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Abstract Nine interferon regulatory factors (IRFs) com-
pose a family of transcription factors in mammals.
Although this family was originally identiWed in the context
of the type I interferon system, subsequent studies have
revealed much broader functions performed by IRF mem-
bers in host defense. In this review, we provide an update
on the current knowledge of their roles in immune
responses, immune cell development, and regulation of
oncogenesis.
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Introduction

The mammalian interferon regulatory factor (IRF) family
of transcription factors comprises nine members: IRF1,
IRF2, IRF3, IRF4/PIP/LSIRF/ICSAT, IRF5, IRF6, IRF7,
IRF8/ICSBP, and IRF9/ISGF3� (Table 1) [1, 2]. IRFs were
Wrst characterized as transcriptional regulators of type I
interferon (IFN) and IFN-inducible genes, but recent stud-
ies have revealed that this family plays a pivotal role in the
regulation of host defense beyond its function in the IFN
system.

All IRF proteins possess an amino (N)-terminal DNA
binding domain (DBD) that is characterized by a series of
Wve well-conserved tryptophan-rich repeats [1, 2]. The
DBD forms a helix-turn-helix domain and recognizes DNA

similar in sequence to the IFN-stimulated response element
(ISRE, A/GNGAAANNGAAACT). 5�-GAAA-3� is the core
sequence shown to be recognized by the helix-turn-helix of
IRF1 bound to the PRDI of the IFN-� enhancer. Moreover,
a subsequent crystal structure analysis between the IRF2
DBD bound to a tandem repeat of GAAA revealed that
5�-AANNGAAA-3� is the consensus IRF recognition
sequence [3].

The carboxy (C)-terminal regions of IRFs are less well
conserved and mediate interactions with other IRF mem-
bers, other transcriptional factors, or cofactors, thereby con-
ferring speciWc activities upon each IRF. Even so, two
types of association modules have been identiWed within
the C-terminal region of certain IRFs [4]: IRF-associated
domain 1 (IAD1) [1], which is conserved in all IRFs except
IRF1 and IRF2 and possesses structural similarities with
the Mad-homology 2 (MH2) domains of the Smad family
of transcription factors; and IAD2 [2], which is shared by
IRF1 and IRF2 only. The nature of the protein–protein
interaction dictated by these domains may determine
whether the protein complex functions as a transcriptional
activator or repressor, and deWne the nucleotide sequences
adjacent to the core IRF binding motif to which the protein
complex binds. For example, IRF9 acts as a DNA-binding
subunit in association with signal transducer and activator
of transcription 1 (STAT1) and STAT2 forming the ISGF3
heterotrimeric complex in response to type I IFN, which
activates transcription through binding to ISREs [1, 2].
IRF8 can only bind to DNA in association with a partner
protein, where IRF8-IRF1 complex generally acts as a tran-
scriptional repressor on ISREs, and IRF8-PU.1 complex an
activator on DNA elements composed of core IRF- and Ets-
binding sites (also see below). IRF1, IRF3, and IRF7 par-
ticipate in the formation of a large protein complex called
an IFN-� enhanceosome/DRAF1 that also includes nuclear
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factor-�B (NF-�B), activator protein 1 (AP1), and co-acti-
vators CREB binding protein (CBP)/p300 to activate tran-
scription of the IFN-� gene [5, 6].

In this review, we summarize the current knowledge of
how IRFs contribute to the host defense, namely innate
immune responses, immune cell development, and tumor
suppression. Related review articles on IRFs published
elsewhere are cited here [6–10].

Regulation of innate immune responses by IRFs

Detection of invading pathogens is a cardinal function of
the host immune system. A limited repertoire of germline-

encoded receptors called pattern recognition receptors
(PRRs) is utilized by the innate immune system to recog-
nize invariant pathogen-associated molecular patterns
(PAMPs) present on potential pathogens such as bacteria
and viruses [11]. Thus far, two broad classes of PRRs, cyto-
solic PRRs and membrane-bound Toll-like receptors
(TLRs), have been identiWed [7, 11, 12]. Though dependent
on the nature of the pathogen and host cell type, engage-
ment of PRRs by PAMP typically results in the expression
of type I IFNs, proinXammatory cytokines and chemokines.
Of the cellular signaling pathways that link receptor
activation and gene induction, nuclear factor-�B (NF-�B)
is the best characterized and one of the most important
given that is activated by almost all PRRs. In recent years,

Table 1 Basic features of IRF members

IRF Chromosome 
(human)

Amino acids Expression Localization and modiWcation

Human Mouse

IRF1 5q31.1 325 329 Constitutive and IFN-inducible 
in various cell types

Mainly in the nucleus 
and partially in the cytoplasm

Inducible by DNA damage 
at transcriptional 
and posttranslational levels

ModiWed by TLR signaling 
to eYciently translocate 
to the nucleus

IRF2 4q34.1-q35.1 349 349 Constitutive and IFN-inducible 
in various cell types

Mainly in the nucleus

IRF3 19q13.3-q13.4 427 419 Constitutive in various cell types Mainly in the cytoplasm

Phosphorylated upon virus infection, 
TRIF-dependent signaling, 
cytosolic PRR signaling 
and DNA damage and then 
translocates to the nucleus

IRF4 6p25-p23 451 450 Constitutive in B cells, M�s, 
CD11b+ DCs and pDCs

Mainly in the nucleus and 
partially in the cytoplasm

Inducible by antigen stimulation 
in T cells and by TLR signaling 
in M�s

IRF5 7q32 488 497 Constitutive in B cells and DCs Mainly in the cytoplasm

Inducible by type I IFNs, TLR signaling 
and DNA damage in various cells

Phosphorylated upon virus infection, 
TLR signaling and DNA damage, 
and then translocates to the nucleus

IRF6 1q32.3-q41 467 467 Constitutive in skin Mainly in the cytoplasm

Phosphorylated and ubiquitinated 
when stimulated to enter cell cycle

Translocates from the cytoplasm 
to the nucleus upon poly(rI:rC) treatment

IRF7 11p15.5 503 457 Constitutive in B cells, pDCs and monocytes Mainly in the cytoplasm

Inducible by type I IFNs in various cell types Phosphorylated upon virus infection 
and MyD88-dependent signaling, 
and then translocates to the nucleus

IRF8 16q24.1 426 424 Constitutive in B cells, M�s, 
CD8�+ DCs and pDCs

Mainly in the nucleus and 
partially in the cytoplasm

Inducible by IFN-� in M�s and 
by antigen stimulation in T cells

IRF9 14q11.2 393 399 Constitutive and inducible 
by IFN-� in various cell types

Mainly in the nucleus
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an extensive number of studies have revealed important and
interesting functions for IRFs in most PRR signaling events
(Table 2).

IRFs in cytosolic PRR signaling

IRF3, IRF7, and other IRFs in RIG-I/MDA5 signaling

Two RNA helicase enzymes, retinoic acid-inducible gene-I
(RIG-I) and melanoma diVerentiation-associated gene 5
(MDA5), are essential cytosolic receptors for the detection
of RNA, in particular uncapped 5�-triphosphate RNA and
double stranded (ds)RNA including poly(rI:rC) [13–16].
Both helicases contain a C-terminal DExD/H box RNA
helicase domain, responsible for the detection of viral
RNA, as well as two N-terminal caspase-recruitment and
activation domains (CARDs) which activate downstream
signaling pathways. The adaptor molecule that links the
sensing of viral RNA by RIG-I or MDA5 to downstream
signaling is IFNB-promoter stimulator 1 (IPS-1, also
known as VISA, MAVS or Cardif) [12]. IPS-1 contains an
N-terminal CARD domain that mediates CARD–CARD
interactions with the CARDs of RIG-I and MDA5 to trans-

mit downstream signaling. IPS-1 relays signals from RIG-I
and MDA5 to TANK-binding kinase 1 (TBK1) and inhibi-
tor of NF-�B kinase � (IKK�) that are known to phosphory-
late IRF3 and IRF7 [17, 18].

IRF3 and IRF7, the two IRFs with the greatest sequence
homology to one another, are essential for the RIG-I/
MDA5-mediated type I IFN gene induction pathway. IRF3
and IRF7 initially reside in latent form in the cytosol of
uninfected cells. Upon virus infection, RIG-I- or MDA5-
activated TBK1 phosphorylates IRF3 at Ser396, 398, 402,
404, and 405 in site 2 of the carboxy (C)-terminal regulatory
region, which alleviates auto-inhibition and permits IRF3
nuclear translocation and interaction with the coactivator
CBP. CBP then facilitates phosphorylation of Ser385 or
Ser386 at site 1 within the regulatory region, permitting IRF
dimerization [19, 20]. A similar mechanism involving IRF7
is presumed to occur. As a result, a holocomplex containing
dimerized IRF3 and IRF7, either as a homodimer or hetero-
dimer, and coactivators such as CBP or p300 is formed in
the nucleus [6]. This holocomplex binds to target ISRE
DNA sequences within the promoters of type I IFN genes.

In addition, IRF5 is also involved in the RIG-I signaling
pathway [21, 22]. IRF5 translocates from the cytoplasm to

Table 2 A summary of the role for IRFs in immune responses

IRF Roles in immune responses Proteins encoded by target genes

IRF1 Stimulates expression of IFN-inducible gene GBP, iNOS, Caspase-1, Cox-2, 
CIITA, TAP1, and LMP2

Binds to MyD88 and enhances TLR-dependent 
gene induction in IFN-�-treated cells

IFN-�, iNOS, IL-12p35 and IL-12p40

IRF2 Attenuates type I IFN responses by 
antagonizing IRF1 and IRF9

Represses many IFN-inducible genes

IL-12p40 and Cox-2

In some cases, cooperates with IRF1 to activate transcription

IRF3 Induces type I IFNs and chemokines upon virus infection, 
TLR stimulation and cytosolic DNA stimulation

IFN-�4, IFN-�, and CXCL10

IRF4 Binds to MyD88 and negatively regulates TLR-dependent 
induction of proinXammatory cytokine genes

Indirectly represses induction 
of cytokine genes, such as 
IL-12p40, IL-6, and TNF-�

IRF5 Binds to MyD88 and positively regulates TLR-dependent 
induction of proinXammatory cytokine genes

IL-12p40, IL-6, and TNF-�

Induces type I IFNs and proinXammatory cytokines 
upon virus infection

Type I IFNs, IL-6, and TNF-�

IRF6 Unknown, but translocates from the cytoplasm 
to the nucleus upon poly(rI:rC) treatment

IRF7 Binds to MyD88 and induces type I IFNs 
upon TLR signaling

Type I IFNs

Induces type I IFNs upon virus infection

IRF8 Binds to TRAF6 and is required for 
TLR9-signaling in DCs

Stimulates IFN-�- and PAMP-inducible genes IL-12p40, iNOS, Fc�RI, PML and others

Promotes type I IFN production in DCs Type I IFNs

IRF9 Binds to STAT1 and STAT2 to form ISGF3 
and stimulates type I IFN-inducible genes

OAS, PKR, IRF7, and many others
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the nucleus upon infection by vesicular stomatitis virus
(VSV) or Newcastle disease virus (NDV) [21, 23]. Indeed,
Irf5¡/¡ mice show a reduction in the serum levels of type I
IFN when challenged with these RNA viruses [21, 22].
Moreover, Irf5¡/¡ mice are highly vulnerable to VSV
infection [21]. However, because Irf5¡/¡ macrophages
(M�s) are defective in the production of type I IFNs by
VSV while Irf5¡/¡ MEFs are not (possibly due to a higher
expression of IRF5 in hematopoietic cells), there is a cell
type-speciWc requirement for IRF5. In addition, Irf5¡/¡

mice show reduced levels of proinXammatory cytokines,
such as interleukin-6 (IL-6) and tumor necrosis factor �
(TNF-�) upon virus infection [21, 22]. The precise mecha-
nism by which IRF5 is activated by RIG-I and the nature of
IRF5’s contribution to the transcriptional regulation of type
I IFN and proinXammatory genes remains poorly under-
stood. Nevertheless, like IRF3 and IRF7, IRF5 can be phos-
phorylated by TBK1 [24].

IRF8 is also required for type I IFN induction in virus-
stimulated DCs [25]. IRF8 appears to be involved in the
transcriptional regulation of type I IFN genes; IRF8 binds
to the promoters of IFN-�/� genes and is required for the
second, amplifying phase of IFN transcription.

IRF3 and IRF7 in cytosolic DNA-mediated signaling

In addition to the cytosolic RNA-sensing mechanisms,
recent attention has been focused on characterizing cyto-
solic DNA-sensing systems as they can also evoke pro-
tective and pathological immune responses. Indeed,
cytoplasmic recognition of bacterial genomic DNA from
Listeria monocytogenes results in IFN-� induction through
the TBK1-IRF3 pathway [26]. Moreover, the transfection
of cells with synthetic dsDNA, such as poly(dA-
dT)·poly(dT-dA) (termed B-DNA hereafter), results in the
induction of type I IFN in the absence of all TLR signaling
[26, 27]. These observations indicate the presence of a
cytosolic DNA sensor(s) that can independently initiate
innate immune responses, including the induction of type I
IFN genes. B-DNA stimulation results in the activation of
IRF3 and NF-�B signaling pathways [27]. A required role
for IRF3 is demonstrated by the observation that the B-
DNA induction of IFN-� was abolished in Irf3¡/¡ MEFs,
but was normal in Irf7¡/¡ or Irf5¡/¡ MEFs [28]. The induc-
tion of IFN-�, however, requires both IRF3 and IRF7, since
both Irf3¡/¡ and Irf7¡/¡ MEFs showed an impairment in its
induction.

A candidate DNA sensor called DNA-dependent activa-
tor of IRFs (DAI), also known as DLM-1 or Z-DNA binding
protein 1 (ZBP1), has been identiWed and characterized [28].
More recent studies indicate the presence of additional DNA
sensors that either positively or negatively regulate cytosolic
DNA-mediated innate immune responses [29, 30]. In

addition, a new adaptor protein termed stimulator of inter-
feron genes (STING)/mediator of IRF3 activation (MITA)
has been reported [31, 32]. STING/MITA forms a complex
with IPS-1, TBK1 [31, 32], and IRF3 [32]. The induction of
dsDNA-mediated type I IFN gene expression is markedly
impaired in STING/MITA-deWcient MEFs [31]. These
observations indicate that STING/MITA functions as an
adaptor that links IPS-1 to TBK1 and the activation of IRF3
following cytosolic DNA-mediated signaling.

IRFs in TLR signaling

TLRs and their adaptors

To date, 13 diVerent TLRs (10 in human and 12 in mice)
have been identiWed which recognize a variety of PAMPs
derived from bacteria, virus, fungi, and/or protozoa and
trigger immune responses including the induction of proin-
Xammatory and type I IFN genes [12, 33, 34]. Distinct from
cytosolic receptors, TLRs are membrane-bound type recep-
tors that utilize adaptor proteins TRIF (TIR-domain-
containing adaptor protein inducing IFN and also called
TICAM1) or MyD88 (myeloid diVerentiation primary-
response protein 88) to activate NF-�B and IRF transcrip-
tion factors.

IRF3 and IRF7 in the TRIF-dependent pathway

Both TLR4 and TLR3 utilize the TRIF adaptor protein to
activate IRF3 to induce type I IFN [6, 12]. TLR4 is a cell
surface receptor that recognizes LPS from gram-negative
bacteria, and F (fusion) protein of the respiratory syncytial
and Moloney murine leukemia viruses [12]. Albeit weakly,
TLR4 signaling results in the induction of the genes encod-
ing IFN-� and IFN-�4 but not other IFN-� genes [35, 36].
Upon stimulation with LPS, IFN-� expression is absent in
Irf3¡/¡ DCs, but is nearly normal in Irf7¡/¡ cells [37, 38].
These Wndings are consistent with the observation that
Irf3¡/¡ mice are resistant to LPS-induced endotoxic shock
[36]. Thus, in a mechanism similar to the RIG-I pathway,
TLR4-induced expression of IFN-� is primarily mediated
by TBK1-activated IRF3, rather than by IRF7.

TLR3 is located within the membranes of endosomes
and phagosomes, and in addition to the synthetic dsRNA
analog poly(rI:rC) likely recognizes viral dsRNA derived
from either dsRNA viruses or as replication intermediates
from ssRNA viruses [7, 12]. TLR3 is also involved in the
defense against infection by some DNA viruses (such as
murine cytomegalovirus and herpes simplex virus) or para-
sites [39–42], suggesting that ligands other than dsRNA
might also be recognized by TLR3. The activation of
TLR3, like TLR4, can induce type I IFN expression via a
TRIF- and TBK1-dependent signaling pathway [12]. IRF3
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plays an essential role in this induction [43, 44]. However,
a weak induction of type I IFN mRNAs by poly(rI:rC) was
still observed in Irf3¡/¡ DCs. This residual induction was
completely abolished in IRF3 and IRF7 doubly deWcient
DCs (T. Taniguchi, unpublished observation). Therefore, in
contrast to TLR4, IRF3 and IRF7 are both required for the
maximal induction of TLR3-TRIF-mediated I IFN gene
expression.

IRF7 in the MyD88-dependent signaling pathway

Plasmacytoid dendritic cells (pDCs) are deWned by their
massive expression of IFN-�/� and, unlike conventional
DCs and MEFs, express high amounts of TLR7 and TLR9
in endosomes. In response to ligands for TLR7 and TLR9,
pDCs release large amounts type I IFNs. TLR7 is activated
upon binding to genomic ssRNA of ssRNA viruses, while
TLR9 responds to unmethylated CpG DNA motifs present
in bacteria and DNA viruses [12]. TLR9 and TLR7 exclu-
sively utilize MyD88 as its signaling adaptor [12].

IRF7, but not IRF3, directly interacts with the death
domain of MyD88 [45, 46] and is essential for the robust
MyD88-dependent IFN gene induction in pDCs. Upon
infection by DNA and RNA viruses (HSV and VSV,
respectively) or treatment with synthetic TLR ligands
(CpG-A and ssRNA), splenic pDCs derived from Irf7¡/¡

mice exhibit a profound defect in type I IFN gene induction
while the induction is normal in Irf3¡/¡ pDCs [37]. IRF7
also interacts with TRAF6 whose overexpression induces
type I IFN genes through the activation of IRF7 [45].
IRAK1 and IRAK4, the signal transducers between MyD88
and TRAF6, are required for TLR9-mediated IFN-� induc-
tion in pDCs, and IKK� is essential for the phosphorylation
of IRF7 [47]. Therefore, it is likely that the IRAK4-IRAK1-
IKK� kinase cascade, known to be operational in the NF-
�B activation pathway, also leads to IRF7 activation.

IRF5 in TLR signaling

In addition to IRF7, IRF5 also interacts with MyD88 and
TRAF6 [48]. Unlike IRF7, which binds to the death domain
of MyD88, IRF5 interacts with the central region (the inter-
mediary domain and part of the TIR domain) of MyD88. In
response to TLR9 activation, IRF5 translocates from the
cytoplasm to the nucleus where it binds to ISREs within
promoters of target genes. In particular, the expression of
proinXammatory cytokines is impaired in Irf5¡/¡ M�s and
conventional DCs following stimulation with various TLR
stimuli. This is consistent with the observation that Irf5¡/¡

mice show resistance to lethal endotoxin shock induced by
CpG-B or LPS [48]. Furthermore, IRF5 is required for the
full induction of type I IFN genes in pDCs when stimulated
with relatively low doses of TLR7 and TLR9 ligands [49].

The detailed mechanism for the activation of IRF5 is still
not well understood, but a recent study suggests that
TRAF6-mediated K63-linked ubiquitination is important
for IRF5 nuclear translocation in TLR7/9-MyD88-depen-
dent signaling [50]. Moreover, phosphorylation of serine/
threonine residues in a C-terminal autoinhibitory region is
shown to be important for dimer formation of IRF5 and
interaction with CBP/p300 in the nucleus [51]. Recent stud-
ies suggest an association between polymorphisms of the
human IRF5 gene and autoimmune diseases, especially sys-
temic lupus erythematosus (SLE) [52], although further
studies are needed to fully address if and how IRF5 contrib-
utes to the development of the disease in the context of
TLR signaling.

IRF1 in the MyD88 signaling pathway

IRF1 also directly interacts with the central region (the
intermediary domain and part of the TIR domain) of
MyD88 [53]. Although type II IFN (IFN-�) strongly
induces IRF1 transcription, it is insuYcient to fully activate
IRF1. Rather, TLR9 engagement causes a MyD88-depen-
dent “IRF1 licensing” event to occur in which IRF1 is post-
translationally modiWed to migrate into the nucleus more
eYciently than non-MyD88-associated IRF1. IRF1 is criti-
cal for the IFN-� enhancement of a TLR-dependent gene
induction program. This is underscored by the observation
that Irf1¡/¡ conventional DCs and M�s stimulated with
IFN-� plus CpG are impaired in their induction of genes
encoding IFN-�, inducible NO synthase (iNOS), and IL-
12p35 [53]. IRF1 was also recently found to be required for
TNF-�-mediated IFN-� gene induction in M�s [54].

IRF4, IRF8, and IRF6 in TLR signaling

Studies have demonstrated a role for IRF4 in the negative
feedback regulation of TLR signaling. Upon TLR activa-
tion, Irf4 mRNA is induced, and IRF4 protein principally
localizes in the nucleus. However, a signiWcant fraction
also exists in the cytoplasm where it co-localizes with
MyD88 [55]. Since IRF4 binds to the same region of
MyD88 that IRF5 binds, TLR-induced IRF4 can compete
with and inhibit the sustained activity of IRF5. Consistent
with its role as a negative regulator of TLR signaling, TLR-
induced proinXammatory cytokines are enhanced in Irf4¡/¡

cells and Irf4¡/¡ mice are highly sensitive to endotoxic
shock induced by CpG-B [55, 56]. As the expression of
IRF4 is restricted to immune cells, particularly B cells,
T cells, M�s, and DCs, IRF4 may selectively control
MyD88-dependent gene regulation in a cell type-speciWc
manner. A recent report has suggested a regulatory role for
IRF4 in inXammatory bowel diseases (IBD). Activation of
nucleotide-binding oligomerization domain 2 (NOD2)
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signaling by its ligand muramyl dipeptide protects mice
from dextran sodium sulfate-induced experimental colitis
via the upregulation of IRF4 which then inhibits TLR2 and
subsequent Th1 responses [57]. It should be noted, how-
ever, that IRF4 appears to have a dual function. In a mouse
model of IBD whereby colitis is induced in RAG-deWcient
mice by transplantation of CD4+CD45RBhi T cells, IRF4 in
T cells is required for the production of IL-6 in gut mucosa
and the induction of severe colitis [58]. IRF4 is also
required for trinitrobenzene sulfonic acid- and oxazolone-
induced experimental colitis in mice, and IBD patients
display increased IRF4 expression levels in lamina propria
T cells [58].

IRF8 is also an immune cell-speciWc IRF family mem-
ber. Although IRF8 does bind to TRAF6 [59], it has not
been shown to bind to MyD88 [55]. Its interaction with
TRAF6 suggests that IRF8 functions in the cytosol. In DCs,
IRF8 participates in the TLR9-MyD88-dependent signaling
pathway; Irf8¡/¡ DCs fail to produce proinXammatory
cytokines such as TNF-� and IL-6 upon stimulation with
CpG DNA. Interestingly, data in which Irf8¡/¡ DCs do not
activate NF-�B in response to TLR9 stimulation suggest
that IRF8 acts upstream of NF-�B [60]. In the nucleus,
IRF8 is required for the expression of the gene encoding
IL-12p40 upon various PAMP stimuli in M�s and DCs [9,
61–63], and for the induction of type I IFN genes by viruses
and TLR ligands in DCs [25].

Although the precise role of IRF6 in immune
responses is still largely unknown, it does translocates
from the cytoplasm to the nucleus upon poly(rI:rC) treat-
ment [64].

Viral factors aVecting IRFs

Many viruses have evolved mechanisms to counteract the
activity of the host immune response. Given the diverse and
potent eVects of IRFs on the immune system, it is not sur-
prising that these transcription factors and their activation
pathways are the target of viral immune disturbance.

Vaccinia virus-encoded proteins N1L and K7 antago-
nize TLR signaling at the level of IKKs and TBK1, and
DEAD box protein 3 (Ddx3), respectively [65, 66]. Hep-
atitis C virus (HCV) encodes nonstructural proteins 3
and 4A (NS3/4A) protease that cleave IPS-1 and TRIF,
thereby inhibiting the activation of IRF3 and/or IRF7
during HCV infection [67, 68]. Rotavirus nonstructural
protein 1 (NSP1) mediates the degradation of IRF3,
IRF5 and IRF7 [69, 70]. Kaposi’s sarcoma-associated
herpesvirus (KSHV)/human herpes virus 8 (HHV8)
encodes replication and transcription activator (RTA),
an ubiquitin E3 ligase that promotes IRF7 ubiquitination
and proteasome-mediated degradation [71]. Further-
more, KSHV encodes a cluster of three viral IRFs

(vIRFs), vIRF1, vIRF2, and vIRF3/latency-associated
nuclear antigen 2 (LANA2) [72, 73]. All vIRFs show
homology in their N-terminal regions to the DNA bind-
ing domain of IRFs but lack several of the tryptophan
residues that are essential for DNA binding and thus, in
contrast to cellular host IRFs, are presumed to be unable
to directly bind to DNA. Although its precise mecha-
nism has not been elucidated, vIRF1 is known to func-
tion as a repressor of virus-mediated induction of type-I
IFN genes in a transient transfection assay [74–76].
Additionally, vIRF2 and vIRF3/LANA2 inhibit the acti-
vation of promoters of IFN genes, which may involve
interference with host IRFs. Indeed, vIRF3/LANA2
binds to and inhibits the DNA binding activity of IRF7
and IRF5 [77–79].

While these viral proteins are presumed to contribute to
the persistence of viral infections, they are also risk factors
for virus-induced carcinogenesis. The regulation of onco-
genesis by IRFs is discussed in more detail in a latter sec-
tion. Epstein-Barr virus (EBV) latency has been associated
with various human cancers [80]. EBV-encoded latent
membrane protein (LMP)-1 is a viral protein that trans-
forms B lymphocytes into a proliferating lymphoblastoid
cell line. LMP-1 is demonstrated to induce the expression
of IRF7 and activate IRF7 through receptor-interacting pro-
tein (RIP)-1 and TRAF6 [81–83]. Since IRF7 has been
shown to promote the anchorage-independent growth of
NIH3T3 cells and LMP-1 has an additive eVect on the
growth of these cells, LMP-1-mediated activation of IRF7
is thought to potentiate the EBV transformation process
[83].

Human papilloma virus (HPV) is a causative agent in
the etiology of cervical dysplasia and cervical cancer
[84]. The high-risk types of HPV (HPV-16 and HPV-18)
encode two viral oncogenes, E6 and E7, which inacti-
vate cellular tumor suppressor proteins. E6 protein binds
to p53 and promotes its proteolysis, whereas E7 protein
binds to the hypophosphorylated form of Rb and inter-
feres with its binding to E2F [84]. Furthermore, these
HPV oncoproteins also target IRF family members and
inhibit their activities. E6 and E7 oncoproteins interfere
with IRF3-mediated type I IFN gene induction and
IRF1-mediated antioncogenic activity, respectively,
thereby overcoming host immunity against cervical
tumor development [85, 86].

Regulation of immune cell development by IRFs

In addition to the functions assigned to IRFs in diVerenti-
ated immune cells, studies have revealed pivotal roles for
multiple IRFs in the development of various immune cells
(Table 3).
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IRFs in the development of dendritic cells

Dendritic cells (DCs) are crucial in the initiation of innate
and adaptive immune responses. Upon sensing invading
pathogens through PRRs, they typically secrete a variety of
cytokines and up-regulate the expression of major histo-
compatibility complex (MHC) II and costimulatory mole-
cules on their cell surfaces. As professional antigen
presenting cells (APCs), DCs also process captured anti-
gens and present antigenic peptides on MHC molecules to
T cells, thereby eliciting Th responses or inducing toler-
ance. It is important to note that DCs are a heterogeneous
population comprised of multiple cellular subtypes that
express diVerent sets of genes and manifest extensive and
distinct functions. Mouse splenic DCs are classiWed into at
least four subsets: CD4+ DCs, CD8�+ DCs, CD4¡CD8�¡

(double negative, DN) DCs, and plasmacytoid DCs (pDCs).
Within various DC cell types the expression of IRF8 and

IRF4 is varied [87–89]. IRF8 is highly expressed in CD8�+

DCs, a subpopulation of DN DCs, and pDCs, while IRF4 is
expressed in CD4+, DN DCs and pDCs. Analysis of Irf8¡/¡,
Irf4¡/¡ and Irf8¡/¡Irf4¡/¡ (DKO) mice reveal that the
above pattern of IRF8/IRF4 expression correlates with their
requirement for DC subset development [62, 87–90]. Thus,
IRF8 is essential for the generation of CD8�+ DCs, while

IRF4 is required for that of CD4+ DCs. Both IRFs support
the development of DN DCs. IRF8 and, to a lesser degree,
IRF4 contribute to pDC development. It was also shown
that fms-like tyrosine kinase 3 ligand (Flt3L)-mediated DC
diVerentiation in vitro depends mainly on IRF8, whereas
granulocyte macrophage colony-stimulating factor (GM-
CSF)-mediated diVerentiation depends on IRF4 [87, 88].
Relevant to this, GM-CSF has recently been shown to
inhibit pDC development by employing STAT5 to suppress
IRF8 [91]. Gene transfer experiments into DKO bone mar-
row progenitor cells demonstrate that both IRFs have an
overlapping activity to drive common processes of DC
development, such as the induction of Ciita (encoding
CIITA), while they also possess distinct activities to stimu-
late subset-speciWc gene expression, leading to the genera-
tion of functionally divergent DCs [88]. Recent Wndings
indicate there is a mechanistic separation that underlies the
development of DC subsets by IRF8; the R294C mutation
in IRF8, which abrogates binding to PU.1, SpiB and IRF2,
abolishes the development of CD8�+ DCs without impair-
ing pDC development in vivo [92]. Upstream of IRF8, the
basic helix-loop-helix transcription factor E2-2/Tcf4, which
is preferentially expressed in murine and human pDCs and
is essential for the development of pDCs, directly activates
the Irf8 and Irf7 genes, critical for pDC development and

Table 3 A summary of the role for IRFs in immune cell development

IRF Roles in immune cell development Proteins encoded by target genes

IRF1 Required for NK cell development IL-15 in bone marrow stromal cells

Required for diVerentiation of CD8+ T cells

Promotes Th1 diVerentiation IL-12 receptor �1 subunit in T cells, 
and IL-12p35 and p40 in M�s/DCs

Suppresses Th2 diVerentiation Represses IL-4

IRF2 Required for diVerentiation of CD4+ DCs

Required for NK cell development

Suppresses basophil expansion

Promotes Th1 diVerentiation IL-12p40 in M�s

Suppresses Th2 diVerentiation Represses IL-4

IRF4 Required for diVerentiation of CD4+ DCs

Supports B cell development Ig light chains

Required for plasma cell diVerentiation 
and germinal center formation

AID and Blimp-1

Required for Th2 diVerentiation IL-4

Required for Th17 diVerentiation IL-17 and IL-21

IRF6 Required for keratinocyte diVerentiation

IRF8 Required for diVerentiation of CD8�+ DCs and pDCs

Stimulates M� diVerentiation and maturation Blimp-1, METS and lysosomal/endosomal 
enzyme-related genes; represses Disabled-2

Supports B cell development EBF and Ig light chains

Stimulates the germinal center program BCL6 and AID

Promotes Th1 diVerentiation IL-12p40 and p35 in M�s/DCs
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function, respectively [93]. Indeed, the development of E2-
2-deWcient pDCs is blocked at an immature stage, and E2-2
haploinsuYciency in mice and in human Pitt-Hopkins syn-
drome patients is associated with impaired phenotypes and
IFN responses of pDCs. Finally, epidermal Langerhans
cells and dermal DCs have been reported to require IRF8
for their full diVerentiation and function [94].

DC subset development is also regulated by IRF1 and
IRF2. Irf1¡/¡ mice show a modest but constant increase in
pDC and decrease in CD8�+ DC counts [95]. Moreover, a
DC-intrinsic role for IRF1 in the inhibition of T cell tolero-
genesis has also been shown [95]. Irf2¡/¡ mice, on the other
hand, demonstrate a selective loss of splenic and epidermal
CD4+CD8�¡ DCs as a result of an abnormally augmented
type I IFN signaling [96, 97].

In conclusion, multiple IRFs are critically involved in the
regulation of DC development and function. Future studies
for identifying IRF target genes and elucidating their inter-
actions with co-factor proteins and relationships with other
transcription factors will further clarify the molecular
program for the development and function of DCs.

IRFs in the development of myeloid cells

Common myeloid progenitor cells (CMPs) give rise to
granulocytes and M�s. There is a cell-intrinsic role for
IRF8 in the diVerentiation, growth, and apoptosis of
myeloid cells. In a condition that resembles human
chronic myelogenous leukemia (CML), Irf8¡/¡ mice
exhibit a systemic expansion of neutrophils followed by
a fatal blast crisis [98]. Also, cell transfer studies show
an intrinsic leukemogenic potential and long-term recon-
stitution capability of Irf8¡/¡ CMPs. Not only is there an
increase in the frequency of CMPs but these progenitor
cells are hyper-responsive to both GM-CSF and granulo-
cyte colony-stimulating factor (G-CSF) [99]. Their
response to macrophage colony-stimulating factor (M-CSF),
on the other hand, is strongly reduced and, surprisingly,
even in the presence of M-CSF most Irf8¡/¡ CMPs
diVerentiate into granulocytes. Indeed, there are signiW-
cantly fewer cells of the M� lineage in Irf8¡/¡ bone
marrow than in wild type [99].

Studies with Irf8¡/¡ myeloid progenitor cell lines and
freshly isolated bone marrow progenitor cells from Irf8¡/¡

mice conWrm IRF8 drives CMP diVerentiation toward
M�s and inhibits granulocytic (neutrophilic) diVerentia-
tion [100, 101]. Consistent with these Wndings, IRF8
expression is detected in mouse and human hematopoietic
progenitor cell populations and persists in M�s, but
declines in granulocytes [101, 102]. Importantly, IRF8
strongly inhibits cell growth and positively regulates
apoptosis in myeloid cells [100, 101, 103]. Furthermore,
IRF8 transcript levels are severely reduced in cells from

human CML patients [104–106]. In demonstrating
IRF8’s role in the development of myeloid cells, these
data reveal why the loss of IRF8 leads to a CML-like
syndrome.

IRF8 controls several key genes that regulate cell growth
and apoptosis in myeloid cells and induce expression of
genes important for M� function. For example, IRF8
directly induces Prdm1 and Etv3, genes that encode for
transcriptional repressors of Myc, Blimp-1 and METS,
respectively [107]. In addition, IRF8 inhibits the cell cycle
by inducing Cdkn2b, which encodes an inhibitor for cyclin-
dependent kinase p15Ink4b, while promoting apoptosis by
repressing anti-apoptotic genes Bcl2l1 (encoding Bcl-XL)
and BCL2 [103, 108, 109]. Interestingly, the Nf1 gene
which encodes the Ras-GAP neuroWbromatosis 1 (NF1)
protein that inactivates Ras in hematopoietic cells, has been
reported to be a direct target gene for IRF8; Nf1¡/¡ hemato-
poietic cells cause myeloproliferative symptoms because of
a hypersensitivity to GM-CSF [110, 111]. Another recent
Wnding describes IRF8 as indispensable for the expression
of the Pml gene and the formation of nuclear bodies in
myeloid cells [112]. IRF8 also directly induces several
endosomal/lysosomal enzyme-related genes such as those
encoding Cathepsin C, Lysozyme, Cystatin C, and Prosapo-
sin [113], and represses the Dab2 gene encoding Disabled-
2 that stimulates M� adhesion and spreading [114],
enabling M� to establish their proper functionality.

IRF8 interacts with PU.1, the master regulator of M�
and B cell diVerentiation. This interaction, which is thought
to be essential for the development of these cell types
but not pDCs as mentioned above, enables IRF8 to bind to
several composite DNA elements such as the Ets-IRF
composite element (EICE, GGAANNGAAA), the Ets/IRF
response element (EIRE, GGAAANNGAAA, a subset of
the ISREs), or the IRF-Ets composite sequence (IECS,
GAAANN(N)GGAA) [113, 115, 116]. The regulation of
IRF8 binding to chromatin by PU.1 is also observed in live
cells by Xuorescence recovery after photobleaching [117].
It appears that the EICE is especially critical in the B cell
lineage, while during M� diVerentiation the IECS is
responsible for the regulation of multiple IRF8 target genes
such as those encoding Blimp-1, Cathepsin C, and Cystatin
C [113]. Other DNA elements that do not fall into the
above consensus sequences, for instance those found in
Cdkn2b and Nf1 genes, are also targeted by IRF8 during
M� diVerentiation [109, 111].

Recently, IRF8 has been shown to be required for the
development of eosinophils [120]. IRF2 is required for lim-
iting the generation of basophils; naïve Irf2¡/¡ mice display
an expansion of basophils, resulting in an increase in IL-4
production and the excess Th2 polarization [118]. IRF1 has
also been reported to stimulate myeloid cell diVerentiation
[119].
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IRFs in natural killer (NK) cells

Irf1¡/¡ mice are deWcient in NK, NKT, and intestinal intra-
epitherial T cells because IRF1 is required for the transcrip-
tional induction of the gene encoding IL-15, a cytokine
essential for the development of these cells, in bone mar-
row stromal cells [121–123]. Irf2¡/¡ mice are also defec-
tive in NK cell development [124]. However, IRF2 aVects
NK cell development in an NK cell-intrinsic manner; prob-
ably due to an acceleration of apoptosis, Irf2¡/¡ mice selec-
tively lack mature CD11bhighDx5high NK cells [125].

IRFs in B and plasma cells

IRF8 has recently been reported to direct lineage speciWca-
tion of common lymphoid progenitors (CLP) toward the B
cell lineage [126]. Furthermore, IRF8 has been shown to
directly activate the expression of the gene encoding EBF
through direct binding to an IECS (an IRF8-binding con-
sensus DNA elements described above) within the EBF
gene promoter [126]. EBF is a transcription factor responsi-
ble for the activation of several genes involved in B cell
lineage commitment, such as Pax5, Cd79a, Vpreb1, and
Igll1.

As in the myeloid lineage, IRF4 and IRF8 also cooperate
during B cell diVerentiation. Both are expressed in imma-
ture states of B cells including pre-B cells in the bone mar-
row [127]. In centroblasts within the dark zone of the
germinal center (GC), IRF8 expression increases while
IRF4 expression is suppressed [127, 128]. Finally, as cen-
trocytes in the light zone diVerentiate into high-aYnity anti-
body-producing plasma cells, the expression of IRF8
declines while the expression of IRF4 gradually increases
[127, 129].

There is a redundant role for IRF4 and IRF8 in promot-
ing the transition from pre-B to IgM+ B cell. B cells from
Irf4¡/¡Irf8¡/¡, but not Irf4¡/¡ or Irf8¡/¡ mice, arrest at the
cycling pre-B stage [130], and either IRF4 or IRF8 is able
to rescue the maturation arrest of Irf4¡/¡Irf8¡/¡ B cells in
vitro [131]. IRF4 and IRF8 induce conventional immuno-
globulin (Ig) light chain (i.e., � and �) gene transcription
and rearrangement and inhibit expression of surrogate light
chain VpreB and �5 genes to down-regulate the pre-antigen
receptor complex [130, 131]. Molecularly, IRF4 and IRF8
physically associate with the Ets transcription factors PU.1
or SpiB to bind to the Ets-IRF composite elements (EICEs)
found in the Ig� 3� and � enhancers where they activate
transcription [115, 132, 133]. Similarly, a recent study
demonstrates that IRF4 and IRF8 down-regulate pre-B-cell
receptor and stimulate the transition from large pre-B to
small pre-B cells by inducing the expression of Ikaros and
Aiolos, although it is unknown whether the induction is
direct or indirect [57]. Moreover, IRF4 attenuates IL-7

signaling. IL-7 is essential for pre-B cell proliferation and
survival, but must be down-regulated for eYcient light
chain rearrangement. IRF4 upregulates the chemokine
receptor Cxcr4 and, in doing so, is thought to promote
migration of pre-B cells away from IL-7 expressing stromal
cells in response CXCL12, the ligand of CXCR4;
CXCL12-secreting stromal cells are located separate from
IL-7-producing stromal cells [133].

IRF8 is also involved in the GC program. GCs in Irf8¡/¡

mice show less organized morphology and Irf8¡/¡ B cells
express reduced expression levels of Aicda and Bcl6 genes
[134]. IRF8 has been found to directly regulate the induc-
tion of these two critical genes during the GC reaction, both
in human and mouse [134]. The Aicda gene encodes activa-
tion-induced cytidine deaminase (AID), which is required
for both class switch recombination (CSR) and somatic
hypermutation, and the Bcl6 gene encodes B cell lympho-
mas 6 (Bcl6) protein, a Krüppel-type zinc Wnger transcrip-
tional repressor that functions as a master regulator in the
GC program.

Irf4¡/¡ mice display a profound reduction in serum
immunoglobulin, fail to produce antigen-speciWc antibod-
ies, and do not generate GCs [135]. IRF4, induced by CD40
engagement in the light zone of the GC through the NF-�B
canonical pathway, directly downregulates BCL6 expres-
sion to allow terminal diVerentiation to post-GC lympho-
cytes [136]. In addition to GC formation, IRF4 is also
required for CSR, somatic hypermutation, and plasma cell
diVerentiation [129, 137]. IRF4 is indispensable for the
induction of Aicda gene induction, illustrating the molecu-
lar basis for the failure of CSR and somatic hypermutation
in Irf4¡/¡ B cells. One of these reports also indicates that
the Prdm1 gene is a direct target of IRF4 [129], reminiscent
of the regulation of this gene by IRF8 in myeloid progenitor
cells. The Prdm1 gene encodes the zinc-Wnger transcrip-
tional repressor Blimp-1, which is a master regulator of
plasma cell diVerentiation.

Finally, Irf4¡/¡ mice between 10 and 15-weeks-old, in
addition to the above developmental defects, also display a
generalized lymphadenopathy because of an expansion of
B and T cells in lymph nodes and spleen (but not thymus).
This suggests that IRF4 is also important for the homeosta-
sis of mature lymphocytes [135].

IRFs in T cell diVerentiation

CD8+ T cells

There is a lineage-speciWc defect in thymocyte develop-
ment of Irf1¡/¡ mice; these mice display a pronounced
decrease in mature CD4¡CD8+ T cells in the thymus and
peripheral lymphoid organs [138]. Although Irf1¡/¡ thymic
stromal cells show decreased levels of low molecular
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weight protein-2 (LMP2), antigen processing-1 (TAP1),
and MHC I expression [138, 139], the defect in CD8+ T cell
development does not reside in the thymic environment but
is instead due to a thymocyte-intrinsic defect in the diVer-
entiation from immature T cells (TCR��¡CD4+CD8+) to
mature CD8+ T cells [140]. IRF1 expression is induced fol-
lowing TCR stimulation in immature thymocytes, while
Irf1¡/¡ thymocytes are defective in TCR-mediated signal
transduction. Thus, in developing thymocytes, IRF1 may
regulate gene expression required for lineage commitment
and positive and negative selection of CD8+ thymocytes
[140]. Consistent with the impairment of CD8+ T cell in
Irf1¡/¡ mice, the cytotoxic T lymphocyte (CTL) response
to lymphocytic choriomeningitis virus (LCMV)-infected
target cells is signiWcantly reduced in these mice. There is
also data to suggest that IRF4 and IRF8 contribute to the
regulation of CTL activity during viral infection [98, 135].

Naïve Irf2¡/¡ mice display a spontaneous inXammatory
skin disease resembling psoriasis [138, 141]. Irf2¡/¡ CD8+

T cells exhibit a hyperresponsiveness to antigen stimulation
in vitro accompanied by abnormally up-regulated type I
IFN-inducible gene expression. Importantly, the disease
development and CD8+ T cell abnormality are suppressed
when genes that positively regulate the type I IFN signaling
pathway are disrupted [141]. Thus, IRF2 is a unique nega-
tive regulator of type I IFN-induced gene transcription nec-
essary for balancing the beneWcial and harmful eVects of
type I IFN signaling in the immune system.

CD4+ T cells

Although naïve CD4+ T cells do develop in Irf1¡/¡ mice,
IRF1 is indispensable for the diVerentiation of T helper
type 1 (Th1) cells, and the absence of IRF1 leads to the
induction of Th2-type immune response [142, 143]. A
severe defect in the production of and response to IL-12,
which is essential for Th1 diVerentiation, is present in the
absence of IRF1 in multiple cell types. IRF1 regulates the
expression of genes encoding IL-12p40 and IL-12p35 in
M�s and DCs. Irf1 itself is a target gene of IL-12 signal-
ing [144, 145], and Irf1¡/¡ CD4+ T cells are hyporespon-
sive to IL-12 [143]. IRF1 directly controls and
is indispensable for the expression of the gene encoding
IL-12 receptor �1 subunit in CD4+ T cells [146]. In addi-
tion, the lack of NK cells in Irf1¡/¡ mice may also con-
tribute to the defective IL-12 production because NK cells
produce IFN-� that stimulates M�s to secrete IL-12.
Aside from its positive regulation of Th1 diVerentiation,
IRF1 has recently been reported to be a key negative regu-
lator of CD4+CD25+ regulatory T (Treg) cells through the
direct repression of Foxp3 gene expression, the gene that
encodes the master transcription factor for Treg cell
development [147].

Unexpectedly, Irf2¡/¡ mice show a defect in Th1 diVer-
entiation due to the impaired production of IL-12 in M�s
[124, 148]. It appears that IRF2 contributes to IL-12p40
gene expression in cooperation with IRF1 and other factors,
rather than functioning as a transcriptional repressor as
described above. It is also possible that the defective NK
cell diVerentiation in Irf2¡/¡ mice contributes to the
impaired Th1 responses. On the other hand, there is an
excessive Th2 polarization in naïve Irf2¡/¡ mice due to the
expansion of basophils as described above and their pro-
duction of IL-4 [118]. Interestingly, IFN-� promotes Th1
and attenuates IL-4-driven Th2 responses via the induction
of IRF1 and IRF2, respectively [149].

IRF8 and IRF4 promote Th1 and Th2 diVerentiation,
respectively. Irf8¡/¡ mice fail to mount Th1 responses
[150, 151], while Irf4¡/¡ mice are defective in Th2
responses [152–154]. The defective Th1 response in Irf8¡/¡

mice is attributed to the defects in M�s and DCs rather than
T cells [155]. In particular, IRF8 is required for the produc-
tion of IL-12, a major Th1-promoting cytokine, and for the
development of CD8�+ DCs, which also produce IL-12 [61,
156]. IRF4 is constitutively expressed in mature T cells and
is further induced by concanavalin A or CD3 cross-linking
in mature T cells [157]. IRF4 induces the expression of the
Th2-promoting cytokine IL-4 via IRF4’s physical interac-
tion with NFATc2 and/or NFATc1 transcription factors
[153, 158]. Moreover, Irf4¡/¡ CD4+ T cells fail to express
GATA3, a transcription factor critical for Th2 develop-
ment, following in vitro IL-4 treatment [152, 154].
Together, these data clearly demonstrate that IRF4 has a T
cell-intrinsic role in Th2 diVerentiation. In addition, IRF4’s
role in the development of CD4+ DC subset may also con-
tribute to Th2 diVerentiation, because this subset is thought
to stimulate Th2 responses. A recent study, based in mouse
on the Th2-biased BALB/c genetic background, shows that
while IRF4 indeed promotes Th2 development and Th2
cytokine production in eVector/memory CD4+ cells, it
instead inhibits Th2 cytokine production in the early activa-
tion phase of naïve CD4+ T cells [159]. These data suggest
a dual role for IRF4 in Th2 cytokine production by CD4+ T
cells.

IRF4 is also critical for the generation of IL-17-produc-
ing T helper (Th17) cells [160]. Irf4¡/¡ mice not to develop
experimental autoimmune encephalomyelitis due to the
inability of Irf4¡/¡ naïve T helper cells to diVerentiate into
Th17 cells. The molecular basis of this defect is the result
of Irf4¡/¡ T helper cells express less ROR�t and more
Foxp3, transcription factors important for the diVerentiation
of Th17 and regulatory T cells, respectively [160]. Further-
more, IRF4 directly induces the genes encoding IL-17 and
IL-21 [161]. Interestingly, mice deWcient in IRF4-binding
protein (IBP) rapidly develop rheumatoid arthritis-like
disease and large-vessel vasculitis because IBP inhibits
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IRF4-mediated induction of IL-17 and IL-21 by sequester-
ing IRF4 from the promoters of these cytokine genes [161].

IRF2 in erythroid cells

Irf2¡/¡ mice suVer from normocytic anemia, and their bone
marrows contain a decreased number of late erythroblasts
accompanied by an increased number of early erythroid
progenitors [162]. Irf2¡/¡ erythroblasts show decreased
Bcl-XL expression levels and enhanced apoptosis due to
excessive type I IFN signaling, suggesting a cross-talk
between type I IFN and erythropoietin signaling pathways
during erythropoiesis. Furthermore, IRF2 has been shown
to preserve the self-renewal and multi-lineage diVerentia-
tion capacity of hematopoietic stem cells by inhibiting type
I IFN-induced cell cycle in these cells [163, 164].

Regulation of non-immune cell diVerentiation by IRFs

Mutations in the IRF6 gene in humans cause two related
orofacial clefting disorders: Van der Woude syndrome and
popliteal pterygium syndrome [165]. The Irf6 deWciency in

mice also leads to abnormal skin, limb, and craniofacial
development. These abnormalities are the result of IRF6
being required for cell cycle arrest and terminal diVerentia-
tion of keratinocytes [166, 167].

Recently, an unexpected and novel role for IRFs in
adipogenesis is reported [168]. All IRFs are expressed in
adipocytes, and their expression is regulated during adipo-
genesis. Moreover, several IRFs bind to speciWc genomic
DNA regions surrounding key adipocyte genes that display
diVerentiation-dependent changes in DNase hypersensitiv-
ity. Multiple IRFs, especially IRF3 and IRF4, can repress
adipogenesis in vitro. These data suggest an interesting
possibility that the IRF family is critical in the link between
immunity and metabolic diseases.

Regulation of cell growth and apoptosis by IRFs

Another critical function of IRFs is the regulation of cell
growth, apoptosis, and oncogenesis (Table 4). Thus, IRFs
connect the mechanisms governing immunity and tumor
suppression.

Table 4 A summary of the role 
for IRFs in cell growth and 
apoptosis

IRF Roles in cell growth and apoptosis Proteins encoded 
by target genes

IRF1 Suppresses oncogene-induced transformation Lysyl oxidase

Required for DNA damage-induced growth arrest p21/WAF1/CIP1

Required for apoptosis induced by DNA damage 
and other stimuli

Caspase-1, Caspase-7, 
Caspase-8, GAAP-1, 
and TRAIL

IRF2 Promotes oncogenesis by antagonizing IRF1 
or its own transactivation activity

Histone H4

Promotes survival of erythroid cells Bcl-XL

IRF3 Stimulates apoptosis in M�s upon bacterial infection TRAIL

Promotes virus-induced apoptosis

May promote DNA damage-induced apoptosis

IRF4 Promotes oncogenesis in multiple myeloma Myc

IRF5 Suppresses oncogene-induced transformation

Required for DNA damage-induced apoptosis

Required for Fas-induced apoptosis 
in a cell type-speciWc manner

Promotes virus-induced apoptosis

IRF6 Required for cell cycle arrest during 
keratinocyte diVerentiation

IRF8 Inhibits myeloid cell growth Blimp-1, METS, 
and p15/INK4B

Promotes apoptosis induced by several types 
of stimuli in myeloid cells and Fas-induced 
apoptosis in some cancer cells

NF1 and PML; 
represses BCL-XL, 
BCL-2, and Fap-1

Its absence leads to a chronic myelogenous 
leukemia-like disease

IRF9 Mediates type I IFN induction of p53 p53
123



500 Cancer Immunol Immunother (2010) 59:489–510
Antioncogenic IRFs

IRF1

The notion that IRFs participate in the regulation of onco-
genesis Wrst came out of studies performed on IRF1. Irf1¡/¡

MEFs are deWcient in their ability to undergo DNA dam-
age-induced cell cycle arrest. Similar to the tumor suppres-
sor p53, IRF1 transcriptionally activates the gene encoding
the cyclin-dependent kinase (CDK) inhibitor p21WAF1/CIP1

[169]. Upon DNA damage, IRF1 protein level increases via
the regulation of mRNA expression and protein half-life, so
as to act on the p21 promoter region containing the IRF1-
and p53-binding sites [169, 170].

Apoptosis is one mechanism by which pre-cancerous
cells are eliminated from the host. An activated oncogene,
such as c-Ha-Ras, will induce wild-type MEFs to undergo
apoptosis rather than cell cycle arrest when treated with an
anticancer drug or ionizing radiation. This hallmark of
tumor suppression was found to be dependent on both IRF1
and p53 [171]. While DNA damage-induced apoptosis is
dependent on IRF1 and independent of p53 in mitogeni-
cally activated mature T lymphocytes [172], in thymocytes
it is dependent on p53 but not IRF1. Thus, depending on the
type and diVerentiation stage of the cell, IRF1 and p53
regulate DNA damage-induced apoptosis cooperatively
and independently. Interestingly, a transcriptional activator
of both IRF1 and p53, GAAP-1, has been shown to have
pro-apoptotic activity [173].

In addition, IRF1 is important for apoptosis that is
activated or enhanced by other stimuli, such as IFN-�
[174–176]. The target gene(s) of IRF1 responsible for
apoptotic responses have not been Wrmly identiWed, but
may include genes encoding Caspase 1, Caspase 7, Caspase
8, and TRAIL (tumor necrosis factor-related apoptosis-
inducing ligand) [9, 10].

Consistent with these observations, an oncogenic trans-
formation assay in which a single oncogene, activated
c-Ha-Ras, was introduced in Irf1¡/¡ MEFs which was suY-
cient to transform these cells, indicating that there is a
tumor suppressor-like activity for IRF1 [171]. This is in
contrast to WT cells, which required at least two onco-
genes. Moreover, conditions under which activated Ras
paradoxically inhibited cell growth of myeloid cells are
found to involve IRF1 and the induction of p21WAF1/CIP1

[177]. Ectopic expression of IRF1 suppresses the malignant
properties of cancer cell lines and oncogene-transformed
cell lines in vitro and in vivo [10]. Although the loss of
IRF1 alone rarely induces tumor development in mice,
IRF1 deWciency dramatically exacerbates tumor predisposi-
tions caused by the expression of a c-Ha-Ras transgene or
by nullizygosity of the p53-encoding gene, Trp53 [178].
This accelerated tumor development may not be due to the

above-mentioned immunological disorders caused by the
absence of IRF1 [178]. Thus, Irf1 is a tumor susceptibility
gene whose loss in combination with other genetic altera-
tions signiWcantly increases the incidence of tumors. The
lysyl oxidase (Lox) gene is an IRF1 target gene involved in
mediating IRF1’s tumor suppressive activity [179]. Lox
plays a critical role in the biogenesis of connective tissue
matrices and is identical to the independently discovered
ras recision gene (rrg) implicated in the reversion of Ras-
transformed NIH 3T3 cells by preventing the activation of
NF-�B [180].

A number of clinical studies have correlated the loss of
IRF1 expression or function to human cancers. IRF1 maps
to the chromosomal region 5q31.1, a region where frequent
cytogenetic abnormalities occur in leukemia and preleuke-
mic myelodysplastic syndrome (MDS). Among the number
of genes located in this region, only IRF1 is consistently
deleted at one or both alleles in patients with aberrations of
5q31 [181]. In esophageal and gastric cancers, the loss of
one IRF1 allele is also reported [182, 183], and in one out
of four cases of gastric cancers examined the deletion is
accompanied by an inactivating point mutation in the other
allele [184]. Furthermore, several other mechanisms can
lead to the loss-of-function of IRF1 in cancers. For
instance, an elevated level of SUMOylated IRF1 in tumor
cells interferes with IRF1-mediated apoptosis [185]. Splic-
ing aberrations in the IRF1 gene cause the loss of functional
IRF1 in MDS and leukemias [186, 187]. Also, a putative
ribosome assembly factor often over-expressed in leukemic
cells, Nucleophosmin, binds to IRF1 and inhibits its func-
tion [188]. Finally, a decreased expression of IRF1 mRNA
in several types of cancers, such as chronic myelogenous
leukemia, breast cancer, endometrial cancer, and hepatocel-
lular carinoma, is reported [9, 10].

IRF8

IRF8 is expressed predominantly in hematopoietic cells,
and accumulating evidence indicates an antagonizing rela-
tionship between IRF8 and myeloid leukemia, especially
chronic myelogenous leukemia (CML). As already dis-
cussed above, Irf8¡/¡ mice develop a CML-like syndrome
[98]. In CML and acute myelogenous leukemia patients
IRF8 transcripts are absent and a number of IRF8 target
genes, such as Bcl2 and Pml, are decreased [108, 112]. On
the other hand, ectopic expression of IRF8 is able to over-
ride the mitogenic activity of Bcr/Abl (a causal fusion
oncoprotein in human CML) in vitro by activating several
genes that interfere with the c-Myc pathway, a downstream
target of Bcr/Abl [107] and, in fact, ameliorates Bcr/Abl-
mediated murine myeloid leukemia in vivo [189]. In addi-
tion, IFN-� treatment for human CML induces IRF8
expression in vivo [104], and IRF8 expression correlates
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positively with pre-treatment risk features and cytogenetic
response to IFN-� in CML [105]. Thus, IRF8 expression
may be a major factor in inhibiting the development of
human CML, while the restoration of its expression can
antagonize the oncogenic activity of Bcr/Abl. IRF8’s target
genes in cell growth and apoptosis in myeloid cells are
described in the previous section. Interestingly, Irf4 tran-
script levels are also signiWcantly low in CML patients
[190, 191] implying that IRF4 has an activity similar to
IRF8 in myeloid cell development and CML pathogenesis,
as in the case of DC and B cell development.

It is likely that IRF8 can exert its anti-leukemic activity
not only by the direct control of cell growth, diVerentiation
and apoptosis but also by modulating anti-tumor immunity.
Since human CML cells are susceptible to T cell-mediated
immunity, IRF8’s ability to support the diVerentiation and
function of professional APCs such as M�s, DCs and B
cells may be important in the elimination of CML by the
immune system. In mice, co-expression of IRF8 in Bcr/
Abl-transformed pro-B cell line causes a CD8+ cytotoxic
T-cell response that prevents the establishment of leukemia
in vivo [192]. Given the eVectiveness of IFN-� therapy in
human CML, it is also interesting to note that IRF8 is
required for the development of pDCs, cells which produce
high levels of type I IFNs, and that IRF8 is a transcriptional
activator of type I IFN genes [25].

IRF8 has been reported to manifest anti-tumor activity
even in non-hematopoietic tumors. IFN-�-induced IRF8
sensitizes human colon carcinoma cells to Fas-mediated
apoptosis [193], and IRF8 represses the PTPN13 gene that
encodes a ubiquitously expressed protein-tyrosine phospha-
tase, Fas-associated phosphatase 1 [194]. IRF8 expression
is repressed by DNA methylation in human metastatic
colon carcinoma cell lines and murine mammary carcinoma
with lung metastasis in vivo [195]. The IRF8 gene localizes
to 16q24, a region frequently deleted in multiple solid
tumors. In 78% of primary nasopharyngeal carcinoma and
between 36 and 71% of other carcinoma samples, the IRF8
gene is associated with transcriptional silencing and pro-
moter methylation [196].

IRF5

IRF5 has emerged as another IRF family member that pos-
sesses tumor suppressor activity. Activated c-Ha-Ras-
expressing Irf5¡/¡ MEFs fail to eYciently apoptose in
response to DNA damage, and undergo transformation to
form tumors in nude mice [21]. Irf5¡/¡ MEFs are resistant
to VSV-induced apoptosis as well, resulting in enhanced
viral propagation in spite of being capable of producing
normal levels of type I IFNs and IL-6 [21]. Irf5 mRNA is
induced upon viral infection through type I IFN signaling
and upon DNA damage by p53 [21, 197]. Because several

p53 targets, such as the genes encoding Puma and Noxa,
are induced even in Irf5¡/¡ MEFs, it is suggested that IRF5
may act on an apoptotic pathway that is distinct from that
for p53 [21]. Indeed, overexpression of IRF5 inhibits in
vitro and in vivo B cell lymphoma tumor growth in the
absence of wild type p53 [198]. Furthermore, ectopic
expression of IRF5 sensitizes p53-proWcient and p53-deW-
cient colon cancer cells to DNA damage-induced apoptosis
[199]. Recently, IRF5 has been shown to be involved in
Fas/CD95-induced apoptosis, which typically occurs in a
p53-independent manner [200]. Irf5¡/¡ mice are resistant to
hepatic apoptosis and lethality in response to the in vivo
administration of a Fas-activating monoclonal antibody.
IRF5 is also required for Fas-induced apoptosis in DCs
activated by hypomethylated CpG but not in thymocytes
and MEFs. Thus, IRF5 is required for the death receptor-
induced cell death in a cell type-selective manner. Interest-
ingly, IRF5 mRNA expression is suppressed in human leu-
kemia cells, implying the possible involvement of IRF5
inactivation in human cancers [198]. Further studies are
required to clarify the transcriptional pathway by which
IRF5 stimulates apoptosis.

IRF6

IRF6 may also act as a tumor suppressor via its interaction
with Maspin, a known tumor suppressor gene [64]. Similar
to Maspin, IRF6 expression inversely correlates with breast
cancer invasiveness. IRF6 is unphosphorylated in quiescent
mammary epithelial cells, but during cell division becomes
phosphorylated and undergoes proteasome-dependent deg-
radation [201]. Ectopic expression of IRF6 results in cell
cycle arrest, a process augmented by Maspin.

IRF3

Virus-induced apoptosis may be mediated by activated
IRF3 as the expression of a constitutively active mutant of
IRF3 triggers apoptosis, while dominant negative mutants
of IRF3 strongly inhibit Sendai virus- and NDV-induced
apoptosis [202, 203]. Interestingly, IRF3-mediated apopto-
sis is shown to be independent of p53 and IFN [203] and,
instead, likely involves the gene encoding TRAIL because
it is transcriptionally activated by ectopic expression of
IRF3 [204]. However, that VSV infected Irf3¡/¡ MEFs
eYciently undergo apoptosis as well as infected WT cells
indicates that IRF3 does not mediate virus-induced apopto-
sis against all viruses [21].

IRF3 also participates in a putative, bacterium-induced
apoptosis mechanism that is triggered upon TLR activation.
Certain bacteria induce M� apoptosis by producing viru-
lence factors that inhibit cell survival pathways such as the
p38 or NF-�B pathways. This pro-apoptotic pathway in
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M�s requires IRF3 along with PKR and TLR4 [205].
Finally, IRF3 is suspected to also play a role in DNA dam-
age-induced apoptosis as IRF3 protein is phosphorylated
and translocates from the cytoplasm to the nucleus in
response to DNA damaging agents [203, 206]. DNA-
dependent protein kinase (DNA-PK) is capable of phos-
phorylating human IRF3 at Thr135 [207], which is distinct
from the phosphorylation sites targeted by TBK1. Consis-
tent with a putative role in DNA damage-induced apopto-
sis, several overexpression studies have shown that IRF3
inhibits the growth of cancer cell lines in vitro and in vivo
[208, 209]. Taken together, these studies suggest that IRF3
may also function as a tumor suppressor gene.

IRF9

A critical link between type I IFNs and the p53 pathway,
which is required for virus-induced apoptosis, has been
established by the Wnding that type I IFNs transcriptionally
activate the tumor suppressor p53 gene through ISGF3
binding to ISREs within its promoter and Wrst intron. As a
component of ISGF3, IRF9 augments the p53 pathway
when cells are exposed to endogenously induced or exoge-
nously administered type I IFNs. As a result, Irf9¡/¡ MEFs
fail to upregulate p53 upon IFN-� stimulation [210] in
which IFN-� can normally suppress oncogene-induced
malignant cell transformation and enhance DNA damage-
induced apoptosis of cancer cells. The link between type I
IFNs and p53 also demonstrates a link between tumor sup-
pression and antiviral immunity.

On the other hand, it has been reported that the Irf9 gene
is directly activated by c-Myc, and a cell line lacking IRF9
expression is more susceptible to cytotoxic chemotherapeu-
tic drugs [211], suggesting an undiscovered role for IRF9 in
cell cycle regulation. Additional research is required to
clarify this point.

Oncogenic potential of IRFs

IRF2

In addition to its role as an IFN attenuator, IRF2 manifests
a pro-oncogenic activity. It was shown previously that
overexpression of IRF2 in NIH3T3 cells causes oncogenic
transformation [212]. A genetic screen of a retroviral
library then identiWed IRF2 as an inhibitor of activated
N-Ras-induced growth suppression in leukemic cells [213].
The pro-oncogenic function of IRF2 appears to be mediated
by its transcriptional interference of IRF1 and/or other IRF
family members that bind to the same ISRE elements [214].
Indeed, the concomitant expression of IRF1 in IRF2-over-
expressing NIH3T3 reverts these cells to a non-transformed
phenotype [212]. On the other hand, however, IRF2 itself

can also activate gene transcription under certain conditions
[215] and, in fact, stimulates the expression of genes
involved in oncogenesis such as histone H4 [216, 217]. It
was also reported that IRF2 is post-translationally regulated
in a cell growth-dependent manner in which acetylated
IRF2 preferentially binds to the H4 promoter in proliferat-
ing cells only [218].

IRF4

A connection between IRF4 and lymphoid malignancies has
been indicated by several groups. For instance, the expres-
sion of IRF4 mRNA is induced upon human T cell leukemia
virus-1 (HTLV-1) infection [219]. Moreover, in Jurkat T
cells overexpression of the HTLV-1 oncoprotein Tax
induces IRF4 mRNA transcription while the constitutive
expression of IRF4 in these cells results in the reduced
expression of the G2-M checkpoint gene Cyclin B1 and sev-
eral DNA repair genes. These transcriptional changes are
strikingly similar to those that occur in HTLV-infected T
cells [220, 221], suggesting a possible involvement of IRF4
in HTLV-1-induced leukemogenesis. Translocations involv-
ing IRF4 has been shown to have occurred in 12 out of 169
cases of peripheral T cell lymphomas [222]. In some patients
with multiple myeloma and cell lines derived from this
tumor, a chromosomal translocation t(p25;q32) juxtaposes
the immunoglobulin heavy-chain locus to IRF4/MUM1
(multiple myeloma 1) [6, 14], resulting in the overexpression
of IRF4 [223]. Furthermore, IRF4 mRNA expression is a
prognostic marker for poor survival in patients with multiple
myeloma [224]. Recently, IRF4 has emerged as a master
regulator of an aberrant and malignancy-speciWc gene
expression program in multiple myeloma [225]. In fact,
IRF4 is required for the survival of multiple myeloma cell
lines. This is because IRF4 transactivates the MYC gene
while Myc activates IRF4, thereby establishing a positive
autoregulatory loop. Although IRF4 is not genetically altered
in most myelomas, this positive feedback loop is likely to be
triggered by the initial oncogeneic activation of MYC, the
locus of which is often ampliWed and inserted at ectopic
genomic locations in this disease. Overexpression of IRF4
alone in lymphocytes, however, is not suYcient for the
development of T cell leukemia and multiple myeloma in
transgenic mice [226], suggesting a requirement for addi-
tional factors in the etiology of the diseases.

Possible opportunities for intervention

Because of their role in promoting apoptosis or cell cycle
arrest, several IRFs have therapeutic potential in the treat-
ment of cancer. Indeed, as described above, the ectopic
expression of IRF1, IRF3, IRF5, IRF6, and IRF8 has
already been demonstrated to halt the growth of or sensitize
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to apoptosis various cancers under experimental conditions.
Furthermore, as a number of these genes also regulate
immune cell development, they may oVer additional prom-
ise in aVecting host tumor immunity against certain can-
cers. This may be particularly true of IRF1, which regulates
NK and NKT cell development, and IRF8, which drives
macrophage, DCs and B cell diVerentiation. IRF3, IRF5,
IRF7, IRF8, and IRF9 may also be particularly interesting
areas of study given their role in the regulation of type I
IFNs and the connection between type I IFN and antitumor
immunity and immunotherapy. Finally, that the pro-onco-
genic IRF2 appears to act by transcriptional interference of
other (anti-oncogenic) IRFs makes it and its novel mecha-
nism-of-action additional targets of investigation.

Conclusion

Since the discovery of IRF1 in 1988, remarkably vital and
broad roles for the IRF family have been revealed. IRF
members impact a number of aspects of the host defense
system, from the activation or attenuation of immune
responses by essentially all IRFs; to the regulation of
immune cell diVerentiation by IRFs 1, 2, 4, and 8; to the
regulation of cell growth or death by most IRFs. While
each member may be assigned a speciWc function, we also
Wnd considerable overlapping features between family
members. Multiple IRFs, for instance, are activated upon
stimulation by various PRRs during innate immune
responses. This occurs because many IRFs (IRF1, 4, 5, 6, 7,
and 8) share the ability to interact with the common adaptor
protein MyD88 and/or TRAF6 in the TLR-MyD88 path-
ways, and also because IRF3 and IRF7 can be activated by
TBK1, a common kinase in the cytosolic nucleic acid sen-
sor and the TLR-TRIF pathways. Once activated, the IRFs
stimulate an overlapping but distinct set of target genes to
shape the appropriate immune response. In this regard,
IRFs appear to form a “hub” that integrates and outputs sig-
nals from PRR stimulation. In another example of overlap-
ping and distinct activities, IRF8 and IRF4 dictate the
development of multiple DC subsets and, thereby, form the
basis of DC’s diverse functions. In addition, several IRFs
share an ability to regulate oncogenesis in part by their
common ability to respond to genotoxic stresses. Thus,
through both their common and speciWc features, IRF fam-
ily members contribute to the establishment of an indis-
pensable diversity in the host defense system. Given that
the IRF-IFN system likely arose at the boundary of inverte-
brate–vertebrate evolution, the function of the IRF family
may represent a vertebrate-speciWc mechanism to shape the
complex and eYcient host defense system.

In spite of the extensive body of knowledge that scien-
tiWc research has generated, ample questions remain about

the biology of the IRF family. For example, the detailed
mechanism for how IRFs act as tumor suppressors remains
poorly understood. Also, as our understanding of IRFs’
immediate roles in the regulation of innate immunity
improves, our broader view becomes increasingly compli-
cated by the interrelationships between IRFs and the other
regulatory systems involved. The cooperation and antago-
nism between IRFs and NF-�B is particularly intriguing.
Both are activated by a remarkably common set of stimuli,
such as PAMPs and DNA damage, and cooperatively regu-
late the expression of many cytokine genes; however, they
appear to exert opposite eVects on cell growth and survival.
In contrast to the tumor suppressive eVects of several IRFs,
NF-�B acts as a potent pro-survival transcription factor and
contributes to the development of tumors, including inXam-
mation-linked cancers. Therefore, precisely how and to
what extent these two transcription factor families cooper-
ate and antagonize one other is an important future issue to
address. Ultimately, the comprehensive understanding of
their interacting proteins and target genes in various types
of cells upon various stimuli must be achieved.

Because the IRF family is critical for the two aspects of
host defense, i.e., immunity against pathogens and tumor
suppression, further studies will make this family an attrac-
tive target not only for the therapy of infectious diseases
and immune disorders but also in the multidisciplinary ther-
apy of cancers.
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