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Abstract Known for years as the principal messengers of
the immune system, dendritic cells (DC) represent a hetero-
geneous population of antigen presenting cells critically
located at the nexus between innate and adaptive immunity.
DC play a central role in the initiation of tumor-speciWc
immune responses as they are endowed with the unique
ability to take up, process and present tumor antigens to
naïve CD4+ or CD8+ eVector T lymphocytes. By virtue of
the cytokines they produce, DC also regulate the type,
strength and duration of T cell immune responses. In addi-
tion, they can participate in anti-tumoral NK and NKT cell
activation and in the orchestration of humoral immunity.
More recent studies have documented that besides their pri-
mary role in the induction and regulation of adaptive anti-
tumoral immune responses, DC are also endowed with the
capacity to directly kill cancer cells. This dual role of DC as
killers and messengers may have important implications for
tumor immunotherapy. First, the direct killing of malignant

cells by DC may foster the release and thereby the immedi-
ate availability of speciWc tumor antigens for presentation
to cytotoxic or helper T lymphocytes. Second, DC may par-
ticipate in the eVector phase of the immune response,
potentially augmenting the diversity of the killing mecha-
nisms leading to tumor elimination. This review focuses on
this non-conventional cytotoxic function of DC as it relates
to the promotion of cancer immunity and discusses the
potential application of killer DC (KDC) in tumor immuno-
therapy.
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Introduction

The primary objective of cancer immunotherapy is to pro-
mote tumor eradication through the activation of innate and
adaptive immune responses. The unique property of den-
dritic cells (DC) to act as professional antigen presenting
cells (APC) has positioned them as central players in the
orchestration and control of the complex interacting cellu-
lar networks that govern these immune responses. Such a
cardinal role has also been largely the basis for the utiliza-
tion of these cells as promising tools to induce and sustain
anti-cancer immunity [1, 2]. DC represent a heterogeneous
population of cells with speciWc subsets deWned by their
anatomic distribution, phenotype, mode of antigen presen-
tation and cytokine production proWle [3–5]. They continu-
ously gather antigens in peripheral tissues, process them
and, following migration to the secondary lymphoid
organs, present them on major histocompatibility com-
plexes (MHC) Class I or Class II to CD8+ cytotoxic (CTL)
or CD4+ helper (Th) T lymphocytes, respectively [4, 6].
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The resulting clonal expansion and activation of CTL and
Th cells by DC represents a critical event for the elimina-
tion of the source of antigens. The type of DC subset, the
level of activation of these cells and the nature of the cyto-
kines they produce dictate the diVerentiation of eVector T
lymphocytes toward a deWned polarized subset (Th-1, Th-2,
Th-17…) [4–8]. DC also modulate the function of numer-
ous other immune cells, including NK, B or NKT cells [9–
12]. Although critical for the development of adaptive
immune response, DC may also contribute to the mecha-
nisms of immune tolerance, thus playing a central role in
the control of autoimmunity [13–17]. These so-called toler-
ogenic DC may silence or anergize eVector T lymphocytes
[14, 18, 19], induce FoxP3+ regulatory T cells (Treg) or
drive the diVerentiation of anergic IL-10-secreting immu-
nosuppressive Tr-1 cells [20–23].

The current vision of cancer immunosurveillance relies
on a multi-stage process tightly enforced and regulated by
DC and which requires the initial release of tumor antigens
[2, 24, 25]. A principal source of available antigens is gen-
erated in the form of apoptotic or necrotic debris that result
from spontaneous tumor cell death or from tumor cell kill-
ing by macrophages, NK, NKT or other cytotoxic innate
immune cells or by chemotherapeutic drugs [26–29]. The
initial step consists of the capture of tumor antigens by
immature DC attracted to the tumor site. DC subsequently
enter a maturation and activation phase, process the cap-
tured antigens into peptides and present them to T lympho-
cytes on MHC Class I or Class II molecules. Following
activation, tumor-speciWc CD8+ CTL, the dominant eVector
killer cells, leave the secondary lymphoid organs and home
to the tumor site where they can eliminate tumor cells by
multiple killing mechanisms extensively reviewed in [24].
CD4+ T helper lymphocytes primed by DC may further
support CTL responses and provide help to other cytotoxic
innate and adaptive immune cells such as NK or macro-
phages [29, 30]. Activated NKT cells that recognize tumor-
derived glycolipids associated with CD1d expressed by DC
may also lead to tumor cell destruction [31]. Thus, DC can
theoretically orchestrate the immune attack against cancer
at virtually all of its stages (initiation, maintenance and reg-
ulation, activation of diverse eVector anti-tumoral cells). As
such, they represent strategic targets for immune interven-
tion strategies and have successfully been used in animals
and humans to induce speciWc anti-cancer immunity after
being loaded with tumor antigens [2, 32–39].

Although the direct elimination of tumor cells has pri-
marily been attributed to highly specialized killer cells such
as CTL, NKT, NK, or macrophages, many studies con-
ducted mainly in rodents and humans have highlighted the
capacity of multiple DC subsets to exert direct cytotoxic
activity against cancer cells in vitro and in vivo [24, 25, 40–
42]. These killer DC (KDC) may foster the release of tumor

antigens and consequently their rapid acquisition and pre-
sentation to T lymphocytes. Additionally KDC by virtue of
their direct tumoricidal activity may augment the diversity
and thereby the eYciency of the cytotoxic eVector mecha-
nisms responsible for tumor destruction (Fig. 1). In this
review we examine the cytotoxic property of DC as it per-
tains to their role in the promotion of cancer immunity and
the potential interest of these multitasking cells for cancer
immunotherapy.

KDC are heterogeneous in phenotype, tissue 
distribution, function and mode of target cell killing

Multiple subsets of KDC have been described in rodent
and human with conXicting results with regard to the mode
of induction of their cytotoxic activity (spontaneous or
induced) and to their mechanism of target cell killing [24,
25, 40–42] (Table 1).

KDC described in vivo

Native mouse KDC

In mouse, initial evidence indicating that DC may harbor
cytotoxic properties came from a study by Suss et al. [43].
A CD11chighCD8�+Fas-ligand(FasL)+ splenic DC sub-
population was identiWed with the capacity to kill CD4+ T
lymphocytes in a Fas/FasL-dependent manner without
additional stimulation [43]. In line with this study, FasL
expression by mouse Langerhans DC that became capable
of triggering Jurkat cell apoptosis was reported, but
required activation of the cells with CD40 ligand [44]. A
non-conventional population of CD11cintCD11bint DC
expressing inducible nitric oxide synthase (iNOS) and pro-
ducing large amounts of TNF-� was described in the
spleens of mice infected with Listeria Monocytogenes [45].
This DC subset critically contributed to innate responses
controlling bacterial infection but was not capable of prim-
ing naïve T cells [45].

Mouse NKDC and IKDC

Multiple reports have documented the existence in mouse
of hybrid NK-DC cells that may Wrst behave as killers and
then acquire APC properties leading to the eYcient priming
T cell immune responses. This concept of NKDC, IFN-pro-
ducing KDC or IKDC has raised numerous questions and
has been an area of extensive controversy [46–65]. Initially
characterized phenotypically by the co-expression of DC
and NK markers (CD11c and NK1.1, respectively), these
cells were shown to produce high levels of IFN-� following
exposure to tumor cells or activation with CpG and IL-4 or
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IL-12 and IL-18 [53, 57]. Their expansion was proposed to
be fostered by Flt3-ligand [50]. When isolated from mouse
spleen, liver, lymph nodes and thymus and appropriately
activated, NKDC were reported to exert cytotoxic eVects
against tumor cells and to subsequently present antigens to
naïve T cells [50, 53]. They have thus been involved in
anti-tumor immune responses [50, 53, 57, 58], but also in
the control of infection [59]. This concept of a unique
hybrid NK-DC cell type unifying phenotypic and func-
tional properties of NK and DC has, however, been ques-
tioned based on the fact that the markers used to identify
these cells (CD11c and NK1.1) may not unambiguously
distinguish them from classical NK cells [24, 42, 66] and
possible cross-contamination by conventional DC or NK
may have occurred in these studies.

One particular subset of NKDC termed interferon pro-
ducing killer dendritic cells or IKDC has recently been the
focus of a more reWned characterization [47–49, 52, 54, 60–
65]. IKDC were phenotypically deWned as CD11c+B220+

NK1.1+CD3¡CD19¡Gr1¡Ly6C¡ cells. Non-activated
IKDC were characterized by the absence of MHC Class II
or co-stimulatory molecule expression. Following activa-
tion with Toll-like Receptor Ligands (primarily TLR3,
TLR4 or TLR9 ligands), cytokines or after contact with
tumor cells or virus-infected cells (but not normal cells)
IKDC were reported to up-regulate MHC Class II, CD40
and CD86 and to produce large amounts of IFN-� or IFN-�,

or IL-12 [49, 54]. IKDC killing activity was documented as
transient and associated with the overexpression of
NKG2D and tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL). The loss of IKDC cytotoxic
function coincided with acquisition of MHC class II,
costimulatory molecule expression and antigen presenting
function [24, 25, 49, 54]. IKDC were proposed to play an
important role in tumor immunosurveillance through
cancer cell killing by TRAIL or/and perforin-granzyme-
dependent mechanisms [54, 62–65] and with a major role
of IL-15 to support their expansion and function in vivo
[52, 60]. However, compelling evidence has recently
revealed that these cells may not belong to the DC lineage
but are rather a subset of NK [46, 55, 67]. In addition, and
inconsistent with previous studies, IKDC appeared to be
very poor APC, did not produce IFN-� [46], were absent in
Rag2¡/¡IL2R�¡/¡ mice [46, 55] and did not express PU.1,
a transcription factor involved in hematopoiesis and
expressed by DC but not by NK cells [46].

Rat KDC detected in vivo

In rat, a subset of spleen and thymus DC that express the
NK marker NKR-P1 was identiWed more than 10 years ago
[68]. Freshly isolated splenic DC upregulated NKR-P1
after culture and were able to kill the NK-sensitive YAC-1
target cell by a Ca2+-dependent mechanism [68]. The same

Fig. 1 Role of KDC in immunity against cancer. KDC initially kill
directly cancer cells by multiple mechanisms, leading to the production
of dead tumor cells or cellular debris that represent an ideal source of
antigens available for immediate uptake by KDC. In a second phase,
KDC process tumor-speciWc antigens and associate them with MHC
Class I or Class II molecules, mature and migrate to the lymph nodes

where they activate tumor speciWc CD4+ T helper cells and CD8+ CTL
that in turn migrate to the tumor site. The Wnal step involves the
massive elimination of tumor cells by CTL and other killer cells such
as macrophages supported by activated CD4+ T lymphocytes, with the
participation of KDC as cytotoxic eVectors
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Step 2:
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team later characterized splenic and lymph node KDC as
CD4¡NKp46¡CD11b+CD103+CD200+MHC Class II+ and
established that these cells were not related to the NK line-
age [69–71]. Freshly isolated immature rat KDC triggered
apoptotic death of NK-sensitive but also and more impor-

tantly NK-resistant tumor cell lines, further arguing against
a NK-type lineage [70, 71]. Interestingly KDC killing
activity was spontaneous (no exogenous activation was
required), restricted to immature cells, did not involve the
perforin-granzyme system and was not dependent on the

Table 1 Major subsets of KDC

Subset Killing mechanism Induction Targets Reference

Mouse

Bone marrow-derived Fas-L Spontaneous Jurkat [93]

NO Spontaneous Tumor cells [96]

TRAIL Enhanced by LPS T cells [97]

TNF-�, TRAIL IL-12, IL-18 Tumor cells [95]

FasL, TNF, TRAIL Spontaneous Tumor cells [94]

Spleen CD8�+ Fas-L Spontaneous CD4+ T cells [43]

Spleen NKDC (CD11c+CD49b+) ND LCMV + anti-CD40 RMAS, YAC [51]

Spleen NKDC (CD11c+NK1.1+) Perforin/Granzyme CpG/IL-18 NK-sensitive cell line [53, 57]

IKDC (CD11c+ NK1.1+B220+) TRAIL Imatinib + IL-2 Tumor cells [54]

IKDC (CD11cintCD49+ B220+) Perforin/Granzyme CpG, listeria YAC [49]

Langerhans cells Fas-L Anti-CD40 T cells [44]

Lymph Node DC Fas-L InXuenza virus T cells [118]

Rat

Bone marrow-derived NO NKG2D (anti-NKRP2) Histiocytic tumor [73]

NO LPS, IFN-� Tumor cells [99]

Spleen CD103+ Perforin/Granzyme Spontaneous YAC [68]

Osteosarcoma [69]

TNF-� NKG2D (anti-NKRP2) Tumor Cells [72, 73]

Spleen and Lymph Node (CD103+CD4+) ND Spontaneous Tumor cells, Endothelial cells [70, 71]

Thymic DC NO Spontaneous Thymocytes [117]

Human

Blood CD11c+ mDC TRAIL IFN-�, IFN-� Tumor cells [76]

TNF-� LPS, IFN-�, IL-15 Tumor cells [79]

Perforin/Granzyme TLR7/8 (Imiquimod) K562 [80]

Blood M-DC8+ mDC TNF-� IFN-� Tumor cells [84]

Blood (CD4+HLADR+Lin¡) TNF-�, TRAIL
FasL, LT�1�2

Spontaneous Tumor cells, Endothelial cells [77, 78]

Blood pDC TRAIL TLR7/8 (Imiquimod) Jurkat [80]

InXuenza virus CpG, R848 A549, Mel [75]

HIV, IFN Imiquimod T cells [74]

CD34-derived TRAIL IFN-� Tumor cells [102]

Monocyte-derived TRAIL Measles virus MDA231 [104]

CD40-L Tumor cells [104]

IFN-�, IFN-� Tumor cells [109]

LPS, IFN-� Tumor cells [112]

IFN-� Tumor cells [102]

dsRNA MDA231 [104]

Spontaneous Tumor cells [103]

TNF-�, TRAIL
FasL, LT�1�2

Spontaneous Tumor cells [78]

TNF-� LPS, IFN-� Tumor cells [79]

CD40L MDA231 [104]
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death receptor family molecules Fas-L, TRAIL or TNF-� or
on caspase activation, but required cell contact [70]. Fol-
lowing killing of tumor cells, these KDC were capable to
speciWcally take up the resulting apoptotic bodies [70].
Interestingly, KDC activation resulted in the loss of their
tumoricidal and endocytic ability [70]. A more recent study
provided some relevance of these Wndings in vivo as it per-
tains to tumor growth control [69]. In this report, splenic
KDC driven to kill and take up an osteosarcoma tumor cell
line in vitro were shown to promote tumor regression when
administered to rats bearing the same osteosarcoma. Since
the beneWcial eVects of KDC vaccination were abrogated in
CD8 T cell depleted animals, the authors suggested that fol-
lowing killing and capture of cancer cells, KDC were capa-
ble to eYciently cross-presenting tumor antigens to speciWc
CTL [69]. It has independently been reported that rat
CD103+ DC from spleen or lymph nodes of tumor-bearing
rats expressed NKR-P2 (NKG2D). Agonistic NKG2D anti-
bodies promoted the tumoricidal activity of KDC in vitro
and hindered tumor progression in vivo, while KDC killing
potential was impaired by blocking the interaction of this
molecule with its ligand [72]. NKR-P2/NKG2D engage-
ment led to KDC activation evidenced by the upregulation
of MHC Class II, NKR-P2 and costimulatory molecule
expression, production of cytokines such as TNF-� and
secretion of high amounts of nitric oxide (NO) leading to
apoptosis of tumor cells [72, 73].

Native KDC described in human

In humans, several studies have reported on the cytotoxicity
of diVerent subsets of native DC endowed with a wide vari-
ety of killing mechanisms and modes of induction. Human
blood DC may be classiWed into two subpopulations:
CD11c+HLA-DR+ myeloid DC (mDC) or CD123+HLA-
DR+ plasmacytoid DC (pDC). Following exposure to
viruses (such as HIV or the inXuenca virus) pDC stimulated
through TLR7 or TLR-9 may acquire TRAIL-dependent
killing properties [74, 75]. IFN-� or IFN-� may also pro-
mote TRAIL expression on freshly isolated peripheral
blood CD11c+ DC, but not IL-3 receptor �+ (IL-3R�+) pre-
DC, endowing them with the capacity to kill TRAIL-sensi-
tive tumor cells [76]. Additional studies have suggested
that native immature HLA-DR+CD4+lin¡ DC from periph-
eral blood induced apoptosis of various cancer cells but not
normal cells through TNF, Fas-L, TRAIL or Lymphotoxin-
�1�2 [77, 78]. TNF-�-dependent anti-tumor eVects of
blood DC were also described against breast cancer cell
lines which were enhanced with LPS, IFN-� or IL-15 [79].
Of clinical relevance, the seminal work of Stary et al. in
patients with basal cell carcinoma demonstrated that a
TLR7/8 agonist (Imiquimod) promoted the recruitment to
the tumor site of CD123+HLA-DR+ pDC and CD11c+HLA-

DR+ mDC both endowed with cytotoxic activity [80]. Inter-
estingly, mDC were located at the tumor periphery and
expressed perforin and granzyme B while pDC were inWl-
trating the tumor beds and expressed TRAIL [80]. In this
study, blood-derived mDC were shown to also express per-
forin and granzyme B (10–15%) but not TRAIL upon TLR-
7/8 stimulation and were capable of killing K562 leukemia
cells but not perforin/granzyme-resistant Jurkat cells [80].
Conversely, expression of granzyme B was detected in the
cytoplasm of a majority of unstimulated pDC isolated from
the peripheral blood but was signiWcantly reduced follow-
ing activation with TLR7 or TLR7/8 ligands [80]. How-
ever, these TLR agonists induced TRAIL expression on
blood-derived pDC which gave them the ability to trigger
TRAIL-dependent apoptosis of Jurkat cells [80].

CD11c+CD123¡ mDC are commonly subdivided into
three subpopulations based on the expression of CD16,
CD1b/c, and CD141 (BDCA-3). The CD16+ subset encom-
passes cells expressing or not the M-DC8 antigen (M-DC8+

or M-DC8¡ DC) [81, 82]. Freshly isolated blood M-DC8+

cells have been reported to express Fc�RIII and Fc�RII and
to induce tumor-directed antibody dependent cell-mediated
cytotoxicity (ADCC) [83]. These blood myeloid M-DC8+

DC may also exert cytotoxic eVects against diVerent tumor
cell lines but not against normal cells when activated with
IFN-� [84].

Besides the above mentioned reports, Langerhans cells
have additionally been shown to express the death receptor
ligand Fas-L [85], but the physiological relevance of this
Wnding remains unclear. Whether other subsets of human
DC may be capable of killing target cells remains poorly
explored.

These studies thus demonstrate the existence in vivo in
rodents and humans of diVerent subsets of DC with a poten-
tial cytotoxic activity that, in most cases, is dependent on
exogenous activation signals.

Generation of KDC ex vivo

The paucity of DC in vivo has been a key-limiting factor
for the application of DC-based vaccines in cancer therapy.
This limitation has been overcome by the development of
ex vivo diVerentiation and expansion procedures that allow
the generation of these cells in large numbers. The primary
source of DC currently used in clinical trials and in most
animal studies consists in monocyte-derived DC [33, 86–
89]. Other techniques of generating DC include the expan-
sion of CD34+ bone marrow or blood-derived precursors
[90–92]. Although relatively limited data are available
regarding the cytotoxic function of freshly isolated native
DC (see above), numerous studies have reported on the
killing activity of ex vivo generated DC, essentially mono-
cyte-derived human DC.
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Rodent KDC diVerentiated from bone marrow cultures

Murine bone marrow-derived DC (BMDC) have been
reported to exert killing activity against cancer cells [93–
98]. In most reports, this tumoricidal function was sponta-
neously acquired during their diVerentiation in culture
and did not seem to require pro-inXammatory signals [93,
94, 98] but could be enhanced by LPS [97]. DC produced
from bone marrow cells cultured in the presence of GM-
CSF and IL-4 were shown to express Fas-L and to medi-
ate apoptosis of Jurkat cells [93]. The involvement of the
death receptor ligands Fas-L, TRAIL and TNF-� in bone
marrow-derived KDC cytotoxic activity has been reported
in additional studies [93, 94, 97]. However, in contradic-
tion with these reports, others found that apoptosis of syn-
geneic and allogenic tumor cells by bone marrow-derived
KDC did not depend on death receptors or on IFN-� or
TNF-� and did not require cell contact but was partially
dependent on NO and on undeWned pro-apoptotic fac-
tor(s) [96]. Interestingly, our own recent data indicated
that mouse CD11c+ BMDC acquired killing capabilities
toward tumor cells only when activated with the TLR-4
ligand LPS or the TLR-2 agonist Pam3Cys-SK4. The
cytotoxic potential of these KDC was not mediated by
Fas-L, TNF or TRAIL, but was dependent on peroxyni-
trites, the main metabolites of nitrite oxide (NO). Consis-
tent with this observation, we further demonstrated that
the tumoricidal activity of BMDC from iNOS or GP91
knock-out mice was signiWcantly reduced. Importantly,
after killing of cancer cells KDC were capable of engul-
Wng dead tumor cell fragments and of presenting tumor
antigens to speciWc T lymphocytes (J. Fraszczak et al.,
manuscript in revision). The interest in using the anti-
tumoral potential of KDC generated from bone marrow to
treat established cancers was highlighted in a study by
Tatsumi et al. [95]. These authors demonstrated that the
adenoviral infection of BMDC with IL-12 or IL-18 or a
combination of both strongly enhanced TNF-� and Fas-L
expression and resulted in improved tumoricidal activity
[95]. Intratumoral injection with these genetically modi-
Wed bone-marrow KDC promoted the regression of sar-
coma, which was dependent upon the presence of CD4+

and CD8+ T cells [95]. Beside these studies in mice, we
have reported that in rat, KDC generated from the bone
marrow were endowed with cytotoxic properties against
syngeneic, allogenic and xenogenic tumor cell lines [99].
BMDC killing activity was signiWcantly enhanced with
IFN-� and LPS and was mediated by a NO-dependent
non-apoptotic mechanism [99]. It is thus not yet clear,
from the aforementioned conXicting reports, whether in
rodents the cytotoxic function of KDC generated ex vivo
from bone marrow cells is spontaneous or may require
some form of exogenous activation.

Human KDC generated from peripheral blood monocytes

Numerous studies have reported that human DC generated
from monocytes cultured in vitro may act as potent cyto-
toxic eVectors, with a range of divergent reports describing
their mode of killing and requirement for activation of their
tumoricidal activity [77, 78, 84, 100–107]. Immature DC
generated from peripheral blood monocytes were shown to
induce caspase-dependent apoptosis of several cancer cell
lines as well as freshly isolated non-cultured cancer cells
and endothelial cells but only of a minority of tested normal
cells [77]. The basis of normal cell resistance to DC killing
activity, however, has not been determined. Interestingly,
following activation with CD40L these monocyte-derived
DC lost their tumoricidal activity [77]. Consistent with this
result immature monocyte-derived DC were observed to be
cytostatic and cytotoxic against tumor cells, however, KDC
activation with IFN-�, IFN-�, IFN-� or LPS did not aVect
their killing potential [100, 101]. Others have reported that
the inhibition of the growth of several human tumor cell
lines by DC generated from blood monocytes was
enhanced by LPS and IFN-�, but not by TNF-� or CD40L
[106]. It has conversely been shown that CD1a+ monocyte-
derived immature DC stimulated with soluble CD40L, LPS
or both promoted growth inhibition of breast cancer cells
[105]. The promotion of DC killing activity by CD40L or
double stranded RNA (dsRNA) has been attributed to two
diVerent mechanisms [104]. In fact, dsRNA, but not
CD40L, were capable of indirectly triggering TRAIL
expression by DC through the induction of IFN-� produc-
tion, while CD40L-mediated KDC cytotoxic function
depended on TNF-� and other unidentiWed mechanisms
[104]. Providing further insights into the role of CD40 and
CD40L, a study has recently described the tumoricidal
properties of immature human myeloid-derived DC
exposed to OK432, a penicillin-inactivated lyophilized
preparation of Streptococcus pyogenes. The observed kill-
ing properties of these KDC were associated with OK432-
induced up-regulation of CD40L and depended on the
expression of CD40 on tumor cells [108]. As described for
their rodent counterparts, the mechanisms underlying the
killing activity of human KDC are subjects of controversy.
These cells were shown to promote the death of their tar-
gets by TNF-�, FasL or TRAIL-independent pathways
[100, 103]. These observations were challenged by other
reports indicating that TNF, Fas-L, TRAIL or lymphotoxin-
�1�2, acting alone or in concert, were involved in the
tumoricidal activity of human KDC, which was induced or
enhanced after IFN-�, IFN-� or CD40L stimulation [78,
102, 104, 109]. However, it is to be underlined that the role
of CD40L added in DC-tumor cell co-cultures is unclear
since this molecule may directly aVect the survival or
growth of some CD40-expressing cancers [110]. Our own
123
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data indicated that human CD14+ monocyte-derived DC
generated from the peripheral blood acquired a killing
activity against diVerent type of cancer cells following acti-
vation with LPS. We established that, similar to our obser-
vations in mice, the cytotoxic function of these cells was
mediated by a peroxynitrite-dependent, death receptor
ligand-independent mechanism (D. Lakomy et al., unpub-
lished data).

Human KDC produced from cord blood, CD34+ cells 
or from other sources

Besides KDC generated from peripheral blood precursors,
immature DC prepared from monocytes isolated from
ascitic Xuid of patients with ovarian carcinomas were iden-
tiWed as potent tumor cell killers [111]. These cells trig-
gered apoptotic cell death in autologous and allogeneic
ovarian cancer cells through a Ca2+-independent, Fas-L-
dependent mechanism and were capable of capturing dying
tumor cells [111]. In addition, DC generated from CD34+

cells after 8 days in culture were reported to express TRAIL
following stimulation with IFN-� while LPS treatment
actually reduced the expression of this molecule [102].
It was further determined that this induction of TRAIL
partially contributed to the enhanced cytotoxic eVects of
IFN-�-stimulated CD34+ stem cell-derived DC [102]. Human
cord blood monocyte-derived DC were additionally reported
to exert selective cytotoxic eVects against hematological
tumor cells but not against normal cells following activa-
tion with IFN-� or LPS [112]. Both, IFN-� or LPS stimula-
tion up-regulate the expression of intracellular, but not
cell-surface TRAIL [112].

In summary, multiple subsets of KDC have been
described with a considerable variability with regard to the
modalities of induction of their cytotoxic function and to
the mechanisms of tumor cell killing.

Role and therapeutic potential of KDC in cancer: 
a double edge sword?

Cancer immunotherapy strategies have traditionally been
designed to induce speciWc anti-tumoral T lymphocytes
through diVerent vaccination approaches, one of them using
DC loaded with tumor antigens of diverse sources [113–
115]. In most of these approaches, the interest in DC-based
vaccines has centered on the antigen presenting and immu-
nostimulatory function of the DC. However, even if proven
clinically safe and eYcient to prime and sustain immune
responses, conventional DC-based immunotherapy has
only sparked moderate enthusiasm because of the relatively
limited objective clinical responses that have been observed
in cancer patients. Therefore, the non-conventional ability

of DC to act as direct tumor cell killers certainly opens new
avenues for the design of future cancer immunotherapies.

DiVerent aspects of KDC properties should be consid-
ered with regard to their potential clinical beneWts. Firstly,
advocating in favor of the implementation of KDC in can-
cer immunotherapies, these cells could directly participate
in tumor cell elimination. Considering the fact that tumors
have evolved multiple strategies to resist killing inXicted by
NK or CTL through classical pathways (such as perforin/
granzyme, Fas-L…), the wide variety of the mechanisms
used by KDC to kill their targets may provide a signiWcant
advantage insofar as it increases the diversity and therefore
the eYciency of cytotoxic eVector responses. Secondly, the
direct killing of tumor cells by KDC is of considerable rele-
vance for the acquisition of tumor-derived material in a
rapid and eYcient manner. Indeed, not only it quantita-
tively fosters the release of available tumor antigens, but
the direct elimination of cancer cells allows for their rapid
uptake by DC and thus prevents their clearance by scaven-
ger neutrophils or macrophages. Thirdly, following killing
and capture of cancer cells debris, KDC are capable of
switching their function from killers to messengers capable
of processing and presenting or cross-presenting acquired
tumor antigens to CD4+ or CD8+ T lymphocytes. The uniW-
cation of these properties therefore makes KDC highly
desirable for the induction of speciWc anti-tumoral immu-
nity. Finally, the fundamental observation that KDC cyto-
toxic activity is mainly directed toward tumor cells implies
their speciWc recognition through cell surface receptors
(such as NKG2D or other unidentiWed molecules) and
importantly provides these cells with the ability to spare
non-malignant cells. One may therefore logically expect
relatively limited side-eVects associated with the exploita-
tion of the killing potential of KDC in clinic.

However, despite these undeniable theoretical advanta-
ges of using KDC as powerful killers–gatherers–messen-
gers, one should consider yet another face of these cells:
their potential role as inducers of immune tolerance. It has
been proposed that immature DC may take advantage of
their cytotoxic function to acquire self-antigens from apop-
totic normal cells and present them to autoreactive T cells,
leading to self tolerance [42, 116]. As previously described
some studies indicate that KDC may also promote the kill-
ing thus the deletion of T lymphocytes or thymocytes [42,
43, 117, 118]. In cancer, DC are defective in their matura-
tion and immunostimulatory function and thus are capable
of inducing T cell tolerance to speciWc tumor antigens [13,
14, 17, 20–22, 116]. It should therefore be taken into
account that tumors may subvert the tumoricidal properties
of KDC to escape immune detection and elimination. It is
indeed conceivable that immature KDC that had killed
cancer cells may, in absence of activation signals, pres-
ent processed tumor antigens to T lymphocytes without
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co-stimulation or pro-inXammatory cytokine secretion,
leading to T cell anergy or deletion. Based on this consider-
ation, it is thus critical to clearly determine whether tumor
cell killing by KDC may lead to their maturation. This
potential deleterious eVect of KDC in anti-tumoral immune
response may very probably be avoided by appropriately
promoting the full maturation of KDC into potent APC
using exogenous stimuli such as TLR ligands, interferons
or a combination of these molecules as described [76, 80,
84, 95, 99, 102, 104–106, 109, 112].

Several immune intervention strategies may be envi-
sioned to evaluate the potential of KDC in human cancer
immunotherapy. First, KDC generated in vitro that are
allowed to kill, capture and process tumor cells in culture
may be administered as conventional DC vaccines. A sec-
ond approach may consist in the systemic or intra-/peri-
tumoral injection of KDC generated in vitro. Encouraging
results of this approach have been reported by Triozzi et al.
[119]. Third, therapies can be designed to promote the
tumoricidal activity of DC in vivo and/or the recruitment of
these KDC to the tumor site, as evidenced by the seminal
work of Stary using the TLR-7 ligand Imiquinod [80]. In all
these approaches, the choice of the type of DC activation
signal(s) is critical since it may determine the nature of the
killing mechanism. This is an important point to consider
since tumor cells may develop resistance to speciWc death
pathways. It may therefore, be advantageous to promote
simultaneously the tumoricidal activities of multiple KDC
subsets (capable of inducing tumor cell killing by diVerent
mechanisms) to overcome the emergence of resistant tumor
variants. Finally, the genetic engineering of DC to render
them cytotoxic (expression of TRAIL, Fas-L…) or to
enhance their tumoricidal properties, thus creating a “cus-
tomized” killer APC, may represent an additional useful
approach. However, it is likely that complete tumor elimi-
nation will not solely depend on the anti-tumoral activity of
KDC but will require the ultimate induction of tumor-
speciWc T lymphocyte activation.

A major obstacle for successful cancer immunotherapy
is the expansion of CD4+CD25+Treg that occurs during
tumor progression [38, 120–124]. Tumor-induced Treg
compromise the function of anti-tumor eVector CD8+ T
cells, curtail CD4+ T cell help and impede antigen-present-
ing cell activity [37, 124, 125]. Studies in humans and in
animal models have demonstrated that attempts to disrupt
Treg suppressive activity promote anti-tumoral immunity
[38, 121, 126, 127]. Therefore, associating KDC-based
therapy with Treg elimination or inactivation strategies, and
more generally with approaches aimed at overcoming
tumor-induced tolerance (inhibition of immunosuppressive
molecules or cells such as TGF-� or myeloid-derived sup-
pressor cells…), may further enhance the clinical eYciency
of these killer-APC.

Conclusion

Besides their primary role as potent inducers of tumor-spe-
ciWc CD4+ and CD8+ T lymphocytes or of NK cells, numer-
ous reports have extensively demonstrated that DC are also
endowed with the capacity to directly kill cancer cells. This
concept integrates KDC in a multi-step process in which
they may generate their own source of tumor-derived mate-
rial by virtue of their cytotoxic activity, then switch func-
tion to present captured and processed tumor antigens to
speciWc T lymphocytes. This notion of a ‘multitasking’ cell
population that can act at virtually all levels of anti-tumor
immune response has sparked considerable interest for the
development of novel cancer immunotherapeutic strategies
in humans.

However, multiple questions remain unanswered par-
ticularly as they relate to the induction and regulation of
DC killing function, the kinetics in acquisition of their
killing and APC potential and the mechanisms by which
they trigger death of their targets. For instance, a major
challenge is to establish whether recognition and killing
of tumor cells in vivo may drive the diVerentiation of
KDC into powerful APC capable of inducing anti-cancer
immunity, or whether immature KDC that had killed
tumor cells may behave as tolerogenic APC responsible
for eVector T cell deletion or Treg induction. It will also
be critical to address the mechanism underlying the spe-
ciWc recognition and killing of tumor cells and why, in
most scenarios, normal cells are spared by KDC. The out-
come of these studies may contribute to further under-
standing and developing this novel generation of tumor
killer cells and expand their application beyond their pri-
mary role as inducers and regulators of immune responses
against cancers.
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