic cell-
based cancer immunotherapy trials. Nevertheless, dendritic
cell vaccination is in an early stage, as methods for prepar-
ing tumor antigen presenting dendritic cells and improving
their immunostimulatory function are continuously being
optimized. In addition, recent improvements in immuno-
monitoring have emphasized the need for careful design of
this part of the trials. Still, valuable proofs-of-principle
have been obtained, which favor the use of dendritic cells
in subsequent, more standardized clinical trials. Here, we
review the recent developments in clinical DC generation,
antigen loading methods and immunomonitoring approaches
for DC-based trials.
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Introduction

The introduction, over a century ago, of the concept of
“immune surveillance” led to the quest for ways to initiate
de novo and enhance existing immune responses against
tumors, thereby aiming at the specific eradication of cancer
cells, whilst leaving normal tissues untouched [129]. This
concept was initially supported by the detection of sponta-
neously developing tumor infiltrating lymphocytes (TIL)
with the capacity to kill malignant cells in a HLA-restricted
fashion and was later on substantiated by the discovery of
tumor-associated antigens (TAA) against which anti-tumor
immune responses can be directed [67, 128]. However,
malignant tumor cells develop mechanisms to escape elimi-
nation by these immune responses and possess mechanisms
to tolerize the immune system, leading to tumor establish-
ment. Tumor cells that escape elimination can persist in
equilibrium with the immune system until the balance
between the immune response and the tumor tilts towards
tumor growth due to the outgrowth of poorly immunogenic
tumor cells (immunoediting) and suppression of the
immune system [53, 205].

The field of cancer immunotherapy has grown very
rapidly in the past few decades. In order to initiate an
immune response, induce memory and break immunologi-
cal tolerance against the tumor, dendritic cells (DC) have
emerged as what appears to be the ideal cellular tools [13,
140, 158]. Since tumor cells can express a whole array of
TAA, the ideal anti-cancer vaccine may consist of DC
loaded with TAA expressed by the tumor of that particular
patient [23, 119]. In recent years, strategies have been
developed for the large-scale generation of DC, yielding
sufficient numbers of cells for use in clinical trials. Mean-
while, many different protocols have been designed to load
antigens onto DC. Together, these findings made it possible
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to start clinical studies with antigen-loaded DC in cancer
patients. This review will focus on recent advances made in
the procedures to generate large numbers of clinical-grade
DC from various types of progenitor cells with a special
focus on differentially isolated monocyte-derived DC and
will discuss the problems associated with DC generated
from cancer patients. After a brief description of the cur-
rently used strategies to load DC with antigens (Ag) and the
possible methods for monitoring the induced immune
response, a short overview will be given of DC-based clini-
cal trials that have been carried out in cancer patients so far
and their outcomes. Finally, we will focus on the problems
arising in these first trials and point out new insights which
should be taken into account to improve DC vaccinations in
the future. Figure 1 gives an overview of DC-based immu-
notherapy and highlights the aspects discussed in this
review which could have significant impact on the efficacy
of DC-based immunotherapy.

Dendritic cell characteristics

The properties of DC that make them unique APC have
been the subject of recent reviews and will only be briefly
discussed here [12, 169].

The DC population is highly heterogeneous but their life
cycle can be roughly divided in two stages: the immature
and mature stage [12, 169]. In the immature stage, DC cap-
ture Ag through various mechanisms: macropinocytosis,
receptor-mediated endocytosis and phagocytosis. After
uptake, iDC start to process Ags into peptides for subse-
quent presentation to T cells as mDC. The phenotype of
iDC is characterized by a low expression of MHC mole-
cules, co-stimulatory molecules, adhesion molecules and
DC markers. In contrast, they express a large amount of
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Fig.1 Advances in DC-based immunotherapy. DC-based therapy has
been shown to be very promising but several variables still need to be
optimized. Further research is needed to determine the optimal proce-
dure for DC isolation and/or generation, the most efficient maturation
stimulus to activate the DC and the optimal method to load DC with
antigens. The DC preparation needs to be extensively controlled before
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inflammatory chemokine receptors, allowing them to
extravasate into inflamed tissues [12, 148]. The encounter
of a so-called “danger signal” initiates maturation, whereby
DC become highly motile, veiled cells and lose their ability
for Ag uptake by down-regulating endocytic and phagocy-
tic receptors. mDC optimize Ag processing through the up-
regulation of components of the Ag-processing machinery
and acquire the capacity to present antigens to and stimu-
late T cells by up-regulation of MHC molecules, adhesion/
co-stimulatory molecules (CD40, CD54, CD58, CDS8O0,
CDS83, CD86) and the DC marker DC-LAMP. Whereas
most of these markers are already present at low levels on
iDC, CD83 is absent on iDC and hence, CD83 expression
allows discrimination between iDC and mDC. However,
recently it has been shown that CD83 can be absent on
monocyte-derived mDC generated in IL-3 and IFNf and
matured with poly(I:C), which nevertheless show a mature
phenotype based on expression of other maturation mar-
kers. Maturation also induces acquisition of chemokine
receptors such as CCR7 on the DC surface, which enable
traYcking to lymphoid organs in response to chemokines
secreted by stromal cells in the lymph nodes. mDC, in turn,
secrete large amounts of chemokines to attract various cell
types of the immune system and, depending on the matura-
tion stimulus, they secrete particular cytokines to skew the
immune response in a speciWc direction [12, 104, 141, 169].

Effective T-cell priming requires three consecutive sig-
nals between DC and T cells. DC can activate both CD4* T
cells and CD8" T cells through Ag presentation via MHC
class I and MHC class I, respectively (signal 1). Signal 2
consists of the interaction between CD80 and CD86 on the
DC and CD28 on the T-cell surface. In the absence of co-
stimulation, T cells recognizing the Ag presented by the
DC are tolerized. Although the effector cells in tumor
immunology consist mainly of TAA specific CTL, it has
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administration to the patient and the optimal route of immunization
still needs to be defined. An important issue is also the standardization
of techniques used for monitoring of the vaccine-induced immune
response and the use of objective clinical endpoints. Furthermore,
DC-based immunotherapy could benefit from combination with addi-
tional therapies
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been well documented that CD4* T-cell help is required for
efficient priming of memory CD8" T-cell responses
(reviewed in [20]). For this to occur, DC need to be
licensed by activated CD4" T cells through reciprocal inter-
actions between CD40 on the DC and CD40L on the acti-
vated CD4" T cells, leading to IL-12 production by the DC
(signal 3) [12, 73, 163]. The IL-12 produced by DC polar-
izes the T-cell response towards a Thl profile, which is
believed to be preferential for cancer immunotherapy.

The DC population residing in the human body is
roughly divided into two groups: CD11c¢* CD123"° myeloid
DC and CD11c¢” CD123" plasmacytoid DC (pDC). Plasma-
cytoid DC are important mediators of innate antiviral
immune responses and are the main producers of IFN«
in the body (hence they are also called natural interferon
producing cells, NIPC). pDC are located in blood and
lymphoid organs. Myeloid DC reside in the blood and
lymphoid organs as well as in the dermis and the interstitial
tissue of most organs. A special subtype of myeloid DC, the
Langerhans cells, reside in the epidermis and mucosal
tissues [43, 148]. Since most research in the field of DC
vaccination is focused on monocyte-derived myeloid DC,
this review will refer to this cell type, unless specifically
mentioned.

Generation of clinical grade dendritic cells
Critical parameters for DC vaccines

When chosing a generation protocol for DC intended for
vaccination purposes, several critical parameters must be
considered.

A first parameter which is important for the generation
of DC vaccines is the number of DC that need to be iso-
lated/generated. Since it is believed that repeated immuni-
zations are beneficial and most protocols use around 10’
DC per injection, it is necessary to obtain large numbers of
DC (~10% DC per preparation) which can be frozen in
aliquots for repeated vaccinations. DC viability should be
>75%.

Contaminating cells in the DC preparation could affect
the efficacy of DC vaccination. Since the type of contami-
nating cells present in the DC preparation can vary between
protocols and in order to minimize the effect of the contam-
inants, it is necessary to aim for the highest possible DC
purity. Based on data from the literature, we propose to aim
for DC purities of >75% [60].

As discussed later in this review, the maturation state of
DC is critical for their effectiveness. It is therefore recom-
mended to use mDC for vaccination or to combine the use
of iDC with the in vivo administration of maturation stim-
uli. For each DC isolation/generation protocol, it should be

assessed whether the resulting DC are immature or mature
and, if immature, investigated whether they can be induced
to mature with activation stimuli.

DC isolation and generation

DC can be isolated directly ex vivo from the blood of
patients, either through positive selection using DC-spe-
cific markers or by depletion of contaminating cells or by a
combination of both. Myeloid-derived DC and pDC can be
distinguished through the differential expression of CD11c/
BDCA-1 and CD123/BDCA-2/BDCA-4 on these DC types
[62, 78, 103, 144, 179]. A first approach to enrich blood
DC entails the use of sequential density centrifugation of
apheresis PBMC followed by a culture period of 24 h.
Administration of Flt3-L significantly increases the num-
ber of DC obtained and the isolated DC show a mature
phenotype. However, reagents for density gradient centri-
fugation are not GMP-grade and it is difficult to carry out
this approach in a closed system [62]. Another method for
the isolation of blood DC involves depletion of lineage
marker positive cells, which can be followed by positive
selection using DC-specific markers. The isolated DC are
immature and comprise both myeloid DC and pDC. Matu-
ration is achieved by in vitro culture [144, 179]. Recently,
Fearnley et al. described a method for the isolation of high-
potency blood DC by using the CMRF-44 antigen. Using
this method, only mature DC are isolated. The DC prepara-
tion contains both myeloid DC and pDC. However, yield
and purity of the isolated DC are highly variable [4, 56,
97]. DC can also be enriched by exploiting membrane
expression of DC markers (e.g. CDlc, BDCA-4,...) for
magnetic or flow cytometric enrichment. It has to be men-
tioned that only the pDC-specific antibodies are truly DC-
specific, whereas other DC markers are also expressed
in low amounts on other cell types, which need to be
depleted. Myeloid DC and pDC can be isolated separately
or together and the DC show an immature phenotype but
can be matured with appropriate stimuli [78]. Nevertheless,
despite the fact that it has now been shown that F1t3-L can
be used to mobilize blood DC, yields are generally too low
to obtain sufficient numbers of DC for vaccination [62,
103]. On the other hand, Lopez et al. recently described the
isolation of blood DC from apheresis products in sufficient
numbers for immunotherapy [4, 97] and Campbell et al.
[31] described the isolation of large numbers of blood DC
using the CliniMACS system. It remains a matter of
debate, though, if it will become feasible to use DC iso-
lated from the blood of cancer patients for vaccine prepara-
tions because some reports have been published showing
that significantly reduced DC numbers were found in
peripheral blood of cancer patients compared to healthy
donors [156].
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A second source for DC generation is the proliferating
CD34" progenitor cell. These CD34" cells can be isolated
from blood or bone marrow by positive selection through
magnetic separation. In order to obtain higher yields of
CD347 cells, these cells can be mobilized into the blood via
G-CSF administration alone or by a combination of stem
cell-mobilizing chemotherapy (e.g. cyclophosphamide), G-
CSF and/or IL-3 [120, 150]. However, caution has to be
taken regarding the use of G-CSF for stem cell mobiliza-
tion, since recent reports indicate that G-CSF can skew
immune responses towards the Th2 phenotype and can
induce/recruit Treg, which may both be undesirable for
cancer immunotherapy [63, 86]. After isolation, CD34*
precursors can be differentiated into DC by the addition of
different cytokine mixtures. Most frequently, CD34* cells
are cultured with GM-CSF and TNFa. After a 2 week cul-
ture period, iDC are obtained which mature asynchronously
during the next 2 weeks, resulting in a mixture of iDC and
mDC. A small proportion of the cells display the character-
istics of Langerhans cells. IL-4, Flt3-L or c-kit ligand can
be added to enhance DC yield. Purities are variable and
rather low, with the contaminating cells being mainly gra-
nulocytes [98, 99, 162, 174]. Another protocol consists of a
2 week culture in the presence of GM-CSF and IL-4, resul-
ting in the generation of iDC, followed by a 7 day period of
maturation using CD40L or TNFo [38]. CD34" cells can
also be differentiated into iDC using GM-CSF and IL-13
during 2 weeks [98].

The most commonly used cell type for DC generation is
the peripheral blood monocyte. Monocytes can be easily
collected via buffy coat preparations or leukapheresis and
can be enriched in various ways. The easiest and most cost-
effective way for DC generation is through adherence of
monocytes to plastic which has been developed for use in
closed systems. However, the variability in DC purity of
this approach remains an important shortcoming [17, 57,
108, 135, 167, 172, 183, 189]. Highly purified monocytes
can also be obtained by positive immunomagnetic selection
of CDI14* cells, but the reagents required are expensive,
which limits their clinical use [10, 52, 57, 66, 108]. Further-
more, positive selection of monocytes raises concerns about
the use of xenogeneic antibodies and possible activation/
alteration of the monocytes [25, 54]. Although it has never
been investigated whether monocyte activation has a nega-
tive effect on DC generation, this can be circumvented
by a negative magnetic enrichment, but this method yields
highly variable monocyte and DC purities [57, 108, 135,
172, 197]. Another technique to enrich monocytes involves
the use of density gradient centrifugation, but this tech-
nique is difficult to integrate in a closed system and the
available reagents are not GMP-grade [34, 93]. Recently,
elutriation has been described as a means to isolate highly
pure monocytes. This technique is based on a counter-flow
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centrifugation to physically separate cells depending on
their size and density. The development of the Elutra™
device by Gambro.BCT facilitated the use of this approach
in a closed system. Elutriation has been described to be fast
and very cost-effective. Important parameters to consider
when using the Elutra™ system are: (1) the dimensions of
the elutriation chamber and the resulting requirement for
high numbers of input cells (minimum 1 x 10° monocytes
and minimum 5 x 10° PBMC); (2) due to the design of the
system where cells are separated on the basis of cell size,
there is no discrimination between monocytes and granulo-
cytes leading to granulocytes being the major contaminants
of the purified monocyte preparation; and (3) red blood cell
(RBC) levels in the apheresis product should be kept low
because RBC interfere with the purification process [2, 18,
66, 149, 167, 178, 197] (Dr. H. Vrielink, Sanquin Blood
Bank, Amsterdam, The Netherlands: personal communica-
tion). Although significant differences exist in culture char-
acteristics and study endpoints (iDC or mDC, evaluation
of purity/yield) used by different groups, we attempted to
compare the characteristics of the different available sys-
tems for monocyte enrichment and DC culture. An over-
view of the methods used for monocyte isolation, along
with the resulting purities and DC yields is given in
Table 1. In view of possible differences in phenotype and
function of DC, some groups have compared DC generated
from monocytes that were obtained using different isolation
techniques. Again, results from different groups cannot easily
be compared, due to differences in medium, cytokines
and culture vessels used for DC generation. Table 2 gives
an overview of the studies that have compared DC from
differentially isolated monocytes at phenotypical and func-
tional level. Taken together, these data indicate that the
method of monocyte isolation has no major implications on
DC phenotype and function.

Classically, immature, “myeloid-type” DC are generated
from enriched monocytes by a 5-7 day culture in the pres-
ence of GM-CSF and IL-4, which can afterwards be
matured using different stimuli. IL-4 can be replaced by IL-
13, which induces the same type of DC. Recently, several
groups have published optimized protocols to reduce this
culture period to 48 h without affecting the phenotypical or
functional properties of the resulting DC [46, 121, 133,
198]. This shorter culture period has several advantages
such as reduced labor, cost and time. Since it has been pro-
posed that DC generated in the presence of IL-4 display
several functional alterations, a search for other differentia-
tion cocktails has been carried out [180]. DC develop
quickly in a model of trans-endothelial trafficking, which
has been suggested to be operating in vivo [138]. In the
presence of GM-CSF and type I IFN monocytes also
develop quickly into DC, which might therefore be more
physiological. However, although several authors have
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Table 1 Characteristics of the different available closed systems for monocyte enrichment and subsequent DC generation
Adherence Positive selection Negative selection Elutriation

Cost Low High High Low
Monocyte purity® +60% 91-99% 8-75% 55-90%
Main monocyte B, NK cells / NK cells Granulocytes

contaminants® Granulocytes (especially neutrophils)
Monocyte recovery ND 27-100% 43-97% 53.3-88.2%

Cell Factories™

Gas-permeable bags

Closed culture recipient

Monocyte activation Possible Possible
DC purity® 34-98% 59.5-98%
DC yield (PBMC) 2.7-20% 1-2%

DC yield (monocytes) 12-68% 4-41%

References [17,57,72, 108, 135,

167,172, 183, 189]

Gas-permeable bags

[10, 52, 57, 66, 108]

Gas-permeable bags Gas-permeable bags

No No
31-86% 62-98%
4.8-13% 5-12%
16-95.1% 20-100%

[57, 108, 135, 172, 197] [2, 18, 66, 149, 167, 178, 197]
Dr. H. Vrielink

(personal communication)

% Monocyte purity was assessed by flow cytometry using the monocytic marker CD14

b Contaminants of monocyte preparations were assessed by flow cytometry using lineage-specific antibodies

¢ DC purity was evaluated by FSC/SSC characteristics or by CD83 positivity

reported the efficient generation of highly stimulatory DC
using GM-CSF and type I IFN in a short culture period,
some contradictory results have been published [45, 113,
153, 154, 182]. Recently it was discovered that DC can also
be differentiated from monocytes in the presence of type I
IFN and IL-3, where substitution of GM-CSF by IL-3
rescues the cells from apoptosis [24, 29, 142]. Another
pathway of monocyte differentiation into DC has been
described where incubation of monocytes in the presence of
GM-CSF and IL-15 results in differentiation of Langer-
hans-like cells [111].

Comparison of different DC types

Freshly isolated DC or DC generated from different precur-
sors are not equivalent, which raises the question of which
DC type is optimal for the induction of an anti-tumor
response. Many comparisons between these different DC
subtypes have been published, which we briefly summarize
hereafter. Again, these studies are difficult to compare due
to differences in media and cytokines used.

Several groups have compared freshly isolated blood DC
and monocyte-derived DC. These DC types are phenotypi-
cally and functionally distinct. At the phenotypical level,
blood DC seem to be more activated, because blood DC
require a short period of culture to mature, whereas the
maturation of monocyte-derived DC is variable and largely
dependent on the stimulus. However, compared to mono-
cyte-derived DC, blood DC are relatively poor cytokine
producers, are reported to be less active in endocytosis and
lack DC-SIGN expression. Both DC types are equal stimu-
lators in allo-MLR, but blood DC seem to be better initia-

tors of Ag-specific T-cell responses and have a higher Thl
polarization capacity [79, 84, 126].

Many groups have reported comparisons between
CD34- and monocyte-derived DC. In general, yields of
CD34-derived DC, as calculated from the starting number
of PBMC, appeared to be somewhat higher. Depending
on the cytokine combinations used to generate DC, iDC
or mDC were obtained, but both CD34- and monocyte-
derived DC showed a comparable morphology and pheno-
type. However, when CD34- or monocyte-derived DC
displaying comparable phenotypes were used for the
stimulation of T cells, the induction of Ag-specific T-cell
responses was enhanced when using CD34-derived DC [11,
37, 174].

The group of Dauer et al. performed an extensive com-
parison between the classical monocyte-derived DC gener-
ated in the presence of GM-CSF and IL-4 during 5-7 days
and DC generated from monocytes in a reduced period of
48 h. They show that both DC populations have a compara-
ble phenotype, IL-12 secretion and Ag uptake, processing
and presenting capacity. Both DC types migrate equally
well towards the CCR7 ligand 6CKine/CCL21. However,
yield and purity of the fast DC population are higher com-
pared to the classical monocyte-derived DC. Furthermore,
fast DC induced similar numbers of Ag-specific T cells, but
with higher lytic capacity compared to T cells induced by
classical monocyte-derived DC [46, 121, 198].

Many reports have been published comparing the classi-
cal monocyte-derived DC (GM-CSF + IL-4) with DC
generated in the presence of GM-CSF/IL-3 and type I
interferon. In general, DC differentiation seems to occur
more rapidly in the presence of type I IFN and these DC

@ Springer



Cancer Immunol Immunother (2007) 56:1513-1537

1518

ATIN-O[[e Ul 9oUaIofJIp ON
sasuodsar YT oreuasdorre jo
uononpul pue ayeidn uenxap-H 11 Ie[ruis

asuodsar [[edar

BZUANPUI/L L 10 Y TIN-O[[€ Ul 9OUIYIP ON
Kyoedes Krojenums-oqye

IO UOTJAIOAS T T-"T[ UT QOUSISHIP ON

ATIN-OTTE Ut 19139q
A19M s3)Ko0uU0W PaAjELIN(d WOy DJ

sasuodsai [[99-, 91010149 oy1oads (o[ dS pue
sasuodsar [[00-1, aanexajijoxd (001d3 ‘T-JIND)

ogroads-opndad pue oreusgorre ojqeredwo)
ATIN-O[e Ul 1opeq

ATY31[s uonoafes aAnedau woij DJ

uenxop-) LI oyeidn refruurg

(1D "4A-VIH *98AD ‘€8AD)
D(-90URIYpPE URY) AINJEW dIOW
ApYS31[s uonoas aane3au 1o aanisod woiy D
se)koouow paren[e woiy H( uo 1_YSIY YA-VIH
D4V-VIH ‘980D ‘€8dD 11D *e[ruts
S[[99 ,£dD Ynm
UOTRUIIBIUO0D JSYSTY UoneInn[d woij H
AA-VTIH ‘98AD ‘€8AD ‘08AD ‘#1AD ‘1D lenbg
dA-VTH D9V-VTH ‘98dD ‘€8dD ‘08dD
‘SYAD Y1 BIQD Ul SA0UAIYIP ON
Aniqers adKouayd renbg
AA-VIH ‘98dD
‘€8AD ‘STAD P1AD ‘eIdD flqesedwo)
Anqiqeys odKyjouoyd reqrurg
uorssaxdxo 1D
19yS1y uonod[es aanesou woiy DJ
AA-VTH ‘98AD ‘€8AD ‘08AD
‘8SAD vrAD ‘0rAD 211D e[S

98D ‘€8AD ‘08D ‘®IAD Te[ruIs

UonO9[as 2ANEIau
*SA UOTOI[3S dANISOd "SA 20UAIYPY

uonodas aanIsod ‘sA uoneLng

UOI}OJ[as dANESAU "SA UonRLIN[g

Uo1nI9[as dANeIoU

*SA UOT)I9[3S 9ANISOd *SA 90UAIYPY

Q0udIAYpE "SA UOTRINN[H

QOUQIAYPE "SA UOTJOIIS 9ANBIIN

QOUQIAYPE "SA UOTJOIIS dANBIIN

[801] T2 10 dnnuap -1k

[99] ‘T8 10 S11RD

[L61] T8 30 Suopm

[LS] ‘Te 19 uuewz[og

[81] ‘Te 30 10310g

[SeT] T8 10 1exre[Ing

[cL1] T30 uong

uonouny D

adfyouoyd D

UOT}OJ[AS 9)K00UOIA

AOUAIRJY

uonouny pue adKjousyd H uo uoneoyund 91400uow JO 199 ¢ dqEL

pringer

As



Cancer Immunol Immunother (2007) 56:1513-1537

1519

acquire a semi-mature phenotype and a high migratory
capacity at day 3 of culture without any other maturation
stimulus, in contrast to IL-4 DC which need exogenous
maturation stimuli to mature. The cytokine secretion pat-
tern is largely different between type I IFN DC and IL-4
DC, with the major difference being a decreased IL-12p70
secretion and an increased IFNw secretion by type I IFN DC
as compared to IL-4 DC. However, type I IFN DC are
short-lived because a considerable percentage of the cells
undergo apoptosis by day 5 of culture, which can be coun-
teracted by adding IL-3 [24, 29, 49, 113, 142, 154, 182].
The comparison of T-cell stimulation by these two DC
types has been troubled by the fact that immature type I
IFN DC already display a semi-mature phenotype. Conse-
quently, when immature type I IFN DC and immature IL-4
DC were compared, type I IFN DC were more potent at
inducing Ag-specific T-cell responses than DC differen-
tiated with GM-CSF and IL-4 [131, 154]. However, the
capacity to induce Ag-specific T-cell responses was compa-
rable between immature type I IFN DC and mature IL-4
DC [182]. When both DC types were matured, conflicting
results have been published, showing either an equal capa-
city of both DC types to induce Ag-specific T-cell responses
[142] or an enhanced capacity of type I IFN DC [24, 113].
Type I IFN DC have been shown to polarize CD4* T-cell
responses either only towards Th1 [154] or to both Th1 and
Th2 [29, 49]. In contrast, Dauer et al. [45] reported that DC
fail to develop in the presence of type I IFN and that type I
IFN even disables DC precursors. It should be mentioned
however that these authors compared both DC derived in
the presence of IL-4 or type I IFN at day 6 of culture, a time
point at which type I IFN DC already undergo apoptosis.
McRae et al. [106] described that when type I IFN is added
to cultures of monocytes together with IL-4 and GM-CSF,
TNFo-mediated maturation is impaired, resulting in a
decreased T-cell stimulatory capacity and reduced IL-12
secretion. This contrasts with findings described by
Radvanyi et al. [136], who observed that addition of type
I IFN to GM-CSF/IL-4 cultures of monocytes accelerated
DC generation and maturation. Furthermore, Tamir et al.
reported that the environment in which type I IFN is present
plays a central role in determining its effects on DC func-
tion and Lehner et al. showed that adding both type I IFN
and bacterial stimuli to GM-CSF and IL-4 containing DC
cultures induces apoptosis in monocyte-derived DC [92,
176].

Differentiation of monocytes with GM-CSF and IL-15
was decribed by Mohamadzadeh et al. and compared to the
classical DC generation in the presence of GM-CSF and
IL-4. The authors reported that both DC types share: (1) the
basic DC phenotype; (2) the FITC-dextran uptake capacity;
(3) maturation capacity upon incubation with various
stimuli; and (4) the capacity to stimulate allogeneic and

Ag-specific T cells. As opposed to GM-CSF/IL-4 DC how-
ever, DC generated in the presence of IL-15 express several
Langerhans cell markers: E-Cadherin, Langerin and CCR6.
As a consequence, IL-15 DC migrate towards the CCR6
ligand MIP-30/CCL20 [111].

Importance of maturation state

The induction of a successful anti-tumor immune response
requires the use of immuno-stimulatory mDC, because
of their enhanced capacity to induce Ag-specific T-cell
responses and because iDC tend to induce tolerance. Fur-
thermore, iDC have been shown to expand regulatory
T cells (Treg), although it has been described that DC
matured with certain stimuli can also induce Treg expan-
sion and even provoke de novo Treg generation from
CD4*CD25 effector T cells [14, 48, 105]. In addition,
mDC have been shown to be resistant to immunosuppres-
sive factors produced by tumors and are phenotypically and
functionally stable in the absence of cytokines [145, 168].
Maturation can be achieved by a wide array of different
stimuli: monocyte-conditioned medium (MCM), different
pro-inflammatory cytokine cocktails, TLR ligands,... [1, 32,
39, 90, 109, 122, 152, 166]. These stimuli are schematically
represented in Fig 2. Currently, the most widely used sti-
mulus is a cocktail containing IL-1p, IL-6, TNFx and PGE,
but extensive controversy exists about which stimulus might
be optimal. The different stimuli used to induce maturation
give rise to subtle differences in the DC maturation stage.
These differences can be observed at the phenotypical level
(expression of maturation markers CD25, CD40, CDS3,
CCR7,...), the functional level (allo-MLR, Ag-specific
T-cell induction...) and at the level of cytokine/chemokine
secretion (IL-6, IL-10, IL-12p70, IFN...). Furthermore, the
DC phenotype, functional characteristics and cytokine/
chemokine secretion pattern can also be influenced by the
culture medium used to generate the DC [54, 181]. The
concept arising now is that DC do not need to have a com-
pletely mature phenotype, but need to secrete cytokines/
chemokines which polarize T-cell responses and express
chemokine receptors for efficient migration to lymphoid
organs.

Recent insights indicate that phenotypic DC maturation
is not a distinguishing feature of immunogenic versus toler-
ogenic DC, since tolerance can be induced by phenotypi-
cally immature, semi-mature and fully mature DC. In this
regard, semi-mature DC, which express high amounts
of MHC and co-stimulatory molecules and produce high
amounts of IL-10 but only trace amounts of IL-12, have
been implicated in the conversion of naive T cells into Treg
[151]. Recently, IDO expressing mDC were shown to be
tolerogenic and could be further identified by CD123 and
CCR6 expression. These authors suggest that IDO expression
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Fig. 2 Schematic representation of the currently available maturation
stimuli. To date, several stimuli have been identified which promote
DC maturation. The extent to which DC maturation is affected varies
considerably between individual stimuli. In addition, it has been shown
that distinct combinations of maturation stimuli can act synergistically
to promote DC maturation and Th1 polarizing capacity of DC. Ongo-
ing research will possibly identify optimal combinations of stimuli for
DC maturation. Although clinical-grade bacterial immunomodulators

by mDC might be determined by the prevailing regulatory
influences during maturation [116]. This has led to the
concept of defining DC not only by their maturation status
but also based on effector function [141]. However, the pre-
cise DC characteristics leading to Thl, Th2, Th17, Treg or
cytotoxic T-cell development are not yet completely identi-
fied. It is conceivable that small differences in environmen-
tal stimuli drive DC to acquire different effector functions,
which could be characterized by subtle differences in the
expression of various known molecules or DC longevity. In
this view, distinct DC subsets can each acquire characteris-
tics of immunogenic and tolerogenic DC depending on the
stimuli they receive.

Although it is difficult to define precise characteristics
for DC preparations, we can point out some parameters that
can be considered important. First of all, mDC can be char-
acterized by a high expression of MHC and co-stimulatory
molecules and the expression of CD83, which has recently
been shown not only to be a marker of phenotypical matu-
ration, but also a modulator of the immune response [3].
Next, expression of CCR7 on DC displays their capacity to
migrate to the lymphoid organs. In order to get licensed by
CD4* T cells for the induction of a memory CD8" T-cell
response, DC should express the CD40 molecule for signal-
ling through CD40L, which, in turn, leads to IL-12p70
production. Cytokine secretion is another means by which
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(Ribomunyl®, Luivac®, Biostim®, OK432) are classified in this figure
as TLR4 agonists, the nature of these stimuli suggests that they possi-
bly trigger a combination of distinct TLR. Agonists of co-stimulatory
molecules can be delivered by agonistic Ab, soluble ligands (if avail-
able) and transfection with ligands. MCM monocyte-conditioned me-
dium, MPL monophosphoryl lipid A, caTLR4 constitutively active
TLR4

DC can modulate T-cell responses. IL-12p70 and IFN can
induce a Th1 response, whereas IL-6 can rescue effector T
cells from the suppressive effect of Treg cells. In contrast,
expression of IDO and secretion of IL-10 can lead to the
induction of Treg and is therefore undesirable.

Clinical-grade DC

DC for use in cancer immunotherapy should be produced
according to good manufacturing practise (GMP) guide-
lines. This implies that the procedure of DC generation is
validated and that protocols are available for each step in
the DC generation process. Finally, a quality control system
must be developed to examine the quality of every final
DC preparation. In order to avoid infections, DC cultures
should be performed in closed recipients or gas-permeable
culture bags with sterile connections, using GMP-grade
reagents and culture media (AIM-V, X-VIVO-15, X-
VIVO-20) either serum-free or supplemented with auto-
logous heat-inactivated plasma to avoid exposure of DC
to xenoantigens [65, 145]. Recently, several groups have
developed closed culture systems for DC generation. In
view of repeated immunizations, it is desirable to generate
a large amount of DC from one single leukapheresis, which
can then be frozen and thawed before each injection [59,
94]. The generated DC vaccines should be subjected to an
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extensive quality control procedure before use. Since our
understanding of DC biology and T-cell activation is con-
tinuously evolving based on ongoing research, a standard-
ized set of specific parameters for DC quality which have to
be fulfilled can not be defined. Instead, a minimal set of
release criteria have to be fulfilled and additional parame-
ters, which are thought to be important, can be analyzed to
gain information for later comparison. Microbiological
tests have to be performed in order to demonstrate the lack
of bacterial, fungal or mycoplasma contamination and
absence of endotoxins in the DC preparation. The viability
of the final DC preparation before injection should be at
least 75%. The DC preparation should display the typical
morphologic features of DC with maximally 25% of con-
taminating cells. Minimal phenotyping should be per-
formed to ensure that the DC are MHC class I and class II
positive and express the co-stimulatory molecules CD80
and CD86 to some extent. In addition to these minimal cri-
teria, we recommend the examination of additional parame-
ters which give more information about the phenotypical
and functional characteristics of the DC vaccine. Complete
phenotyping provides additional information about the acti-
vation status of the DC (CCR7, CDla, CDl11c, CD40,
CD80, CD83, CD86, CD123, HLA-ABC, HLA-DR) and
the type of contaminating cells (CD3, CD14, CD16, CD19,
CD56). However, it should be mentioned that different cul-
ture media can give rise to phenotypic differences. DC with
a fully mature phenotype maintain their morphological and
phenotypical characteristics after cytokine withdrawal,
which can be examined using the washout test. The T-cell
stimulatory capacity of the DC can be tested using an allo-
MLR (non Ag-specific) or by an Ag presentation assay (Ag
specific). Another characteristic of DC that can influence
the induced T-cell response is their cytokine secretion pat-
tern (IL-6, IL-10, IL-12p70, IFNw,...). Functionally, fully
mature DC can also be characterized by their capacity to
migrate towards the CCR7 ligand CCL19 [60].

Dendritic cells in cancer patients

Some authors have reported alterations in number and phe-
notype of peripheral blood DC as well as functional defects
in freshly isolated DC from the blood of cancer patients
compared to healthy donors. These defects appear to be
more severe in more advanced stages of disease and are
induced by factors secreted by tumor cells (IL-6, IL-10,
TGF-f,, VEGF,...) [200]. This has been described for
patients with AML [112], CLL [124], multiple myeloma
[139], colorectal cancer [50] and breast, head and neck and
lung cancer [5]. This raises the question whether DC gener-
ated from precursors obtained from cancer patients will
also display differences compared to DC from normal
donors. Although several authors have reported no pheno-

typical and functional differences between DC derived
from precursors from cancer patients compared to healthy
donors [10, 88, 201, 203], recently some concerns have
been raised regarding the generation of DC from cancer
patients. Orsini et al. [125] describe that monocyte-derived
DC from CLL patients with active disease display an
abnormal phenotype and functional defects, whereas
monocyte-derived DC from CLL patients in remission
show no differences compared to DC from normal donors,
indicating that patients with minimal residual disease
(MRD) after conventional treatment are the most suitable
candidates for DC immunotherapy. Schiitt etal. [159]
report the efficient generation of monocyte-derived DC in
multiple myeloma patients, but found that their phenotype
can be altered depending on the treatment the patients
received previously. Pedersen et al. [132] show that mono-
cyte-derived DC from breast cancer patients are more acti-
vated but less sensitive to maturation signals compared to
healthy donor-derived DC. However, these DC can mount
Ag-specific T-cell responses in vitro. Makino et al. show
intrinsic abnormalities of monocytes and a defect of DC
differentiation in adult T-cell leukaemia (ATL) patients.
The authors provide evidence that these alterations arise
because of infection with the human T lymphotropic virus
type I (HTLV-1), which is responsible for the induction of
ATL [102]. Furthermore, factors in the patient’s autolo-
gous serum can influence DC generation from precursors
in cancer patients, but this could be easily circumvented
by using serum-free culture conditions [139]. Clearly,
DC generation in cancer patients can be altered, but a lot of
reports have been published where DC from cancer
patients are able to induce Ag-specific immune responses.
It is therefore recommended to carefully test DC generated
from all cancer patients before using them in immunother-
apy trials.

Antigen loading

The ideal target for cancer immunotherapy would be a
TAA which is exclusively expressed in tumor cells and not
in normal tissues, to avoid potential induction of auto-
immunity. A prerequisite for a broad therapeutic potential
in several cancers is the wide expression of the TAA on
different tumor types. In addition, the TAA should be
important for tumor growth and survival, so down-regula-
tion is impossible [71, 202]. Most TAA are self-derived
proteins and thus poorly immunogenic. Nevertheless, DC
loaded with these Ags can be used to initiate Ag-specific T-
cell responses. In recent years a large number of strategies
have been developed to deliver Ags to DC, using defined
epitopes, specific TAA or whole tumor cell material and
employing both viral and non-viral techniques.
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Peptide/protein approaches

The most commonly used protocol for loading Ags onto
DC is pulsing with synthetic peptides. Advantages of this
technique are the ease of manufacturing GMP-grade pep-
tides, obviation of the need for tumor tissue and simplifica-
tion of immunomonitoring. Important drawbacks of this
technique are MHC restriction, the need for identification
of TAA epitopes, low affinity binding of self-derived pep-
tides and lack of CD4* T-cell help (since only a limited
number of CD4 epitopes are known) [194]. The need for
MHC typing and peptide identification can be circum-
vented by using acid-eluted peptides from autologous
tumor cells, but in general the large amounts of tumor
material needed for this procedure are not available. More-
over, tumor cells also present shared self Ags, which could
give rise to unwanted autoimmune responses [51]. In order
to increase the binding affinity of self-derived peptides,
peptide analogues (so-called heteroclitic peptides) can be
generated by modifying the anchor residues which mediate
binding to MHC molecules [130]. However, it was recently
described that vaccination with these heteroclitic peptides
results in poor recognition of endogenous peptides and less
efficient tumor cell killing [170]. CD4* T-cell help can be
obtained by addition of a xenoantigen such as Keyhole
Limpet Hemocyanin (KLH). Along with the discovery of
more CD4 epitopes, the use of long peptides comprising
both CTL and CD4 epitopes has been developed to gene-
rate both Ag-specific CD4* and CD8" T cells for optimal
anti-tumor immune responses [204, 206]. In order to avoid
tumor escape by TAA down-regulation, a mixture of differ-
ent TAA peptides could be loaded onto DC. However, this
could lead to epitope competition which, in turn, can be
easily avoided by loading the different peptides on different
DC batches [127]. In addition, the opposite phenomenon
termed “epitope spreading” where vaccination with a single
TAA epitope results in the induction of T-cell responses
directed against other, non-related TAA, has also been
reported [100].

In order to address some of these issues, purified whole
TAA proteins have been used for loading DC [193]. This
method has the advantage of being independent of the
knowledge of the MHC haplotype of each patient and of
prior identification of defined TAA-derived peptide epi-
topes. Furthermore, multiple immunogenic epitopes can be
processed by DC in the context of both MHC class I and
class II, resulting in both CD4* and CD8" T-cell responses.
However, proteins are only efficiently taken up by iDC;
protein loading should therefore occur in an immature state,
after which maturation has to be induced. In addition,
because of the combined use of standard and immunopro-
teasomes by mDC, some epitopes could be less efficiently
processed and presented to T cells. Proteins can also be
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delivered as immune complexes, enhancing the efficiency
of MHC class I presentation. Antigens can be conjugated to
IgG mAb for uptake by Fc receptors or to Ab targeting
endocytic receptors (mannose receptor, DEC-205, DC-SIGN).
The latter receptors are more DC restricted and can thus be
used for in vivo DC targeting. Furthermore, loading DC
with immune complexes has been shown to bypass the need
for CD4 licensing of DC [137, 160, 175].

Genetic approaches

Problems related to whole protein loaded DC (such as the
intensive process of protein purification) can be overcome
by gene-based delivery of TAA into DC. Advantages are
the ease of cloning genetic constructs and the possibility to
include sequences for improving Ag presentation in both
MHC class I and class II. Furthermore, different TAA can
be simultaneously delivered to DC, thereby broadening the
T-cell repertoire that can be activated. DNA and mRNA
can be delivered as naked strands, but transfection efficien-
cies are enhanced by lipid-mediated transfection or electro-
poration. Transfection of DC with DNA has not met with
great success and important concerns can be raised regard-
ing safety, because DNA can integrate into the host genome
[190, 191]. mRNA delivery to DC proved to be more effec-
tive and safe and is surrounded by significantly less safety
issues, because mRNA is only transiently expressed in the
cells and does not integrate into the genome. Recently, several
groups have developed mRNA electroporation strategies,
resulting in very high transfection efficiencies of DC
[69, 188, 190]. This technique has also been applied to
amplified whole tumor mRNA. Using microscopic amounts
of tumor tissue, total tumor RNA is amplified by a PCR-
based protocol. Thus, this approach can even be applied
when TAA are not defined and only limited amounts of
tumor material are available, giving the opportunity to
induce a broad patient specific immune response against
both known and unknown TAA [16, 118].

Viral gene delivery systems are very efficient strategies
to introduce genetic material into various cell types, inclu-
ding DC. We will only give a brief description of currently
used viral vector systems for DC transduction, a more com-
prehensive overview has been given by Breckpot et al. [26].
As with non-viral gene delivery methods, several TAA can
be combined in one viral vector and target sequences to
obtain Ag presentation in both MHC class I and class II can
be incorporated. A large variety of viral vectors have been
developed and optimized for high-efficiency transduction
of DC: adenovirus, adeno-associated virus, herpes simplex
virus, vaccinia/pox virus, retrovirus and lentivirus. Depen-
ding on the viral system used, great variability exists in the
size of genetic material that can be incorporated, the stabi-
lity of transgene expression, the capability to transduce both
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dividing and non-dividing cells and the viral titres that can
be obtained. Furthermore, large scale production of viral
vectors needs further research. In addition, major concerns
are raised regarding possible effects of viral transduction
on DC phenotype/function, immunogenicity of the virus,
insertional mutagenesis and biosafety; issues which have to
be resolved. Nevertheless, some viral vectors are already
being used in cancer immunotherapy.

Whole tumor approaches

Methods that take advantage of the complete protein con-
tent of the tumor cell, thereby broadening the induced
immune response and avoiding tumor escape, have been
developed, including loading DC with tumor lysate, engulf-
ment of necrotic/apoptotic cells by DC and fusion of DC
with tumor cells. Tumor lysates contain the whole protein
content of lysed tumor cells, which can be loaded on iDC in
the same way as purified proteins. Using this approach,
induction of Ag-specific CD4* and CD8" T cells can be
achieved, but a relatively high amount of tumor cells is
required [21]. Induction of necrosis and apoptosis in tumor
cells can be achieved by mechanical/thermal lysis and UV
irradiation, respectively. However, it is not easy to induce
pure necrotic or apoptotic cell populations and it is still a
matter of debate which type is needed for induction of
immunity. The general concept arising now is that necrotic
cells induce immunity, whereas apoptotic cells induce tol-
erance, because of the lack of DC activation signals. How-
ever, although this is an important issue in vivo, it can be
circumvented by exposing ex vivo generated DC loaded
with apoptotic cells to additional maturation stimuli to
ensure full maturation of the DC [58, 77, 155]. Further-
more, using these techniques, it is essential that every
tumor cell is rendered necrotic/apoptotic, because residual
viable tumor cells in the DC preparation could theoretically
lead to metastatic spread in patients. The requirement for
relatively large amounts of tumor material is another
important drawback. Another attractive approach consists
of fusion of DC with tumor cells, which generates hybrids
expressing the DC characteristics of Ag processing and pre-
sentation together with the unaltered antigenic spectrum of
the tumor cell [87, 147, 185]. Fusion can be obtained by
using either chemical fusogens or electrofusion. However,
until now, simple and reliable protocols to generate a
highly efficient DC-tumor cell fusion are not available and
caution has to be taken regarding the safety of this tech-
nique. As for loading DC with tumor lysates and necrotic/
apoptotic cells, this technique also requires the availability
of a large number of viable tumor cells. An important issue
to take into account when using whole tumor cell-derived
material is the risk of inducing autoimmunity. Furthermore,
evaluation of the immune response becomes more complex.

Another concern relevant to the use of whole tumor cell-
derived material (tumor mRNA, tumor-DC fusions and
possibly also tumor lysates and necrotic/apoptotic tumor
cells) is the risk of transferring immunosuppressive factors
from the tumor cells to the DC, which would generate defi-
cient DC.

A recently developed approach consists of the use of DC
derived exosomes. Exosomes are 50-90 nm vesicles origi-
nating from multivesicular endosomes and contain Ag pre-
senting molecules, adhesion and co-stimulatory molecules,
i.e., the necessary machinery required to generate potent
immune responses. Exosomes need to be transferred to
mDC to promote T-cell activation leading to tumor eradica-
tion. Exosomes pulsed with tumor peptides can success-
fully prime Ag-specific CTL responses [7, 36, 55].

Monitoring the immune response and clinical outcome

Reproducible monitoring of the immunologic outcome of
DC vaccination could facilitate the interpretation of study
results. The establishment of reliable, reproducible and
quantitative assays to evaluate vaccine-induced immune
responses should be regarded as of critical importance [41,
85]. Immunomonitoring methods depend on the vaccine
design: strategies employing defined epitopes, defined
TAA, or undefined Ags need different approaches. Another
issue complicating immunomonitoring of the vaccine-
induced response is the phenomenon of epitope spreading:
even when immunizing with a single peptide, the immune
response can be broadened to other epitopes [30, 143, 192].
Thus, when measuring the immune response after vaccina-
tion, one has to discriminate between anti-vaccine and anti-
tumor T cells. During the course of tumor progression, a
spontaneous anti-tumor T-cell response develops, but these
anti-tumor T cells become inactivated due to tumor-
induced immunosuppression. Upon vaccination, anti-vac-
cine T cells are induced and migrate to the tumor. In some
cases, these anti-vaccine T cells are able to overcome
immunosuppression, thereby destroying local tumor cells
and activating both pre-existing and new anti-tumor T cells
which can eliminate the bulk of the tumor cells. This
concept, introduced by Boon et al., implies that successful
vaccination does not depend on the number of the induced
anti-vaccine T cells, but rather on the production of an anti-
vaccine T-cell clone which is able to migrate to the tumor
and resist local immunosuppressive mechanisms [22, 100].
Thus, besides quantification of the number of anti-vaccine
T cells, it is also important to determine their qualitative
aspect. In principle, the elicited anti-vaccine T cells should
have the ability to migrate to the tumor site, produce cyto-
kines, proliferate after Ag re-exposure and mediate tumor
cell lysis. Therefore, both T cells at the tumor site and in the
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circulation should be analyzed if possible, as the immune
response monitored in the blood does not always reflect the
situation in the tumor [8, 91]. In addition, tumor-specific
T cells should be analyzed by combining different methods
in order to get a complete picture of the induced T-cell
functional profile. Furthermore, if possible, the tumor site
should also be screened for Treg, because intra-tumoral
accumulation of Treg is associated with poor prognosis and
it has been described that certain DC vaccination modalities
can induce/expand Treg [14, 42]. Up to now, a big discre-
pancy has been observed between induced immune
responses and clinical outcome of the patients, which is
probably related to the breadth and quality of the induced
T-cell response, resulting in the frequent observation of
induction of anti-vaccine immune responses in the absence
of an objective clinical response. Thus, either the induced
anti-vaccine T cells in patients lacking a clinical response
are not capable of destroying the tumor, or the tumor-
induced immunosuppressive mechanisms between patients
with and without a clinical response are of a different mag-
nitude. The methods for immunomonitoring described
hereafter are also schematically represented in Fig 3.

Target cells and time schedule for immunomonitoring

When immunizing with DC, it is important to evaluate
immune responses with cellular targets other than DC,
since this could result in significant background responses.
When using peptide-pulsed DC, other target cells expres-
sing the relevant HLA type pulsed with either an irrelevant
peptide or the immunizing peptide can be used (e.g. T2
cells for HLA-A2 restricted peptides). However, with all
other approaches for Ag loading of DC, this method is not
applicable, since the immune response can be directed
against various epitopes (both MHC class I and class II
restricted). In this case, it is recommended to use autolo-
gous APC as targets (e.g. EBV transformed B cells or PHA
blasts), since these cells express all the relevant MHC mol-
ecules. These autologous APC can then be loaded with the

Fig. 3 Schematic overview of
immunomonitoring methods to
characterize the induced T-cell
response. Several assays have
been developed to determine
phenotypical and functional

Ag(s) used for vaccination using one of the approaches
described for loading DC with Ag. However, if possible, it
would be optimal to use a distinct approach as the one used
for Ag loading of DC for vaccination to avoid background.
Perhaps the best target to use, at least for MHC class 1
responses, is the autologous tumor or cell lines derived
thereoff, which is, however, not always available.

Regarding the time schedule at which samples should be
taken for immunomonitoring, comparisons of pre- and
post-vaccination samples are probably most informative,
and should preferably take place concomitantly with the
evaluation of clinical parameters. When the DC vaccine is
repeatedly administered, several samples for monitoring
can also be taken during the course of vaccination. If the
patient is subjected to a follow-up period (either with or
without any further treatment), it is advisable to take sam-
ples for monitoring at later time points as well to address
the induction of a sustained/memory response.

T-cell receptor assessment

A strategy to enumerate the percentage of T cells recogniz-
ing a certain epitope in the context of a defined MHC mole-
cule is by using tetramers. Tetramers are soluble complexes
of recombinant MHC molecules folded in the presence of
antigenic epitopes. MHC class I tetramers are relatively
easy to produce, whereas MHC class II tetramer production
is more challenging. With these reagents, T cells recogniz-
ing specific antigenic epitopes can be enumerated, but it
does not give information about their functional capacity.
However, tetramers can only be used when the patient’s
HLA haplotype is known and screening can only be done
for known TAA epitopes. Tetramer staining can be com-
bined with other techniques, described hereafter, in order to
obtain information about the phenotypical and functional
profile of the T cells [19, 196]. The group of Coulie et al.
developed a tetramer-based mixed lymphocyte peptide cul-
ture (MLPC) approach to carefully estimate the frequency of
peptide-specific CTL. In this assay, PBMC are re-stimulated

| Pre- and post-vaccination T cells |
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twice with peptide and cytokines in limiting dilution condi-
tions. After this culture period the separate cultures are
stained with tetramers and the CTL precursor frequency is
deduced from the proportion of positive wells. Cells from
the positive cultures are subcloned and the growing sub-
clones are then tested for specificity with tetramers and ana-
lyzed further with a variety of techniques to determine their
functional characteristics [70, 83]. Recently, a qRT-PCR-based
method has been developed for clonotypic TCR mapping
by which vaccine-reactive T-cell clones can be identified
and enumerated [82, 157].

Analysis of T-cell phenotype

Analyzing the T-cell phenotype might be valuable to gather
information about the activation status of Ag-specific T
cells. Discrimination of naive and activated/memory CTL
solely on the basis of differential CD45RA/CD45RO
expression has proven to be unreliable, since CD45RA is
also expressed at high levels on stable resting memory
CD8* T cells which did not encounter their cognate Ag for
a long period of time. Further characterization can be
achieved using markers such as CD27 and CD28 and the
lymphocyte migration markers CD62L and CCR7. Table 3
shows the expression profile of these molecules on CD8* T
cells in the naive stage and during the course of activation.
By combining tetramer staining with these cellular markers,
the activation status and homing potential of the antigen-
specific CD8* T cells can be assessed [6, 33, 134, 165].
Treg can be detected through the combined staining of
CD4, CD25, CD127 and Foxp3, together with several other
non-distinctive markers like CTLA-4 and GITR [95, 161].

Measurement of cytokine production

An important parameter of CTL effector function is cyto-
kine secretion. Depending on the stimulus, CTL can pro-
duce a variety of cytokines including IL-2, IL-4, IL-10,
IFN7y and TNFo. Over the years, several assays have been
developed to measure cytokine production after Ag-specific
stimulation. Bulk assays such as ELISA and cytometric
bead array (CBA) measure the total amount of cytokines
secreted by a whole cell population and do not provide

information about the percentage of cells producing these
cytokines [177, 195]. Furthermore, the detection limit of
ELISA is rather high. Newer methods were then developed
at the single-cell level: ELISPOT, cytokine flow cytometry
(CFC) and cytokine capture assays. Using these assays, the
percentage of CD8* T cells secreting a specific cytokine
can be enumerated. In ELISPOT, cytokine secreting cells
are visible as single spots on a nitrocellulose membrane and
the frequency can be calculated from the number of cells
plated [110, 196]. CFC measures the intracellular cytokine
content of individual cells and offers the subsequent advan-
tage of combined evaluation of T-cell phenotype [173,
196]. The above-mentioned assays do not provide the
opportunity to specifically isolate cytokine secreting cells.
Therefore, cytokine capture assays were developed: this
assay uses bispecific antibodies that bind the cell surface
and capture specific cytokines directly after their release by
the cell. These cytokine secreting cells can then be isolated
and either used in other assays or cloned [28]. Recently, a
sensitive functional assay to directly measure CTL anti-
tumor activity by qRT-PCR of cytokine mRNA was devel-
oped [81].

Proliferative capacity

Another characteristic feature of effector T cells is their
capacity to proliferate upon Ag recognition in order to
expand to sufficient numbers. The standard assay used to
measure proliferation consists of the uptake of *H-labelled
thymidine by proliferating cells and subsequent measure-
ment of radioactive signals. This assay, however, does not
provide information on the percentage of proliferating cells,
nor on their phenotype. In order to obviate the need for
using radioactivity, another assay was developed where the
incorporation of 5-bromo-2'-deoxyuridine (BrdU) is mea-
sured by ELISA. BrdU is a pyrimidine analogue and is
incorporated instead of thymidine into DNA of prolifera-
ting cells [107]. In addition, BrdU can be coupled to fluoro-
chromes for FACS analysis. Dilution of carboxyfluorescein
diacetate succimidyl ester (CFSE) is another FACS-based
technique to measure cell division. CFSE fluorescence is
halved upon every division and can be measured by FACS.
Advantages of this technique are the possibility to enumerate

Table 3 CD8* T-cell characterization according to expression of activation markers and chemokine receptors

CCR7 CD62L CD45RO CD45RA CD27 CD28
Naive T cells - +
Tcm» central memory T cells + —
Tgy, effector memory T cells . . + . - .
Temras stable resting Ag-experienced T cells — — - + - —

Central memory T cells home to the lymph nodes, whereas effector memory T cells home to the tissues
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proliferating cells at the single-cell level, which can be
simultaneously evaluated for their expression of other acti-
vation markers. Furthermore, the ability to manipulate the
fluorescence intensity of a stained population allows for the
differential labelling of two or more cell populations and
the technique can be used both in vitro and in vivo [101].

Cytotoxic activity

CTL-mediated cytotoxicity involves three distinct path-
ways: (1) indirect killing through release of cytokines IFNy
and TNFo; (2) induction of apoptosis through Fas—FasL
interactions using FasL expressed by the CTL; (3) direct
killing by secretion of perforin and granzymes into the
intercellular space [6]. A variety of methods have been
developed to measure either total cytotoxicity or one of the
aforementioned aspects in particular. The golden standard
method is the >'Cr release assay, where total lysis of target
cells by CTL is measured. An important drawback however
is that no information is obtained about the actual percen-
tage of lytic cells. Consequently, the Lysispot assay was
introduced where lytic CTL are visualized as single spots
from which the precise percentage of lytic cells can be cal-
culated [164]. Recently, the CD107 assay was shown to be
a very attractive method to calculate the percentage of lytic
CTL. As a marker of degranulation, CD107a/b is tran-
siently expressed on the plasma membrane, and lytic cells
are stained by adding anti-CD107a/b mAbs during culture.
An extra advantage of this technique is that it can be com-
bined with tetramer staining and membrane or intracellular
FACS staining for activation markers and cytokines,
respectively [19]. Other techniques providing information
about speciWc aspects of CTL-mediated cytotoxicity com-
prise membrane staining of FasL and intracellular staining
of IFNc, TNFa, perforin and granzymes.

Delayed type hypersensitivity reaction (DTH test)

The DTH test is a method to assess the anti-tumor immune
response initiated by a vaccine in vivo. The Ag(s) used for
vaccination are injected intradermally into the patient, which
attract immune cells to the sensitization site, leading to indu-
ration and erythema. The extent of induration/erythema is
then a measure for the strength of the immune response, but
this assay is not reliable unless the immune cells invading the
sensitization site are phenotypically and functionally charac-
terized, providing detailed information about the in vivo
immune response against the immunogen(s) [47].

Clinical response

In cancer immunotherapy, as with any cancer therapy, the
desired outcome of any treatment is tumor control (either
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by prolonging the tumor free interval following resection of
all disease, tumor stabilisation or regression). The most
important appraisal for the success of cancer immunother-
apy therefore remains the evaluation of objective clinical
responses. At present most clinical trials with DC vaccines
have been conducted in pretreated advanced-stage patients,
very often with a large tumor volume. In such patients
objective clinical endpoints would be easy to assess but
have been rarely observed. Moreover, DC vaccination
might not be able to induce tumor regression, but might
result in slowing the rate of progression. In addition, these
patients often have a compromised immune system, which
makes them not the ideal patient population to test DC-
based therapy which depends on an effective immune sys-
tem for activity. DC vaccines can also show a delayed onset
of activity, based on the time required to initiate an immune
response. Therefore, patients could show early tumor pro-
gression before eventual tumor regression, which is another
factor complicating the evaluation of the clinical response.
Furthermore, the tumor can also be controlled by the
immune system without complete tumor eradication, in
which case only prolonged survival or time-to-progression
are good criteria for evaluating the clinical response. In less
advanced patients with no or clinically not-evaluable
disease or patients with minimal residual disease (MRD) after
debulking by other approaches, clinical estimation of the
effect of immunotherapy would only be possible by analy-
sis of the time to progression/recurrence and demonstration
of a prolonged overall survival of the patients [76]. In some
specific types of cancer, tumor markers in the blood could
serve as a surrogate (e.g. PSA, idiotype protein, CEA,...).
However, it is important to determine objective criteria
(e.g. the recently proposed Response Evaluation Criteria in
Solid Tumors, RECIST criteria) to evaluate the clinical
benefit, as the use of non-standard criteria can lead to over-
optimistic interpretation of the results [146].

Overview of clinical trials

A substantial number of clinical trials using dendritic cells
has been carried out over the last decade. A recently
updated list of published trials has been made available on
the Internet by the group of Dr. D. Hart (http://www.mmiri.
mater.org.au/). Overall, tumor-specific immune responses
have been frequently observed in patients vaccinated with
DC, but durable clinical responses were exceedingly rare.
In general, results from clinical trials published by different
groups are difficult to compare because of a variety of
reasons: (1) the variability in the type and activation status
of the DC used (blood, CD34- or monocyte-derived DC,
iDC versus mDC, cytokines used for DC generation,...); (2)
the variation in Ag loading methods; (3) the use of different
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immunomonitoring methods; (4) the use of non-objective
clinical criteria, resulting in an over-optimistic representa-
tion of clinical outcome; (5) overall study design (number
of DC injected, route and number of vaccinations,...).
Nevertheless, certain conclusions can be drawn from these
trials. An important overall observation that can be made is
that DC vaccination is safe, as no or only mild and self-lim-
iting adverse effects have been reported in a small number
of patients. We will now discuss in more depth some trials
which highlight aspects that could be important for future
design of clinical trials using DC.

Several trials have assessed the influence of the matura-
tion status of the DC on clinical and immunological
responses. Jonuleit et al. compared GM-CSF/IL-4 mono-
cyte-derived iDC or mDC matured using a cocktail of IL-
1f, TNFo, IL-6 and PGE, loaded with distinct peptides and
recall Ags for vaccination of melanoma patients. Peptide-
specific CTL and recall Ag-specific CD4" T-cell responses
were enhanced when mDC were used for vaccination, indi-
cating that mDC are superior to iDC for use in cancer
vaccination [80]. A study by de Vries et al. reported
vaccination of melanoma patients with either GM-CSF/IL-
4 monocyte-derived iDC or mDC matured with MCM
pulsed with peptides, followed by vaccination with peptides
alone in combination with KLH. KLH-specific cellular and
humoral responses were enhanced when using mDC. DTH
responses were only observed in patients receiving mDC
and T cells isolated from DTH sites showed peptide speci-
ficity. No clinical responses were observed in patients vac-
cinated with iDC (n =8), whereas in patients receiving
mDC (n =9), four had disease progression, three had stable
disease, one showed a mixed response and one showed a
partial response [48]. A recent report by Yamanaka et al.
used GM-CSF/IL-4 monocyte-derived iDC or mDC matured
with OK-432 (a lyophilized mixture of Streptococcus pyog-
enes and benzylpenicillin) pulsed with tumor lysate and
KLH for vaccination of glioma patients. A higher percentage
of patients vaccinated with mDC developed a tumor-specific
DTH reaction and tumor-specific CD8* T cells in blood,
compared to patients receiving iDC. In the group of patients
vaccinated with iDC alone (n = 17), six had stable disease,
nine progressive disease and two showed a mixed response.
In the cohort of patients treated with mDC or mDC com-
bined with iDC (n = 7), there was one partial response, one
mixed response, four patients had stable disease and one
progressive disease. Altogether, results obtained in these
trials clearly indicate that mDC are required for optimal
induction of tumor-specific immune responses in cancer
patients [48, 80, 199]. However, recent evidence indicates
that iDC can still be used for vaccination, when combined
with in vivo maturation approaches [117].

Another variable possibly affecting the effectiveness of
DC vaccination is the route of vaccine administration.

Fong et al. used protein-pulsed DC isolated from blood for
vaccination of metastatic prostate cancer patients by intra-
venous (i.v.), intradermal (i.d.) or intralymphatic (i.l.)
route. All patients developed Ag-specific T-cell prolifera-
tive responses, regardless of the immunization route. TNFa
secretion was only observed after i.v. vaccination, whereas
IFNy was only detected after i.d. and i.l. vaccination. None
of the patients developed an IL-4 response. Ag-specific Abs
were predominantly detected in i.v. treated patients. In con-
clusion, i.d. and i.l. DC vaccination leads to induction of
Thl immunity, whereas i.v. vaccination leads predomi-
nantly to a humoral response [61]. The group of Bedrosian
reported a study in melanoma patients where monocyte-
derived mDC were administered i.v., intranodally (i.n.) or
i.d. Tetramer-positive CD8* T cells were induced/enhanced
in the majority of patients but IFNy production by these T
cells was only seen in 6/7 i.n. treated patients and 2/6 i.d.
treated patients. In the i.v. treated group 4/8 patients had
stable disease and 4/8 had progressive disease. In the i.n.
group, 2/8 patients showed a minor response, 2/8 remained
stable and 4/8 progressed. In the i.d. treated group, 1/10
patients had a minor response, 3/10 had stable disease and
6/10 progressed. These results point to the intranodal route
as the preferred mode of DC injection [15]. Kyte et al.
describe the treatment of melanoma patients with mono-
cyte-derived mDC transfected with autologous tumor RNA
using either i.d. and i.n. injections. Tumor-specific T-cell
proliferation was observed in 6/10 i.d. immunized patients
and 4/12 i.n. immunized patients, whereas tumor-specific
DTH responses developed in 6/10 i.d. treated patients and
2/12 i.n. treated patients. Clinically, in the i.d. treated group
(n=10), two patients had no evidence of disease, one
remained stable and seven progressed. In the i.n. treated
group (n=12) 1 patient was stable and 11 progressed,
which indicates that, in this study, i.d. administration of DC
was more efficient [89]. Recently, Trakatelli et al. reported
immunization of patients with IFNf/IL-3 monocyte-
derived mDC pulsed with peptides via the combined subcu-
taneous (s.c.), i.d. and i.n. routes. DC migration was only
observed after i.d. injection, not after s.c. injection. Peptide-
specific CTL were detected in 3/8 patients and these
patients also showed DC migration. Regarding clinical out-
come, 3/8 patients had no evidence of disease, 1/8 remained
stable and 4/8 progressed [184]. Butterfield et al. compared
i.v. and i.d. administration of peptide-pulsed iDC in mela-
noma patients. Both routes of immunization resulted in
development of peptide-specific T cells in the same per-
centage of patients, but higher levels of IFNy were secreted
by these T cells in the i.d. group. Determinant spreading
occurred in one i.d. treated patient and not in the i.v. group
and this was correlated with the induction of a durable com-
plete response [30]. Altogether, these results indicate that
i.v. injection primarily induces humoral immune responses,
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whereas i.d. and i.n./i.l. injection mediates induction of Th1
immunity. Intradermal DC administration induces DC
migration, as opposed to s.c. injection. Since i.n. adminis-
tration is rather complicated and because i.v. injection is
less effective at inducing Th1 responses, results so far indi-
cate that i.d. administration of DC is probably preferable
for inducing anti-tumor immunity and clinical responses
[15, 30, 61, 89, 184]. However, these results are very pre-
liminary, since only a small number of patients have been
treated in these studies.

As already mentioned, epitope spreading occurring after
vaccination might be an important factor to counteract
tumor escape and elicit durable clinical responses. Brossart
etal. vaccinated seven breast and three ovarian cancer
patients with peptide-pulsed monocyte-derived mDC. Upon
vaccination two patients developed disease stabilization
whereas the others progressed. Ag-specific T-cell responses
developed in five patients, with two of them showing evi-
dence for epitope spreading. These same patients also
showed a period of disease stabilization, suggesting that
epitope spreading could be correlated with clinical response
[27]. The group of Trefzer vaccinated melanoma patients
with irradiated fusions of allogeneic mDC and autologous
tumor cells. Upon vaccination 1/17 patients developed a
complete response, 1/17 developed a mixed response, 6/17
patients remained stable and 9/17 patients progressed.
Tumor-specific CD8* T-cell responses were mounted in 11
patients, 3 of which showed epitope spreading. However, in
all patients analyzed (n = 6) immune evasion was detected,
as tumor cells were found to lose either TAA expression or
molecules of the Ag presenting machinery, or both [185,
186]. These data indicate that the phenomenon of epitope
spreading is often correlated with a positive clinical out-
come and could thus be a predictive factor of vaccination
efficiency [27, 185, 186]. Although these data are promis-
ing, more patients have to be treated in order to be able to
draw definitive conclusions.

The group of Su et al. investigated whether targeting of
the Ag for presentation in both MHC class I and II could
improve anti-tumor immune responses. DC were electropo-
rated with either h\TERT mRNA or LAMP-hTERT mRNA.
After injection, 9/11 hTERT immunized patients and 9/9
LAMP-hTERT immunized patients developed pronounced
inflammatory responses at the injection site. Immune reac-
tions were more pronounced in the LAMP-hTERT group.
hTERT-specific CD8" T cells were detected in the blood of
8/9 hTERT immunized patients and 9/9 LAMP-hTERT
immunized patients. hTERT-specific CD4" T cells were
detected in 6/9 hTERT vaccinated patients, compared to
9/9 LAMP-hTERT vaccinated patients. Furthermore, CD4*
T-cell responses induced in LAMP-hTERT vaccinated
patients were of higher magnitude compared to responses
induced by hTERT vaccination. CTL from LAMP-hTERT
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immunized subjects showed higher lytic activity against
hTERT-expressing targets than CTL from the hTERT
group. In addition, whereas CTL from hTERT immunized
patients developed mainly into effector memory T cells,
CTL from LAMP-hTERT vaccinated patients developed
into central memory T cells. hTERT-specific CD4" T-cell
proliferation was only observed in LAMP-hTERT vacci-
nated patients. Four out of nine patients in the LAMP-
hTERT group had circulating tumor cells, all of which were
transiently reduced during and after vaccination. Six out of
nine patients in the hTERT group had circulating tumor
cells, which were transiently cleared in 5/6 subjects. Alto-
gether, these data suggest that the use of LAMP targeting
can induce more pronounced anti-tumor immune responses
with an improved T-cell memory [171]. These results thus
seem promising and are prompting us to investigate this issue
in larger cohorts of patients to draw further conclusions.

A key obstacle hindering the induction of successful
anti-tumor immune responses by DC vaccination is the
presence of suppressive mediators. One of the factors that
has clearly been implicated in suppression of tumor specific
immune responses are Treg. These cells are able to suppress
Ag-specific effector T cells and were found in elevated
numbers in the peripheral blood of cancer patients com-
pared to healthy volunteers. Furthermore, large numbers of
Treg were found intratumorally. Dannull et al. investigated
whether elimination of Treg using denileukin diftitox/
ONTAK (recombinant IL-2 diphteria toxin conjugate)
could enhance the efficacy of tumor RNA-transfected mDC
vaccines. In this respect, we have to mention that although
Dannull et al. observed a reduction of Treg numbers using
this regimen, this result could not be obtained by Attia and
coworkers [9]. CD8" T-cell responses were increased 2.7-
fold in patients receiving only DC and 7.9-fold in patients
receiving ONTAK and DC. CD4* T-cell responses were
increased 2-fold in patients immunized with DC alone,
compared to 7.2-fold in patients vaccinated with ONTAK
and DC. The results of this study indicate that combination
of Treg depletion by ONTAK and DC vaccination might
lead to improved anti-tumor immune responses [44]. The
group of Holtl et al. investigated whether co-treatment with
cyclophosphamide could enhance the efficacy of vaccina-
tion with allogeneic monocyte-derived mDC pulsed with
tumor lysate and KLH. Although the dose and administra-
tion schedule of cyclophosphamide used here do not mediate
Treg depletion [68], cyclophosphamide could down-regulate
Treg activity. KLH-specific proliferative responses were
only observed when DC vaccination was combined with
cyclophosphamide, whereas tumor-specific responses could
not be detected in any group. In the group receiving DC
alone (n = 11), two patients remained stable and the others
progressed. In the group receiving combined cyclophospha-
mide and DC treatment (n = 7), two patients developed
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a mixed response, one remained stable and four progressed.
These results suggest that combining DC vaccination with
cyclophosphamide administration could be an effective
means to counteract the suppressive effect of Treg on
anti-tumor responses [75]. Although the number of treated
patients was rather low in these studies, results indicate that
either Treg depletion or inactivation combined with DC
vaccination might lead to improved anti-tumor immune
responses [44, 75].

Very few data are available on the role of tumor volume
on the outcome of DC vaccination therapy. It has been pos-
tulated that in patients with large tumor burden active sup-
pressive mechanisms of the tumor prevent the induction of
effective anti-tumor immune responses. A study reported by
O’Rourke and colleagues used the measurement of the S-
100B protein in the blood of stage IV melanoma patients as
a means to estimate tumor burden. They show that patients
with low S-100B concentration (<0.36 pg/ml plasma)
before vaccination show a significantly better survival upon
DC vaccination compared to patients with high S-100B lev-
els before vaccination. Furthermore, patients with initially
low S-100B levels and concomitantly low bulk disease
were shown to have significantly better objective clinical
response rates. Thus, S-100B levels in melanoma patients
could function as a measure for the tumor burden and could
be predictive for the outcome of therapy. The authors pos-
tulate that a large tumor burden prevents the induction of an
anti-tumor response by DC vaccination and suggest that
surgical debulking before DC vaccination could improve
the outcome of DC vaccination [123]. Another study
reported by Tuettenberg et al. compared results of a study
in stage II melanoma patients with MRD at high risk of
relapse with previous results of a study in stage IV mela-
noma patients with large tumors. They point to several
important differences: (1) the strength of DTH responses
obtained in stage Il patients was significantly higher and
longer-lived compared to stage IV patients; (2) although
tumor-specific CD8* T-cell responses were observed in
both stage II and IV patients, the expansion of these tumor-
specific CD8" T cells was much higher in stage II patients;
(3) vaccine-induced IFNy producing effector CD8* T cells
were observed in a larger proportion of stage II patients
compared to stage IV patients. Altogether, vaccination-
induced expansion and differentiation of Ag-specific CD8*
T cells was more prominent in stage II patients [187].
Although preliminary, these results suggest that a large vol-
ume of tumor indeed has a negative effect on the outcome
of DC vaccination. Therefore, surgical debulking before
vaccination to obtain a state of MRD could be advanta-
geous for subsequent DC vaccination.

Although many issues still need to be resolved, the fol-
lowing conclusions can be drawn from the clinical trials
carried out with DC so far. First, the present view is that

mDC need to be used for vaccination. Maturation stimuli
can be provided either in vitro or in vivo. However, consi-
derable controversy still exists about the selection of optimal
maturation stimuli. Second, concerning the immunization
route, the few studies that compared different routes point
to i.d. administration as the preferred method. However,
combining different routes of immunization might also be
beneficial because depending on the location of the tumor a
different injection route might be required [115]. Third, a
whole variety of methods has been used to load DC with
Ags. Immunization with a single antigenic epitope could
lead to the emergence of Ag-loss variants, although it is
now clear that T cells directed towards the immunizing epi-
tope can lead to secondary activation of T cells recognizing
other TAA. Furthermore, the emergence of anti-tumor T
cells or epitope spreading could be predictive for a clinical
response. However, the use of approaches employing
different TAA could select for the most immunogenic
responses and, when a genetic approach is used, the TAA
can be targeted for presentation in MHC class II, thereby
providing CD4* T-cell help. Little is known about the opti-
mal number of vaccinations, but it is generally believed that
repeated injections are beneficial. However, there is little or
no information on the optimal interval between vaccina-
tions [60]. Finally, a number of studies combine DC ther-
apy with other agents. KLH has been frequently used to
provide non-specific CD4* T-cell help, but more recently
other stimuli have been used in conjunction with DC vacci-
nation to either activate DC in vivo (e.g. TLR ligands),
activate the immune system (e.g. cytokines) or attenuate
tumor-induced immunosuppression (e.g. cyclophosphamide,
ONTAK). However, more research is needed to identify
possible advantageous combinatorial therapies.

Concerning the design of clinical studies using DC, min-
imal criteria have to be fulfilled in order to be able to com-
pare different studies and eventually come to a standardized
protocol [60]. The method of vaccine preparation must be
carefully described and it must be indicated if DC vaccina-
tion is combined with other treatments. The studies should
provide precise information on the maturation stimulus
used and the quality of the injected DC. Next, there has to
be a careful description of the route of DC administration,
the number of DC injected, the vaccination schedule and
the time points at which samples are taken for monitoring.
Lastly, a careful description of clinical outcome of all
treated patients together with the results of immunological
monitoring before and after treatment needs to be provided.

Conclusions and future perspectives

Promising results have been obtained with DC vaccination
in mouse models, with induction of both anti-tumor
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immune responses and tumor regression. Initial clinical tri-
als in humans highlight the potential of DC for the induc-
tion of tumor-specific immune responses. Nevertheless,
durable clinical responses have been rarely achieved and
often a correlation between the induction of tumor-specific
immunity and clinical outcome could not be observed.
Several factors might contribute to this discrepancy. First
of all, patients treated up to now generally suffered from
advanced-stage disease, were heavily pre-treated and had
a compromised immune system, which has considerable
impact on the efficacy of DC vaccination. Furthermore,
most patients have excessive, highly vascularized tumor
burden, which may be difficult to reject by T cells induced
by DC vaccination. We should now move to vaccination of
less-advanced patients or even patients with MRD, which
might be the ideal treatment population for DC vaccination.
Another important variable which complicates comparison
of clinical trials is the use of different DC subsets for vacci-
nation. New insights in DC biology are continuously gener-
ated which makes it difficult to standardize the DC
population to be used in cancer trials. Although DC vacci-
nation proved to be safe in the short term in these first trials,
concerns are raised regarding the long-term effect since
it has been described that some DC subsets can induce/
expand Treg. Preferably, DC generated from distinct pro-
genitors and activated using different stimuli should be
compared in small clinical trials in order to define optimal
DC preparations and standardize vaccination protocols.
Maybe a DC vaccine consisting of several DC types could
be developed in order to try to activate all components of
the immune system. The same holds true for the Ag type to
be used for DC loading. Although epitope spreading has
been described when using only one defined epitope for
vaccination, optimal loading strategies should use a broad
spectrum of potential TAA, in order to avoid tumor escape.
Next, immunomonitoring methods used should preferably
be standardized in order to be able to compare immunolog-
ical outcomes for different trials. A broad spectrum of
methods should be used to not only enumerate tumor-spe-
cific effectors, but also to characterize their activation status
and functional properties. Furthermore, in order to fully
characterize the immune response, it is important to analyze
both T cells in the circulation and at the tumor site, since
important phenotypical and functional differences were
found, which might in part explain the lack of clinical
efficacy of DC vaccination. One important contributing fac-
tor is probably the existence of a suppressive tumor micro-
environment. Several mechanisms cooperate to establish
this tumor-induced immunosuppression. Tumor cells dis-
play an over-consumption of glucose, leading to glucose
deprivation which could inhibit effector T-cell functions.
B7-H1/PD-L1 expression by human tumors leads to inhibi-
tion of T-cell responses through interaction with PD-1 on
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activated T cells. Tumors show an elevated expression of
COX-2, leading to secretion of PGE, which inhibits T-cell
effector functions. Indoleamine 2,3-dioxygenase (IDO) is
frequently expressed and activated in tumor cells, which
leads to tryptophan deprivation and production of toxic
metabolites, causing cell-cycle arrest and T-cell death.
Myeloid suppressor cells (MSC) are present in various
tumors and express Arginase I and the inducible nitric
oxide synthetase (iNOS), which lead to arginine depriva-
tion and the production of toxic O and NO radicals within
the tumor. Soluble immunosuppressive mediators (TGF-f,
VEGF, IL-10, IL-23) are present within the tumor microen-
vironment and interfere with effective T-cell function.
Finally, Treg are recruited and/or induced in tumors and
exert direct immunosuppressive effects on effector T cells.
Therefore, it will probably be advantageous to combine DC
vaccination with agents tackling these immunosuppressive
mechanisms. Among these agents are blocking Abs (PD-1/
B7-H1, TGF-f, VEGF, IL-10, IL-23), enzyme inhibitors
(IDO, Arginase I, iNOS) and strategies to eliminate or
inhibit Treg (low-dose chemotherapy, ONTAK, CTLA-4
blockade, TLR8 stimulation) [35, 40, 64, 74, 96, 114].
Thus, in a first stage it is necessary to gather more informa-
tion about the variety of escape strategies used by tumors.
In the next step, we can identify which mechanism(s) is
used by the tumor of individual patients in order to select
for each patient the most appropriate approach to counter-
act tumor escape.

It has become clear that, in order to eradicate large
tumors, a combination of vaccination approaches targeting
several aspects of the immune system is necessary: (1)
adoptive transfer of tumor-specific T cells to directly attack
the tumor; (2) TAA-expressing DC to induce tumor-spe-
cific effector and eventually memory T cells; (3) inter-
ference with the suppressive tumor microenvironment; and (4)
administration of immune-activating cytokines (GM-CSF,
IFNa, IL-2, IL-15, TNFa...).

In conclusion, DC vaccination has proved to be very safe
and can induce tumor-specific immune responses. How-
ever, objective clinical responses so far have been scarce.
Further optimization of several parameters is needed,
including defining the preferred DC type and the optimal
Ag loading technique, which will eventually all lead to a
standardized DC vaccine. Efforts should also focus on the
combination of DC vaccination with other therapies, to fur-
ther enhance clinical efficacy.
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