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Abstract Dipeptidyl peptidase IV (DPP-IV), assigned to
the CD26 cluster, is expressed on epithelial cells and lym-
phocytes and is a multifunctional or pleiotropic protein. Its
peptidase activity causes degradation of many biologically
active peptides, e.g. some incretins secreted by the ente-
roendocrine system. DPP-IV has, therefore, become a novel
therapeutic target for inhibitors that extend endogenously
produced insulin half-life in diabetics, and several reviews
have appeared in recent months concerning the clinical
signiWcance of CD26/DPP-IV. Biological Xuids contain
relatively high levels of soluble CD26 (sCD26). The
physiological role of sCD26 and its relation, if any, to
CD26 functions, remain poorly understood because
whether the process for CD26 secretion and/or shedding
from cell membranes is regulated or not is not known.
Liver epithelium and lymphocytes are often cited as the
most likely source of sCD26. It is important to establish
which tissue or organ is the protein source as well as the
circumstances that can provoke an abnormal presence/
absence or altered levels in many diseases including cancer,
so that sCD26 can be validated as a clinical marker or a
therapeutic target. For example, we have previously
reported low levels of sCD26 in the blood of colorectal can-
cer patients, which indicated the potential usefulness of the
protein as a biomarker for this cancer in early diagnosis,
monitoring and prognosis. Through this review, we envis-
age a role for sCD26 and the alteration of normal peptidase

capacity (in clipping enteroendocrine or other peptides) in
the complex crosstalk between the lymphoid lineage and, at
least, some malignant tumours.
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Introduction

The CD26 protein

The exoprotease dipeptidyl peptidase IV (DPP-IV, EC
3.4.14.5), also known as CD26, is a transmembrane glyco-
protein of 110 kDa MW expressed constitutively in a
dimeric form (220 kDa) on a variety of cell types, particu-
larly prostate, kidney, liver and epithelial cells, predomi-
nantly in exocrine glands and absorptive epithelia [1–5], as
well as on some endothelial cells of (rat) blood vessels and
capillaries [3] and also on lymphocytes [4]. As a special
exception, CD26 expression is low in the resting state T
and NK cells but it is rapidly up-regulated upon activation
of these cells [3–6].

CD26 was originally described in 1966, by Hopsu-Havu
and Glenner [7], by its DPP-IV activity in human liver. In
1977, Schrader and Stacy [8] discovered the adenosine
deaminase (ADA) binding or complexing protein (ADAbp,
ADCP) function. In 1984, Fox et al. [4] described the pro-
tein as a leucocyte antigen because of binding of the Ta1
monoclonal antibody. In 1993, the protein was identiWed as
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CD26 independently by the groups led by Houghton and by
Schlossman [9, 10]. It has also been shown to be a func-
tional receptor for collagen and Wbronectin, and to interact
with the transmembrane tyrosine phosphatase CD45 (in
leucocytes), with glypican-3, and with the chemokine
receptor CXCR4, as reviewed in [2, 11–14]. A new model
for CD26 costimulatory function [13] suggests that, at least
in activated memory T cells, CD26 enhances antigen-spe-
ciWc T cell proliferation by engaging signalling pathways in
the APCs, in particular the up-regulation of CD86, through
the CD26’s caveolin-binding domain interaction with cave-
olin-1, transported to the APC membrane along with the
peptide–MHC complex. This interaction also presumably
leads to downstream signal transduction in T cell costimu-
lation, in which the cytoplasmic tail of dimeric CD26 may
bind to caspase recruitment domain-containing membrane-
associated guanylate kinase protein-1 (CARMA).

Therefore, DPP-IV can act in an enzymatic activity-
dependent and -independent fashion.

The DASH family

The many proteins, apart from CD26, that exhibit similar
DPP-IV activity and/or varying degrees of structural
homology are members of the SC clan (representing
enzymes with an �/� hydrolase fold) and are known as
“DPP-IV activity and/or structure homologues” [2, 15, 16].
These comprise the S9B family, i.e. proteins with DPP-IV
activity, from plasmatic membrane (CD26/DPP-IV and
FAP-�/seprase) or cytoplasm (DPP8 and DPP9); the S9
family, i.e. DPP6 and DPP10 plasma membrane proteins
homologous to CD26 with no peptidase activity (they are
involved in neuronal membrane complexes); and the S28
family, a CD26 sequence divergent protein known as
DPP7/QPP (quiescent cell proline dipeptidase) or DPP-II,
with DPP-IV activity in the lysosomal fraction. There are
some excellent reviews on the DASH proteins [15, 16].
Some important facts to consider are (1) there is substantial
overlap of substrate speciWcity and catalytic properties,
which indicates the importance of this enzymatic activity,
as well as the critical regulation of DASH expression and
tissue speciWcity. (2) The domains unrelated to the catalytic
activity are also highly conserved. Together with the fact
that the plasma membrane proteins have very short cyto-
plasmic domains and that they are present in supramacro-
molecular complexes such as neuronal and lymphocyte
synapses or the invadopodia of metastatic cells [17–22],
these properties imply evolution of those domains to inter-
act with other functional molecules.

In the context of this review, it is also remarkable that
FAP-�, which shares a sequence identity of 50% (and many
other similarities such as the size or chromosomal localiza-
tion) and which may form heterodimers with DPP-IV, has

very restricted expression in normal human cells (embry-
onic and wound healing tissues and pancreatic islet cells),
but is selectively expressed on tumour stromal Wbroblasts in
more than 90% of human epithelial carcinomas such as
pancreas, breast, lung and colorectal carcinomas. Some car-
cinoma cells in melanomas and sarcomas are also positive
for FAP-� [21, 23, 24]. In addition to its DPP-IV-like activ-
ity, FAP-� has the endopeptidase ability to cleave dena-
tured or unwound type I and III collagens, and therefore
may be involved in regulating the extracellular matrix
(ECM) of the tumour microenvironment [20–24] (Fig. 1).

CD26 enzymatic activity

DPP-IV activity cleaves two N-terminal amino acids from
peptides and small polypeptides with, usually (but not
only), proline or alanine in the second position of polypep-
tidic chains, which are otherwise resistant to most proteases
[10–14]. Its Wrst studied role was in the process of dietary
protein assimilation on the surface of enterocytes, since
DPP-IV enzymatic activity is present in the gastrointestinal
tract as a brush border enzyme, and CD26 was used to
study the sorting of proteins to the brush border apical
membranes, which in this case involved protein glycosyla-
tion and lipid microdomains [25–28].

However, many regulatory peptides also contain these
sequences [29], and several chemokines, integrins and neu-
ropeptides have been already demonstrated to be cleaved or
clipped by this enzyme (clipping has been deWned as the
proteolytic activation or deactivation of chemokines and
other chemoattractants by the removal of short N- or C-ter-
minal peptides; see review [30]) (see Table 1 for known
biologically active substrates). Clipping of chemokines by
CD26 (some become inactivated and others activated) gen-
erally favours the preferential attraction of Th1 cells, and
consequently, the recruitment of neutrophils and macro-
phages (reviewed by Boonacker and Van Noorden [11]).

Although a peptide becomes less susceptible to cleavage
by DPP-IV with increasing length (see the excellent review
of Lambeir et al. [2]), the fact that several synthetic oligo-
peptides with sequences analogous to the amino-terminal
sequence of several releasing human hormones and cytokines
(e.g. chorionic gonadotropin, prolactin, aprotinin, corticotro-
pin-like intermediate lobe peptide and (Tyr-)melanostatin
[84], G-CSF, GM-CSF, TNF-�, IL-1�, IL-2, IL-3, IL-5, IL-8,
IL-10, IL-11, IL-13, IL-2, thrombopoietin [85], Wbrin inhibi-
tory peptide [13, 86]) are hydrolyzed by this protein, also sug-
gests that DPP-IV may participate physiologically not only by
itself but also in orchestrated mechanisms with other prote-
ases, particularly aminopeptidase N/CD13 (APN) [87, 88],
and matrix metalloproteinases [30, 89].

Most data indicate that glycosylation of CD26 is not a
prerequisite for DPP-IV activity, dimerization or ADA
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binding [90, 91] but that certain speciWc glycosylations can
profoundly aVect the enzyme activity [92].

In conclusion, the enzyme is currently viewed as having
a dual function, depending on the tissue: in changing the
functional activity of its substrates as well as a checkpoint
to general proteolytic degradation [2, 11, 16].

CD26 as a therapeutic target

Many inhibitors of DPP-IV are currently under investi-
gation (some of them reviewed in [2]). Haematopoietic

stem cell transplantation [68, 83, 94] and some T cell-
dependent inXammatory diseases [87, 88, 94] will soon
start clinical trials. In clinical Phase II and III trials, Val-
boroPro (Talabostat) was originally intended to inhibit
FAP, but is a non-selective dipeptidyl peptidase inhibi-
tor that has been tested in patients with lung, pancreas
and colon cancer, and with melanoma and chronic lym-
phocytic leukaemia [21, 23, 24, 95]. Two inhibitors
have already been approved for use in the European
Union (sitagliptin, MSD and vildagliptin, Novartis), and
the Wrst also in the US, for the treatment of type 2 diabetes.

Fig. 1 Scheme of the cancer immunoediting model in which a hypoth-
esis explaining the lower levels of sCD26 found in serum cancer
patients is included. a The tumour microenvironment (or stroma, com-
posed of epithelial and inXammatory cells, activated Wbroblasts, ECM
and blood vessels) plays a critical role in tumourigenesis. DPP-IV/
CD26 and other DASH proteins play a not wholly known role in the
process of tumour progression to malignancy in enzyme activity-
dependent and -independent fashions, as reviewed in [2, 11, 14].
b According to the cancer immunoediting hypothesis, the escape of
tumour variants, which will grow into clinical apparent tumours,
develops from cellular and molecular mechanisms leading to immune
tolerance. Tumour cells employ a plethora of mechanisms that may act
in concert to directly evade eVector T cells responses, such as negative
costimulatory signals, apoptosis and impairment of the antigen presen-
tation machinery. However, the dominant mechanism which renders

T cells tolerant during tumour growth is to change the tumour micro-
environment through secretion of many immunosuppressive mediators
and absence of some inXammatory mediators. This network leads to:
problems in tumour antigen processing by APCs, particularly DCs, and
later presentation to T cells in secondary lymphoid organs; the inhibi-
tion of DC maturation and diVerentiation; and the recruitment of diVer-
ent regulatory populations (NKT cells, Tregs, subsets of myeloid and
plasmacytoid DCs, and others) [174, 338]. c As consequence, eVector
T cells become anergic after tumour-speciWc Ag presentation. A huge
amount of information supports T cells as a major source of circulating
sCD26. Serum concentration of sCD26 is signiWcantly lower in pa-
tients of some cancers (see text). Taking into account these facts, we
propose that tumour-speciWc tolerant cells or a subset of regulatory
cells may be responsible of sCD26 lower concentrations in cancer
patients. This drop in sCD26 may have further consequences
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This new class of drugs for the treatment of diabetes acts
by enhancing the half-lives of the incretins (GIP and
GLP-1), which induce insulin secretion, leading to a sus-
tained reduction in blood glucose levels [96, 97]. The
large insulin response to ingestion of a meal is mainly
due to the eVects of these hormones released into the cir-
culation by K and L cells located in the gastrointestinal

tract [96–98]. Both have short half-lives (5 min; active
peptides, 2 min) due in part to rapid inactivation by
DPP-IV, which limits the eVects of GLP-1 and GIP on
glucose homeostasis [96]. The inactivation may occur
partially on the endothelial cells of the capillary vessels
that drain the intestinal mucosa, as has been demon-
strated in pigs [33], although only a tenuous DPP-IV

Table 1 Peptides with known physiological activity that are cleaved by dipeptidyl peptidase IV enzymatic activity

Biological eVect in italics refers to hypothesis. Species (in vivo/in vitro) refers to: In vivo, the existence of studies in humans or other species with
inhibitors as well as the existence of the product and well-known biological eVects of peptides; indirectly refers to the lack of in vivo studies with
inhibitors. In vitro, studies not fulWlling these parameters
a Peptides belong also to the neuropeptide group
b Peptides belong also to the vasoactive group

Substrate families Peptides Biological eVect Species (in vitro/in vivo) References

Incretins and 
gastrointestinal 
hormones

GLP-1 Inactivation
Possible cardiovascular role of the product

Human (in vivo)
Dog (in vivo)

[31–34]
[35]

GLP-2 Inactivation Human (in vivo) [36]

GIP Inactivation Human (in vivo) [37, 38]

Glucagon Inactivation Human (in vivo) [39, 40]

PACAPa Inactivation Human (in vitro) [41]

GRP Not known Human (in vitro)
Product in dogs

[41, 42]

Peptide YYa Change in receptor preference Human (in vivo)
Rat (in vivo, 

vasoactive action)

[43–47]

Vasoactive peptides Bradykinin Change in receptor preference 
or inactivation 
(in conjunction with APN)

Human (in vivo, indirectly)
Rat (in vivo)

[48–51]

VIP Inactivation Human (in vitro) [41]

BNPa Change in receptor preference 
or Inactivation

Human (in vitro)
Product in dogs

[52, 53]

Neuropeptides NPYb Change in receptor preference Human (in vivo, indirectly)
Rat (in vivo)

[48–51]
[54–56]

Beta-casomorphins Inactivation Human (in vivo, indirectly)
Rat (in vivo)

[57, 58]

Endomorphins Change in receptor preference Rat (in vivo)
Mouse (in vivo)

[51]
[59, 60]

Substance P Inactivation Rat (in vivo)
Pig (in vivo)
Human (in vitro)

[51, 59–63]

Chemokines CCL3 (MIP-1�, LD78�) Enhanced activity
Change in receptor preference

Human (in vivo, indirectly) [64, 65]

CCL4 (MIP-1�) Change in receptor preference Human (in vivo, indirectly) [66, 67]

CCL5 (RANTES) Change in receptor preference Human (in vitro, indirectly) [68–70]

CCL11 (Eotaxin) Inactivation Human (in vitro)
Rat (in vivo)

[71, 72]

CCL22 (MDC) Change in receptor preference Human (in vitro) [73]

CXCL6 (GCP-2) No changes Human (in vitro) [68]

CXCL9 (MIG) Inactivation Human (in vitro) [74, 75]

CXCL10 (IP-10) Inactivation, CXCR3 antagonist Human (in vivo, indirectly) [74, 76]

CXCL11 (I-TAC) Inactivation, CXCR3 antagonist Human (in vivo, indirectly) [74, 77, 78]

CXCL12 (SDF-1alpha) Inactivation, CXCR4 antagonist Human (in vivo) [79–83]
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activity and immunostaining have been described
directly in human, mouse and rat intestine endothelia [2,
3, 99]; and partially by soluble protein DPP-IV existing
in capillary blood [32, 99, 100], before GLP-1 enters the
portal circulation [96].

No immediate adverse or secondary eVects resulting
from the therapeutic alteration of DPP-IV activity in con-
trolled clinical studies have been reported by the manufac-
turers [except a small increase in nasopharyngitis with
sitagliptin, but not with vildagliptin (product monographs
for Januvia, MSD and for Galvus, Novartis)], although
obviously no long-term studies have been carried out. As
preclinical animal studies identiWed several problems, pos-
sibly due to cross-enzymatic inhibition (at least DPP8 and
DPP9) [101, 102], and the enormous number of substrates
(Table 1), see [48], vigilance over long-term use of inhibi-
tors is mandatory [103, 104].

CD26 in cancer

CD26/DPP-IV has been consistently associated with
cancer since it was known as ADCP, or the 2 or Large
ADA isoform [105, 106]. It is important to point out that
these studies with ADCP involved immunological
techniques and are therefore more speciWc than earlier
studies that measured the DPP-IV enzymatic activity in
tumour tissues. The group led by Bosman found that
ADCP staining was decreased in about one-third of
colorectal, prostatic and renal tumours, but unaltered or
even increased in the other two-thirds; signiWcant intra-
tumour and intertumour heterogeneity as well as
diVerences in the cellular staining pattern with respect to
the normal tissue were also reported [107–110]. It
should be also pointed out that the non-enzymatic role of
CD26 as an extracellular anchorage for ADA may be
important in tumourigenesis. Although the presence of
extracellular ADA is independent of PM CD26 expres-
sion [111–114], the ADA–CD26 complexes may partici-
pate in cell-to-cell contacts [18, 113, 115] or, more
probably in this context, through the catalysis of adeno-
sine to inosine [112–114]. Proliferating cells accumulate
high extracellular concentrations of adenosine, a purine
nucleoside found within the interstitial Xuid of solid
tumours, which may be toxic or inXuence the prolifera-
tive potential of a cell, depending on the relative expres-
sion, and type, of adenosine receptor (AR). Therefore,
the diVerent levels of cell surface CD26–ADA complex
and relative expression of ARs on a tumour cell may
lead to generation of tumour subclones as well as to par-
ticipation in the well-known adenosine inhibition of
cell-mediated immune responses to tumour cells
[16, 114, 116–120].

Pro-oncogenic activities

In addition, it has recently been reported that CD26–ADA
may form a ternary complex with plasminogen. Binding of
plasminogen to cell surface receptors promotes its conver-
sion to plasmin, which is required for proteolysis of the
ECM in several physiological and pathological processes,
including cell migration, tumour cell invasion and metasta-
sis [120].

Many reviews have discussed the role of CD26/DPP-IV
activity in cancer and the potential usefulness of this protein
in therapeutics and diagnostics [12, 16, 116, 121]. It is
important to note that early studies measured the DPP-IV
enzymatic activity in tumour tissues and body Xuids, as
already mentioned, but some DASH proteins also use strik-
ingly similar substrates. For example, the enhanced DPP-IV
and DPP-II activity observed in lung squamous cell
carcinoma as compared with that in normal lung tissue
[122–124] may be related to the well-established FAP
expression in that tumour [125]. In addition, glypican-3 has
been recently reported as the Wrst natural inhibitor of CD26/
DPP-IV enzymatic activity, in in vitro experiments [126].
Glypican-3 is one of the six mammalian glypicans (heparan
sulphate proteoglycans GPI-linked to the cell membrane)
that are usually expressed during development and are basi-
cally absent from adult tissues but up-regulated in many
tumour tissues [127]. Therefore, a possible glypican-3-
dependent DPP-IV inhibition may also lead to levels of
enzymatic activity in the tumour being independent of the
actual amount of CD26. It appears that glypican-3 can mod-
ulate the activity of many growth-signalling peptides, such
as insulin-like growth factor 2, and that it is related to apop-
tosis and confers oncogenicity to the cell [16, 128, 129].

FAP-� also appears to be pro-oncogenic and its collage-
nolytic or gelatinase activity at the invadopodia supramo-
lecular complex, implicated in ECM remodelling during
tumour invasion, metastasis or angiogenesis, is well estab-
lished [15, 16, 20–24, 130]. Therapies targeting FAP inhibit
tumour growth [95, 131], and FAP is selectively expressed
on stromal Wbroblasts of various epithelial carcinomas,
such as pancreas, breast, lung, esophagic, gastric and colon
cancers, as well as in melanoma, cervical and brain
tumours, as commented [15, 16, 20–24, 130, 132, 133]. The
possible usefulness of FAP as a marker of (poor) patient
prognosis in cervical, colon and ovarian cancer has recently
been well reviewed by Sedo et al. [16].

CD26, also present at the invadopodia, together with
other ectoproteases and metalloproteases [21, 130, 134],
can participate in malignant transformation and cancer pro-
gression through its ability to bind collagen and Wbronectin
[20–22, 116, 121, 130, 135]. MMPs, including MMP-2 and
MMP-9, and FAP digestion of ECM components will
permit passage of the malignant cells through basement
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membranes and stromal barriers. This pro-oncogenic
behaviour is thus consistent with the non-enzymatic inter-
actions with cell surface ADA–plasminogen and glypican-3
mentioned above, and the formation of FAP–CD26 hetero-
dimers, although it is not known whether these heterodi-
mers have a diVerent function from homodimers (in fact
they are not co-expressed in tumour stromal Wbroblasts or
sarcomas) [130, 136]. A clue to later discussion is that
glypican-3 may inhibit the enzymatic activity of CD26 in
this context, i.e. in a particular tumourigenic niche [137].

The up-regulated CD26 expression associated with the
aggressiveness of T and B lymphomas and leukaemias
[138–141], thyroid follicular, papillary carcinomas, astro-
cytic tumours and gastrointestinal stromal tumour [142–
145] are consistent with these Wndings. Very recently,
CD26 expression was evaluated in various peripheral B-
cell lymphoid tumours: CD26 expression was absent or
barely detectable in follicular and mantle cell lymphomas,
high in multiple myelomas and hairy cell leukaemias, and
variable in chronic lymphocytic leukaemias, in CD5(neg)
B-cell chronic lymphoproliferative diseases and in diVuse
large cell lymphomas. In B-CLL, CD26 expression on cell
surface (analysed by Xow cytometry [146]) and CD26 gene
overexpression (analysed by microarray technology [147])
may identify subsets of patients with an unfavourable clini-
cal outcome, thus suggesting its potential role as a prognos-
tic marker of progressive disease. The enhanced DPP-IV
activity (not necessarily CD26 speciWc) found in early lung
squamous cell and skin basal cell (and precancerous derma-
tosis) carcinomas, prostatic tumours and hepatocellular car-
cinomas [148–150], which is then lost in later phases
(probably due to a transition from early invasive stages), as
well as the higher CD26 expression in benign melanoma
(compared with a decrease in malignant melanomas) [151],
and the demonstrated use of mAb anti-CD26 as treatment
for mesothelial and renal cancers [152, 153] may also sup-
port these Wndings.

Anti-oncogenic activities

There is a fundamental diVerence between CD26 and the
other proteases involved in cancer development and pro-
gression as executors of ECM degradation: CD26 is consti-
tutively expressed in the tissues mentioned at the beginning
of this article, and its enzymatic activity regulates the bio-
logical activity of regulatory peptides, growth factors and
chemokines. If glypican-3-dependent local DPP-IV inhibi-
tion can be conWrmed in a physiological context, this indi-
cates a natural protective role for the enzyme that should be
blocked in the tumourigenic process.

This idea was proposed early on following the immuno-
histological studies cited above [107–110], which reported
a loss of CD26 expression in some tumour tissues, and

from other studies that found signiWcant decreases in DPP-
IV activity [16, 117], not only in the tumour microenviron-
ment but also in the systemic circulation (see further
below). In addition to some prostatic, colorectal, haemato-
logical and renal tumours [107–110, 154–157], a decrease
in CD26 was found to accompany the progression of mela-
noma lesions, and CD26 was absent from metastatic
tumours [151, 158]. An inverse correlation between CD26
expression and the grade of tumour was also observed in
endometrial cancers [159, 160]. Interestingly, in advanced
stages from prostate and lung and skin squamous cell carci-
nomas [161, 162], CD26 expression is lower than in early
stages, or may even be absent.

The protective role was Wrst contrasted in 1999 by the
Houghton’s group [163–166] when they reexpressed wild-
type or mutant CD26 transfected in human melanoma cells
at levels comparable to those found in normal melanocytes
and observed reversions of the malignant phenotype: an
enzymatic activity-dependent loss of tumourigenicity and
abrogation of a block in diVerentiation, as well as enzy-
matic activity-independent re-emergence of dependence on
exogenous growth factors for cell survival. They found
similar or additional tumour suppressor functions for CD26
reexpressed in vitro in cell lines from non-small cell lung
and prostatic carcinomas [167, 168], and concluded that
DPP-IV regulates the activities of (unidentiWed) locally
produced mitogenic peptides involved in cancer develop-
ment. Similar changes in morphology, as well as decreased
growth, migration and adhesion, and changes in E-cadherin
and MMPs and TIMPs cell surface expressions were
recently described for ovarian carcinoma and glioma cells
[169–171].

Together these data—diVerences in the cellular staining
pattern with respect to the normal tissue, signiWcant intratu-
mour heterogeneity and changes of CD26 expression linked
to the transition of tumour stages—indicate a quite complex
situation in the physiological microenvironment of cancer
niches. The possibility that the tumourigenic process may
manipulate the functions of CD26/DPP-IV, e.g. evading the
immune system by modifying local chemokine gradients
(and therefore, the immune cell homing), and by modulat-
ing cytokines and angiogenic or immunosuppressive fac-
tors (Table 1) [89, 172–176] deserves to be studied in more
detail. Nevertheless, some diagnostic and prognostic uses
for tumour CD26 expression have been proposed (and
reviewed in [2, 16, 119]).

Serum CD26

SigniWcant levels of DPP-IV activity have been shown to
occur in body Xuids such as plasma, serum, cerebrospinal and
synovial Xuids, semen and urine (see reviews [2, 11–13, 16]).
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Serum DPP-IV activity was discovered in 1968 by Naga-
tsu’s group in Japan [177]. It is very important to note that
there is no direct correlation between serum CD26 (or solu-
ble, in contrast to transmembrane) (sCD26) protein concen-
trations and serum enzymatic activity assays, for three
reasons: (1) There are some circulating proteins other than
CD26 with DPP-IV activity, as will be discussed below. (2)
Sialylation (a type of glycosylation) of sCD26 [2, 11–14,
92] is strongly enhanced in elderly individuals [178], and
the recent Wnding that a certain type of hypersialylation can
inhibit DPP-IV activity [93] is consistent with the fact that
serum/plasma DPP-IV enzymatic activity tends to decrease
with age [2]. The slight but signiWcant decrease of the serum
sCD26 protein levels we have observed in a large cohort
(data submitted) is not enough to explain the decrease in
activity. (3) It has recently been suggested that the serum
protein attractin, which has a CUB domain (a motif of
around 110 amino acids residues present in multiple plasma
membrane-associated proteins) that enhances the enzymatic
activity of tolloid proteases [179, 180], may regulate the
DPP-IV activity of CD26/sCD26 in the same way [16]. Attr-
actin is the product of the mahogany (human ATRN) gene
involved in control of pigmentation, energy metabolism,
immune status and neurodegeneration [181]. Once thought
to have DPP-IV activity itself [182–184], serum attractin
has both secreted (with isoforms) and membrane forms that
result from an alternative splicing that it is diVerentially
regulated at least in lymphoid tissues [185], and is actually
frequently co-puriWed with sCD26 [16, 182–184].

The protein

Within normal plasma/serum, some 90–95% of DPP-IV
activity has been associated with a relatively high concen-
tration of sCD26 in human serum (»600 �g L¡1) (Table 2)
[2, 16, 186–188]. Since sCD26 is heavily glycosylated, its
molecular weight is similar to that of transmembrane CD26
[186, 188] although it lacks transmembrane and cytoplas-
mic domains (the sequence starting at the 39th position)
[187]. Iwaki-Egawa et al. [187, 189, 190] suggested that
sCD26 must be shed from any plasma membrane on CD26
expressing cells that are in contact with blood, by proteo-
lytic cleavage, which is analogous to the Wndings of some
diVerently processed derivatives of other PM proteases
such as APN (lacking 59 or 68 amino acid residues) in nor-
mal and maternal or pregnant serum. Other natural or
recombinant sCD26 proteins are similar, but not equal, to
the naturally occurring soluble form (reviewed by Gorrell
et al. [14]).

A diverse range of PM proteins of Type 1 or Type II
topology that also occur as a circulating, soluble form are
derived from the membrane by a group of enzymes referred
to collectively as ‘secretases’ or ‘sheddases’ [191]. The

facts that only one CD26 mRNA form is usually reported
[146, 192, 193], and that it is transported from its site of
synthesis in the rough endoplasmic reticulum to the micro-
villar membrane of enterocytes and some cell lines in a
membrane-bound state [11, 14, 27, 28, 194], also suggest
that it is not secreted. It is important to point out that the
shedding of most integral membrane proteins is regulated,
often by a PKC-dependent mechanism [30, 195, 196].

However, CD26 has been found to be soluble in the
lumen of secretory granules. In endocrine pancreatic A
cells, accompanying glucagon, both undergo exocytosis to
the interstitial space where sCD26 may act on secretory
products of neighbouring islet cells [197, 198]. In this case,
another possible mechanism for the release of CD26 from
the membrane is autolysis of the protein (as observed in
vitro) [199] by the acidic pH conditions found inside the
granules [198]. In addition, as the amount of sCD26
decreases during granule maturation, this suggests that the
protein is sorted (a pathway already observed with other
secreted proteins such as the insulin C-peptide) [198],
which is another example of the particularity of CD26 gene
expression, i.e. it is mostly regulated at the posttranslational
level. Although some regulation at the transcriptional level
has been found in recent times, particularly in B and T
cells, in spite of the housekeeping features of the gene pro-
motor [11, 192, 200–202], the Wrst striking result was found
in T cells by Mattern et al. [203]: only around half of the T
cell population expresses cell surface CD26 despite the fact
that both CD26+ and CD26¡ have similar CD26 mRNA
and intracellular protein concentrations, and 4–8 h after T
cell stimulation most or all cells express surface CD26 (the
intracellular pool is translocated to the cell surface). We
also described cytokine-dependent CD26 translocation to
the T cell surface related to glycosylation events, and inter-
estingly, observed two diVerent mRNA transcripts by
Northern blot in these immune cells [204]. It has recently
been shown that rotavirus infection of enterocytes inhibits
translation of CD26 but not mRNA transcription [205].
Furthermore, as already mentioned, sCD26 and membrane
CD26 present a considerable and tissue-speciWc molecular
heterogeneity originated mainly but not exclusively from
diVerent glycosylations [85, 194, 206, 207]. At least in T
cells, mitogenic stimulation changed the enzymatic and
immunoreactive patterns of molecular CD26 as well as the
subcellular localization of the distinct forms [85] and CD26
has been found in endosomes in a process of recycling
[208, 209].

Another possibility not yet fully explored and related to
the intracellular sorting is the secretion of soluble proteins
through MMP-dependent shedding from exosomes. Exo-
somes are small membrane vesicles derived from intracel-
lular multivesicular bodies (MVBs, formed from the late
endosomal compartment) that can undergo constitutive and
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Table 2 Studies showing physiological and pathophysiological levels of sCD26 concentration measured by ELISA in human serum (sometimes
plasma)

Disease Concentration § SD 
(�g L¡1)a

Cohort (n) References

Healthy 591 § 179 38 Bender MedSystems
Chemicon/Millipore insert

Healthy 415 § 96 36 R&D Systems insert

Healthy/ 560 § 126 52 [241] (Bender MedSystems)

Colorectal cancer/ 262 § 138 110

Gastric cancer 585 § 148 9

Healthy/ 557 § 181 2,673 [243] (Bender MedSystems)

Colorectal cancer 312.9 § 102.4 12

Healthy/ 2,270 § 770 45 [234] (rabbit Ab)

Oral cancer (SCC) 1,500 § 350 25

Healthy/ 590 § 81 11 [246] (Bender MedSystems)

Rheumatoid arthritis 505 § 142 13 inactive RA

403 § 97 16 active RA

Healthy/ 113 – [247] (Chemicon/Millipore)

Rheumatoid arthritis 100 22 MTX-nonresp

95/73 8/4 MTX-resp

Healthy/ 1,030 (median) 25 [92, 248] (monoclonal Ab BA5)

Rheumatoid arthritis/ 850 (median) 25

Lupus erythematosus/ 420 (median) 10

Sjögren syndrome/ 450 (median) 10

Myocardial infarction 1,900 (median) 10

Healthy/ – [7] (Bender MedSystems)

Osteoarthritis »600 (from Wgure) 26

Rheumatoid arthritis »450 (from Wgure) 41

Healthy/ 15,600 § 2,400 54 [249] (monoclonal Ab 1F7 and 5F8)

Systemic lupus 
erythematosus

7,900 § 2,400 12 active

11,300 § 3,300 41 inactive

Healthy/ 182 § 29 26 [250] (Bender MedSystems)

Scleroderma 160 § 53 30 limited sclerosis

126 § 40 26 diVuse sclerosis

Healthy/ 398 § 100 35 [251] (Bender MedSystems)

Allergic asthmatics 526 § 120 51

Healthy/ 540 12 [252] (Bender MedSystems)

Atopic dermatitis 710 88 (do not change with 
exacerbation 
nor therapy)

Healthy/ 411 15 [253] (Bender MedSystems)

ANCA-associated 
vasculitides

258 15 WG (G) active

295 15 WG (G) recession

316 6 WG (localized)

188 16 CSS active

257 17 CSS recession

283 7 MPA active

228 14 MPA recession

Healthy/ 14.9 § 3.1 mg L¡1 79 [254] (monoclonal Ab 1F7)

HIV-1 15.6 § 7 mg L¡1 90

Healthy/ 200.6 § 60.3 20 [255] (Bender MedSystems)
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regulated secretion from cells upon fusion with the PM and
have been particularly well studied within the immune sys-
tem [208–210]. Exosomes with CD26/DPP-IV have been
found in human saliva, released at the basolateral surface of
enterocytes, and in ram epididymal Xuid [211–213].

As it is not known to which CD26 functions regulation
of this proteolytic or secretory process is related, the physi-
ological role of soluble CD26 in biological Xuids with
respect to the transmembrane CD26 remains poorly under-
stood. Current data support three potential biological func-
tions for sCD26 reWned in recent years, and which may be
partly responsible for the diVerent roles of CD26 in various
clinical settings. (1) Involvement in the activation–deacti-
vation of some chemokines and therefore in inXammatory
processes. Extracellular proteases, many shed or ripped
[30], which alter the chemokine gradients, participate in
this crucial early step of the immune response. For CD26,
the modulation of SDF-1 and the CXCR4 axis of cell hom-
ing has been particularly well studied [214, 215]. (2) Circu-
lating sCD26 may also participate in the clipping or
inactivation of the biologically still active blood substrates
such as vascular regulatory peptides (substance P or brady-
kinin) [48], growth factors or hormones (e.g. 20% of incre-
tins GLP-1 and GIP, originated in the gastrointestinal duct,
are still active in the blood pool) [96, 97]. (3) In the case of
oncogenic processes, in addition to possible involvement in
both immunosuppressor [115, 177] and angiogenic mecha-
nisms [48–56], the process of shedding may initiate or
dampen the CD26 involvement in cell-adhesion processes
through Wbronectin, ADA or collagen binding, depending
on its initial pro- or anti-oncogenic role in the tumourigenic

niche or in a later metastatic process [110–114, 117, 118,
122, 127, 177].

Furthermore, sCD26 can participate in the immune
response of T cell activation by APCs and CD86-dependent
APC activation (CD86 is up-regulated in a caveolin-1/
CD26 binding-dependent fashion), although this process
should occur in the lymph node [13].

Other serum proteins with DPP-IV activity

The facts that around 10% of serum DPP-IV activity is not
associated with sCD26 [2, 16, 187–189] and that CD26
gene knockouts or deWcient animals still retain the same
percentage of blood DPP-IV-like activity [43, 93, 216–218]
suggest that other DASH proteins are present in systemic
circulation.

DPP-II is possibly involved, as indicated by studies of
enzymatic activity [175, 219, 220], although the use of pref-
erential (but not speciWc) substrates and diVerent pH (not
fully discriminating) cannot prevent overlap amongst DPP-II,
-IV or other DPPs [2, 16, 221, 222]. DPP-II/DPP7/QPP has a
ubiquitous distribution and a limited range of substrates (trip-
eptides), and a housekeeping role in the Wnal steps of peptide
degradation in lysosomes has been suggested [221–224].
However, QPP has also been located in the cytoplasm and
other non-lysosomal vesicules, it contains a leucine zipper
motif that may endow it with extraenzymatic functions
through protein–protein binding [225–227], and it may be
involved in the apoptotic process [228, 229].

Although neither the physiological role of DPP-II nor
whether it is secreted [230] have been elucidated

Table 2 continued

Data with “(from Wgure)” mean that numbers were calculated from article’s Wgures as they were not cited in the text. In the References column,
the manufacturer of commercial ELISAs or non-commercial antibodies used for the concentration measurements are cited in order to comparison

WG Wegener’s granulomatosis, G generalized, CSS Churg-Strauss syndrome, MPA microscopic polyangiitis, PBC primary biliary cirrhosis, SCC
squamous cell carcinoma, RA rheumatoid arthritis, MTX methotrexate, HAV, HBV, HCV hepatitis virus, EBV Epstein-Barr virus, ANCA antineutr-
ophil cytoplasmic antibodies
a Except where indicated

Disease Concentration § SD 
(�g L¡1)a

Cohort (n) References

HCV (chronic) 140.4 § 63.9 33

115.9 § 32.9 33

Healthy/ »140 (from Wgure) 10 [256] (Chemicon/Millipore)

HCV »185 (from Wgure) 19

Healthy/ 630 27 (mean 6 years old) [257] (Bender MedSystems)

Visceral leishmaniasis 890 active 33 (mean 3.6 years old)

995 asymptomatic 15 (mean 6 years old)

Healthy/ 627 24 (mean 17 years old) [258] (Bender MedSystems)

Cutaneous leishmaniasis 693 acute 41 (mean 20 years old)

1,003 non-healing 22 (mean 14 years old)
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[221, 222], its intracellular activity is increased in squa-
mous cell lung carcinoma [124], and varies with the pro-
gression of B-cell chronic lymphocytic leukaemia [231,
232]; moreover, its serum activity in patients with oral
squamous cancer and hepatic cancer as well as in patients
with lupus erythematosus and rheumatoid arthritis is higher
than in healthy subjects [150, 233, 234].

FAP-�, which may form heterodimers with CD26, is
also involved. Although it has a very restricted expression
in normal human cells as a transmembrane protein [20–23],
it has very recently been demonstrated that the circulating
antiplasmin-cleaving enzyme (APCE) is a soluble deriva-
tive of FAP present in human plasma [235–237], and sepr-
ase activity (the other enzymatic speciWcity of FAP) has
been puriWed from bovine plasma [238]. APCE circulating
in human plasma appears to have a role in making �2AP
(antiplasmin) more eYcient for protection of extravascular
Wbrin, which forms as a host response to staunch haemor-
rhage [236]. However, although cultured endothelial cells
have been reported to express FAP mRNA, translation of
FAP protein was not documented [239], and the origin and
additional functions of membrane-bound or soluble FAP
under normal conditions remain enigmatic. Importantly,
cancer patients probably have increased serum levels of this
shortened form of FAP [20, 240].

Altered levels of serum sCD26/DPP-IV in diseases

By use of immunodetection, we have reported reduced levels
of sCD26 in the serum of colorectal cancer (CRC) patients,
compared with healthy donors, particularly in early stages of
the disease, which suggested the potential usefulness of this
molecule for early diagnosis of CRC [241, 242]. Later case-
Wnding and case–control studies allowed us to obtain accu-
rate clinical values that suggest that a serum CD26 test is an
improvement on current non-invasive screening tests recom-
mended for the detection of colorectal polyps and cancer
[243]. Additional data [241–244] also support the usefulness
of serum sCD26 levels for patient monitoring and prognosis.
By use of an enzymatic activity assay, other authors found,
however, increased DPP-IV activity in a similar cohort of
colorectal cancer patients [245].

In the same way, in myocardial infarction patients
treated with streptokinase, the concentration of enzyme is
reduced to more than 50% after 90 days of therapy, while
measurements of DPP-IV enzymatic activity did not
change during that period [248].

On the contrary, the same authors found that there was
no change in sCD26 concentrations but a lower enzymatic
activity, with respect to the healthy donors, in rheumatoid
arthritis and lupus erythematosus [92].

As mentioned above, these discrepancies can now be
explained by putative changes in the glycosylation pattern

(leading to a lack of immunorecognition of sCD26), the
putative presence of DPP-IV activator attractin, or the
secretion of DPP-II or, perhaps soluble FAP. These hypoth-
eses require urgent research to validate sCD26/DPP-IV as a
clinical marker.

As many studies have demonstrated altered serum levels
of enzymatic DPP-IV activity (Tables 3, 4) and soluble
CD26 protein (Table 2) in several diseases, the above
factors should be taken into account. Although reference
values of DPP-IV speciWc activity have been reported for
serum (and plasma, with no diVerence) from a relevant
group of healthy adults (Table 3) [2, 256, 261], most
reports neither use the same assay conditions nor the same
deWnition of speciWc activity, the same applies to the units
of catalytic activity, making it diYcult to compare these
results, even from the same authors. In addition, some stud-
ies show contradictory results, probably related to the stage
of disease considered (or a particular patient has been
recruited) [92, 241–245, 249].

However, it is very interesting that the amount of sCD26
antigen found in normal serum with the most commonly
used commercial ELISA kit (Bender MedSystems), corre-
sponds well with the expected values based on the speciWc
activity of puriWed serum DPP-IV [2, 256]. Together these
Wndings support the use of immunodetection techniques for
the quantiWcation of these molecules because they are more
speciWc.

We have included in Tables 2, 3 and 4 all major studies
(if the disease is well represented, studies with all statistical
groups of n < 10 are not included, although cited) published
in English. Interestingly, many studies have used CD26 as a
cell surface of Th1 cellular immune activation and sCD26
as a soluble marker, together with sCD30 and sometimes
sCD23 as markers of Th2 (humoral response) [252, 253,
255, 257, 258]. Although there was no inverse correlation
between increased sCD30 (see review [293]) and decreased
sCD26 in many diseases, or vice versa, sCD30 is also shed
(from hematopoietic cells) and, together with other surface
antigens, it appear to suppress an appropriate T cell-depen-
dent immune response, allowing tumour cells to escape
immunosurveillance, resulting in progression of the tumour
and spread of the disease [293]. It must also be remembered
that DPP-IV activity has also been detected in other body
Xuids such as urine or synovial Xuid, and its altered levels
in some diseases has also been proposed as a clinically use-
ful marker [273, 294].

The concentration of sCD26 increases in HIV-1 patients
and leishmaniasis as well as in myocardial infarction and
atopic dermatitis, does not change in asthmatics, osteoar-
thritis and gastric cancers, and decreases, apart from in
CRC, in rheumatoid arthritis and particularly lupus erythe-
matosus and Sjögren syndrome (Table 2). Results from
hepatitis C virus (HCV) are not consistent.
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Table 3 Studies showing physiological and pathophysiological levels of human serum (sometimes plasma) DPP-IV activity in patients with
diseases not related to the immune response (type I diabetes is included for comparison) and with tumours

Disease Catalytic activity/speciWc 
activity (§SD) (U L¡1)a

Cohort (n) References

Healthy 27.5 § 6.1 women 481 [2, 259]

32.3 § 6.4 men

Healthy 58 § 16 64 [260]

Healthy/ 22.6 § 0.9 40 [261]

21.8 § 1.1 29 younger (<50)

24.1 § 1.4 18 young male

18.2 § 1.1 11 young female

24.5 § 1.5 11 elder

23.8 § 2.4 6 elderly male

25.4 § 2.0 5 elderly female

Gastric cancer 15.1 § 1.1 27

Pancreatic cancer 11.9 § 2.8 2

Gastric ulcer 17.4 § 2.3 3

Pancreatitis 21.0 § 2.5 2

Bile duct cancer 42.6 § 10.5 2

Acute hepatitis 37.4 § 6.4 8

Chronic hepatitis 33.4 § 1.8 3 inactive

29.5 § 4.2 5 active

Cirrhosis 35.5 § 3.6 11

Healthy/ 60.4 § 3.2 12 males [262]

Early hypertensive 81.0 § 3.9 20 (without drug treatment)

Fixed hypertensive 89.3 § 3.7 17 (with drug treatment)

Healthy/ 51.6 § 9.7 61 [263]

Umbilical blood 32.7 § 5.9 65

Gastric cancer 33.0 § 7.8 9

Blood cancers 38.8 § 11.9 22 ALL

52.1 § 24.11 62 AML

49.4 § 23.7 28 CML

36.3 § 5.6 11 lymphosarcoma

35.6 § 11.6 5 Hodgkin’s disease

Healthy/ 77.5 § 17.1 100 (automated) [264]

Hepatocellular carcinoma 198 § 110.4 53 (+6 metastatic)

Healthy/ 70.1 § 11.4 1,117 [265]

Gastric carcinoma 67.2 § 20.4 10 early

51.1 § 11.4 13 advanced

Healthy/ 43.9 § 1.1 21 [266]

Miscellaneous cancers 
(<10 patients)

»32 (Wgure) AML

»28 (Wgure) ALL

»43 (Wgure) CML

»31 (Wgure) Malignant lymphoma

»32 (Wgure) Multiple myeloma

»38 (Wgure) Oesophagus

»28 (Wgure) Colorectum

»48 (Wgure) Liver

»43 (Wgure) Gall bladder

»46 (Wgure) Leiosarcoma
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Table 3 continued

Data with “(Wgure)” mean that numbers were calculated from article’s Wgures as they were not cited in the text

AML acute myelocytic leukaemia, ALL acute lymphocytic leukaemia, CML chronic myelocytic leukaemia, CTCL chronic T cell lymphoma, HAV,
HBV, HCV hepatitis virus, EBV Epstein-Barr virus
a Except where indicated
b Absorbance

Disease Catalytic activity/speciWc 
activity (§SD) (U L¡1)a

Cohort (n) References

Healthy/ 43.1 § 4.8 45 [234]

Oral cancer (SCC) 28.6 § 12.7 25

Healthy/ 55.1 § 16.4 66 [267, 268]

Oral SCC 31.6 § 12.4 51 (similar in all stages)

Healthy/ 11.6%Ab 7 [215]

CTCL (NH lymphoma) 7.4 11 Sézary syndrome

8.6 7 mycosis fungoides

Healthy/ 54 § 0.9 120 [270]

54.1 60 men

57.7 30 younger (<50)

50.4 30 older

53.9 60 women

54 30 younger (<50)

53.8 30 older

Osteoporotic 70.7 § 1.8 30

Healthy/ 6.9 § 1.4 10 infants [273]

5.9 § 1.5 50 children

4.5 § 1.5 50 adults

Liver diseases 50.2 § 12.2 7 Biliary atresia (paediatric)

9.4 § 4.2 (GGT < 500) 8 Hepatitis syn. (paediatric)

36.9 § 12.8 (GGT > 500) 8 Hepatitis syn. (paediatric)

6.5 § 1.7 5 Jaundice pers. (paediatric)

17.1 § 5.2 24 cirrhosis

25 § 5.1 8 Mech icterus (tumour)

22.5 § 4.8 6 Mech icterus (cholelith.)

13.6 § 3.2 4 toxic liver

5.2 § 1.1 5 chronic hepatitis

21.5 § 9.4 23 primary biliary cirrhosis

28.1 § 11.1 16 (primary biliary cirrhosis, late stages)

Healthy/ 12.4 § 1.8 24 [275]

Liver diseases (PBC) 21.4 § 1.8 42 (increases with stages)

Healthy/ 43.6 § 10.6 17 [276]

Liver diseases (non-alcoholic steatohepatitis) 57.3 § 7.8 31

Healthy/ 0.241 § 0.015 (�OD/20 min) 9 (middle aged) [277]

0.223 § 0.019 9 (elderly)

Diabetes (II)/ 0.179 § 0.017 12 (middle aged)

0.173 § 0.017 19 (elderly)

Healthy/ 34.5 § 11.8 29 [278]

Diabetes (I)/ 36.2 § 11.7 29 medicated for years

Diabetes (II) 27.7 § 7.1 31 HbA1C >8.5%; >1 year

22.1 § 6.0 31 HbA1C <7.5%; n. diag.

18.8 § 8.8 31 IGT

»20 (Wgure) 62 NGT
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Table 4 Studies showing physiological human serum (sometimes plasma) DPP-IV activity and pathophysiological levels in patients with immune
response related diseases (including psychologically related disorders)

Disease Catalytic activity/speciWc 
activity (§SD) (U L¡1)a

Cohort (n) References

Osteoarthritis »38 (Wgure) 26 [7]

Rheumatoid arthritis »28 (Wgure) 41

Healthy/ 1.6 mmol/min mol 
(median)

25 [92]

Rheumatoid arthritis/ 1.2 (median) 25

Lupus erythematosus/ 1.7 (median) 10

Sjögren syndrome/ 2 (median) 10

Healthy/ 41.3 § 4.8 25 [269]

Rheumatoid arthritis/ 34.5 § 3.2 21

Lupus erythematosus/ 29.9 § 64.6 21

Healthy/ 54 § 0.9 120 [270]

Osteoporotic 54.1 60 men

57.7 30 younger (<50)

50.4 30 older

53.9 60 women

54 30 younger (<50)

53.8 30 older

70.7 § 1.8 30

Healthy/ »54 (Wgure) 22 [271]

Systemic lupus 
erythematosus

»43 (Wgure) 21 inactive disease

»39 (Wgure) 18 moderate disease

»37 (Wgure) 8 active disease

Healthy/ 9.3 § 1.3 54 [249]

Systemic lupus 
erythematosus

5.8 § 1.8 53

Healthy/ 0.95 § 0.13 nmol/min/�g 79 [255]

HIV-1 0.82 § 0.14 90

Healthy/ 0.77 § 0.6 20 [272]

Sepsis 0.39 § 0.15 15 moderate

0.26 § 0.15 15 severe

Healthy/ 21.4(median) 12 [274]

Liver diseases 40 (median) 10 primary 
biliary cirrhosis

29.8 (median) 36 HCV

26.5 (median) 10 HBV

35.5 (median) 10 HAV

37.2 (median) 10 EBV

Healthy/ 71.9 § 18.4 28 [279, 280]

InXammatory bowel diseases 52.8 § 16.9 63 Crohn’s disease

55.7 § 15.1 47 ulcerative colitis

Healthy/ 63.3 § 15.1 28 [281]

Crohn’s disease 55.8 § 17.7 48 remission

47.1 § 14.1 23 active

Healthy/ »24 (Wgure) 10 [282]

Smokers »18 9
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DPP-IV enzymatic activity is high in patients with
hepatic cancer, hepatitis, osteoporosis (in which it probably
determines the severity of the disease), cholestasis and
other liver diseases (Table 3), and in psychologically
related eating disorders such as anorexia or bulimia
(Table 4). In contrast with protein levels, it is also increased
in CRC, rheumatoid arthritis, lupus erythematosus and
Sjögren syndrome, according to some studies and in dis-
agreement with others [92, 241–245, 249, 295, 296]. DPP-IV
levels remain unchanged in metastatic bone disease,
oesophagus, gall bladder, chronic myelocytic leukaemia or
leiomyosarcoma cancers (Table 3), and in allergic asthma
(with or without treatment with inhaled glucocorticoids,
although it changes in allergic infants) and in celiac disease
(Table 4). In adult T cell leukaemia, although serum DPP-
IV is strongly correlated with the percentage of CD26+ T

cells, no apparent change in the mean value of activity was
found [297]. However, decreased levels of DPP-IV are
observed in patients with some blood (particularly acute
lymphocytic leukaemia), thyroid [298] and oral cancer,
advanced gastric carcinoma, and in particular, colorectal
cancer (in accordance with our data) (Table 3). Lower lev-
els were also found in HCV infections, in inXammatory
bowel diseases, in healthy smokers, in pregnancy [299] and
in type II diabetes, and in alcoholics and patients suVering
from major depression. A reduction in DPP-IV activity has
been related to symptoms of depression and anxiety under
certain circumstances, with contradictory results in bulimia
and anorexia (Table 4).

In summary, low levels of DPP-IV/sCD26 occur concur-
rently with impaired immune status, including some hae-
matological and solid malignancies, whereas increased

Table 4 continued

Data with “(Wgure)” mean that numbers were calculated from Wgures in the article because they were absent from the text

RA rheumatoid arthritis; HAV, HBV, HCV hepatitis virus; EBV Epstein-Barr virus
a Except where indicated

Disease Catalytic activity/speciWc 
activity (§SD) (U L¡1)a

Cohort (n) References

Allergic asthmatics »26 31 (do not change 
with corticoid therapy)

Healthy breast-fed infants/ 92.6 § 4.8 13 [283]

Allergic (atopic dermatitis) 64.2 § 13.2 23

Healthy/ 76.9 § 23.1 50 children [284]

Celiac disease (acute) 83.4 § 20.2 48 children

Healthy/ 51.2 § 15.6 52 [285]

Depression 49.2 § 14.2 14

Healthy/ 40.8 § 6.4 12 [285, 286]

Abstinent alcohol dependent 28.9 § 7.3 12 (without liver damage)

Stress 39 § 7.7/38.8 § 8.4 (after) 30

Anxiety 37 § 7.6 (changes in males) 22 (males and females)

Healthy/ 46.8 15 [287, 288]

Major depressed 36.9 36 (antidepressant resistant)

Healthy/ 19.4 § 1.8 25 [289]

Major depressed 10.2 § 1.1 18 (no change in additional 
12 minor depressed)

Healthy/ 80.3 20 females [290]

Hyporectic disorders 108.1 34 anorexia

91.1 11 bulimia

Healthy/ 34.4 § 7.8 19 females [291]

Hyporectic disorders 27.3 § 14.7 21 anorexia

22.7 § 11.4 21 bulimia

Healthy/ 29.4 § 9.4 13 children [292]

Tonsil diseases 39.8 § 6.5 hypertrophy 19 before tonsillectomy

29.9 § 7.3 hypertrophy 14 after tonsillectomy

19.9 § 7.8 36 young adult

19.2 § 2.7 recurring tonsillitis 13 before tonsillectomy

12.7 § 5.2 recurring tonsillitis 8 after tonsillectomy
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levels occur in inXammatory and infectious diseases
(enhanced immune status), other haematological tumours,
and liver diseases.

The source of sCD26

In order to validate a candidate clinical or tumour marker,
or a therapeutic target, it is important to know how it is dis-
tributed in cells, tissues or systems, as well as the circum-
stances that provoke its abnormal presence/absence.
However, the origin of serum CD26 is unknown.

The hepatobiliary system was the Wrst to be suggested as
the sCD26 source by the group of Nagatsu [261] because
serum enzyme activity levels in hepatitis and cirrhosis
patients were correlated with the serum group of enzymes
that are present at high levels in patients with obstructive
jaundice and inWltrative disease of the liver. However, they
were cautious because electrophoresis revealed the pres-
ence of novel isoforms in the sera from those patients, and
lower activities in patients suVering from gastric or pancre-
atic cancer and normal levels in patients with pancreatitis
were observed. Liver epithelium is often cited as the most
likely potential source of serum CD26 as hypothesized
from hepatocellular carcinoma studies, in which loss of
CD26 from membrane is accompanied by increased
DPP-IV activity in patients [106, 107, 116, 264, 273], and
similar results were also observed in studies of hepatic
regeneration [14, 300, 301]. However, the increased
enzyme activity could not be explained by CD26 expressed
in hepatocytes [14], and CD26 is predominantly located in
the bile canaliculi [273, 275, 302]. At least in some condi-
tions, sCD26 originates from the brush border of hepato-
cytes [273], but a recent study found that in chronic
hepatitis C and other liver viral infections DPP-IV activity
levels were not correlated with several markers of bile duct
injury or hepatocyte injury [274]. The authors, therefore,
suggested that the increased activity in these diseases may
originate directly from shedding from the peripheral blood
T cells involved in the control of viral infections or, in the
case of HCV infection which takes place with a weak T cell
response during the chronic phase of the disease, indirectly
by stimulating other cells such as hepatic stellate cells. The
involvement of T cells in the enhancement of sCD26 levels
has already been suggested by the group of Gorrell and
McCaughan [14, 303] in studies of liver regeneration,
where T cell activation is known to occur.

Interestingly, the events observed in hepatocarcinoma—
loss of membrane CD26 and elevation of DPP-IV levels—
are not seen in CRC. Almost all CRC patients show
reduced serum levels of sCD26 [241–243], whereas loss of
membrane CD26 expression only occurs in 11% of colorec-
tal tumours [108], i.e. in CRC, sCD26 is not correlated with
cell proliferation, or with the alteration of CD26 expression

in CRC tumour cells. There is no direct correlation between
sCD26 levels and tumour location, degree of histological
diVerentiation, type of metastasis or Dukes’ stages of CRC
[241], which may aVect the hepatic production of sCD26.
As in hepatic regeneration but in the opposite direction,
immunity involved in CRC as an immune defective anti-
tumour response, including a deWciency in IL-12 produc-
tion [304] which is a well-known CD26 up-regulator in
T lymphocytes [305], has been described.

A possible origin of sCD26 from the immune system, as
well as from spleen, was Wrst suggested in 1984 by
Kasahara et al. [306], as these authors observed a signiW-
cant correlation between the normal serum DPP-IV activity
and the peripheral blood lymphocyte count, although they
also identiWed serum isoforms from liver, spleen or kidney.
Kidney, an obvious potential source because it contains
large amounts of CD26, was rejected early on [187] because
anephric individuals have normal amounts of sCD26, and
because sCD26 contains approximately twice as much
sialic acid as kidney CD26.

Several data suggest that serum CD26 is at least partly
shed from T cells. Much data come from glycosylation and
electrophoretic mobility studies. The sialylation of CD26
appears to be cell-type speciWc: the sialic acid content of
vascular and circulating CD26 is higher than that of the kid-
ney and intestinal brush border enzyme [85, 307, 308].
Sialylation of CD26 is increased in peripheral blood mono-
nuclear cells (PBMCs) of healthy elderly individuals (by
80 years of age, sialylation of T cell DPP-IV/CD26 is three
to Wve times that of a healthy 20-year old); hypersialylation
is more extreme in HIV-positive individuals with AIDS,
and these glycosylation states coincide with the forms
found in the corresponding serums [178]. Sialylation may
prevent removal from the circulation by the liver asialogly-
coprotein receptors and increased sialylation may be related
to impaired immunocompetence [92, 178, 307, 308]. How-
ever, these data do not preclude the possibility of sCD26
shed being from the endothelium of venules or the capillary
bed of several organs such as lung, myocardium and stri-
ated muscles, spleen and pancreas [3, 201, 202, 307, 309–
313].

Other data include the changes in sCD26 levels in rela-
tion to physiological or pathophysiological processes. As
already commented, most changes (Tables 2, 3, 4) occur
concurrently with the immune status, sCD26 levels
decrease generally in disease unless a liver injury or exten-
sive lymphocyte proliferation is involved [2, 11–14]. In
relation to this, reduced concentrations of the peptidase in
healthy smokers, alcoholics and severely depressed patients
(Table 2) are consistent with impaired immune response.
Interestingly, anti-TNF� treatment (adalimumab) of patients
with rheumatoid arthritis augmented DPP-IV activity [314].
Also, that sCD26 may be valuable as prognostic marker in
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CRC [241] Wt this hypothesis, because patients with
activated immune systems (higher sCD26 levels) may show
a better chance of survival than those with lower sCD26
levels.

The most important data correspond Wrstly to in vitro
studies [305, 312, 315, 316] which demonstrate secretion/
shedding of sCD26 from lymphocytes to culture media,
whereas no data exist for other cell types; interestingly,
TGF-�1 down-regulates CD26/DPP-IV expression in T
cells, which is accompanied by decreased DPP-IV activities
in the supernatants of cultured cells [316]. Secondly, many
in vivo studies found a correlation between changes in
serum DPP-IV activity and the numbers of PBL, T lympho-
cytes, CD26+ T cells and the amount of CD26 in T lym-
phocyte plasma membranes, in patients with adult T cell
leukaemia [297], oral cancer [315], gastric and colorectal
carcinoma [317–319], with mycosis fungoides and Sézary
syndrome (two major variants of the cutaneous T cell lym-
phoma, a type of non-Hodgkin lymphoma) [215], with the
autoimmune diseases systemic lupus erythematosus [271],
with arthritis rheumatoid [247, 249, 306] and inXammatory
bowel (Crohn’s disease and ulcerative colitis) [279, 281],
with adult allergic asthmatics [251] and in human miscar-
riage [320]. In addition, cell surface CD26 [88, 305, 321–
326] and serum sCD26 are markers of Th1 cellular immune
activation together with CD30 and sCD30 as markers of
Th2 (humoral) response, although an inverse correlation
between increases in sCD30 and decreases in sCD26 or
vice versa was not always found in diseases, as already
mentioned [252, 253, 255, 257, 258, 293, 327–332].

Although these changes in cell surface and soluble forms
may be associated with regulation of the enzymatic cleav-
age of CD26 from the T cell surface, the observation of
anti-CD26 autoantibodies in rheumatoid arthritis and sys-
temic lupus erythematosus patients and the fact that its lev-
els are correlated with an increased clearance rate of the
circulating CD26 [92, 248] suggest an alternative, but also
immune-related, hypothesis for the regulation of sCD26
levels. It will be interesting to look for these autoantibodies
in cancer patients to test this hypothesis. In fact, an associa-
tion between chronic inXammatory conditions and eventual
development of cancer was described several years ago
[333, 334].

In summary, a fraction of serum CD26 originates from
immune system cells, and this sCD26 fraction can be regu-
lated and, therefore, causes an imbalance amongst speciWc
sCD26 isoforms in the serum of patients.

On the role of sCD26 in cancer: conclusion

Complex crosstalk between the lymphoid lineage and
malignant tumours in vivo has been discussed since the

days of Paul Ehrlich a century ago; the ability to suppress
the immune response is essential for tumours to develop
[116, 174, 333–336]. Taking the example of CRC and the
lower levels of sCD26 in these patients, we will suggest a
framework to research the hypothetic role of sCD26 in
crosstalk between the immune system and carcinogenesis.
This should be investigated because drugs that inhibit DPP-
IV activity [96–98, 101–104] may exacerbate development
of tumours and/or immune diseases and, consequently, a
follow-up of diabetics under this therapy should be done. In
a similar way, it has been already proposed that genetic or
environmental factors that decrease DPP-IV activity might
increase the risk of ACE (angiotensin converting enzyme)
inhibitor-associated angioedema [43, 337].

It is well known that tumour cells secrete immunosup-
pressive factors such as TGF-�1. TGF-�1 acts on many
immune cells such as APCs, T cells and NKT cells, thus
participating in the induction of T tolerance to tumour anti-
gens [174, 338], and down-regulates in vitro CD26/DPP-IV
expression in T cells as well as culture supernatant sCD26
levels [316]. Consequently, it is possible that TGF-�1 also
down-regulates production of circulating sCD26 in cancer
patients, which may reXect tumour-induced T cell tolerance
(Fig. 1). The facts that inhibitors of CD26/DPP-IV activity
up-regulate TGF-�1 secretion by T cells in vivo [172, 175],
that anti-TNF-� therapy augments DPP-IV activity in
patients with rheumatoid arthritis [314] (TNF-� is pivotal in
inXammatory reactions and is frequently detected in human
cancers), and that an immune defective IL-12 production
(a well-known CD26 up-regulator [17, 204, 305] has been
described in CRC [304] also support this link.

By lowering CD26 expression, sCD26 and therefore the
DPP-IV activity, tumour cells will alter one or more of
the physiological functions of that protein. For example,
immune cell homing through chemokine clipping, as
already mentioned (Table 1) [11], i.e. accumulation of plas-
macytoid dendritic cells found inside ovarian and head and
neck SCC, was attributed to SDF-1/CXCL12 secreted by
malignant cells [339, 340]; also, Tregs were recruited to the
tumour site under the inXuence of CCL22 [341]. Another
consequence may be to increase the active levels of incre-
tins GLP-1, -2 and GIP, and in doing so, to improve insulin
secretion. This argument has already been used by Meneilly
et al. to explain the lower DPP-IV levels in elderly obese
patients with diabetes as an adaptation of the body to
enhance the incretin-mediated insulin secretion [241]. A
diverse body of evidence that relates higher levels of insu-
lin to elevated risk of colon cancer and carcinogenesis in
general, through direct and/or IGF-1-dependent mecha-
nisms, has been impressively reviewed [342]. Moreover,
GLP-2 has direct tumour-promoting eVects on intestinal
cancer cells (and perhaps it may be generalized to other
cancers) [343].
123



Cancer Immunol Immunother (2009) 58:1723–1747 1739
Therefore, the lymphocyte count, subset distribution and
other immune parameters of patients, as well as the levels
of entero- and neuropeptides, should be recorded in future
studies of CRC and other carcinomas. As suggested in a
study with rats [344], in which the antidiabetic agents met-
formin and pioglitazone (that improve insulin sensitivity)
reduced serum DPP-IV activity, in direct relation to reduc-
tions in glycosylated haemoglobin and increases in GLP-1
levels, it should be investigated whether glycemic control
regulates the release of DPP-IV from the diVerent cell types
proposed as its source; the isoform patterns of sCD26 and
CD26 in those tissues should also be studied. In vitro and in
vivo studies also showed cyclosporin A down-regulation of
CD26 and sCD26 [204, 345].

DPP-IV is also an important regulator of NPY-induced
angiogenesis in the Ewing’s sarcoma family of tumours
[54–56], and can be up-regulated by hypoxia in endothelial
cells [346]. This up-regulation may explain the increased
levels of the protein and the poorer behaviour of sCD26 as
a marker, in late-stage CRC Duke’s D patients (and tumour
angiogenesis) with respect to earlier stages [241]. However,
the eVect of pathophysiologically lower sCD26 concentra-
tions on the NPY-YRs system, including vasoconstriction,
is not known [347].

Another important feature, in relation to the value of
sCD26 as a biomarker, is the timing of sCD26 alterations in
the plasma of patients with tumours and/or immune system-
related diseases. If further studies conWrm this hypothetic
immunosuppressive mechanism mediated by tumour cells
(Fig. 1), then they would have identiWed another target to
be used to overcome immunological tolerance and promote
tumour regression in combination with other conventional
strategies.

Current clinical trials (basically vaccination strategies
and adoptive transfer of eVector cells) aimed at harnessing
the immune system to eliminate tumours already include
sometimes immunomodulatory agents that support Th1
responses, such as IL-2, -12, -18, -21, and IFN-� [348–
352], which may enhance the sCD26 levels [252, 253, 255,
258, 259, 293, 327–332]. The eVectiveness of anti-tumour
responses is usually restricted by inhibitory signals from
the tumour microenvironment, and some progress has been
made in the direction to combining strategies involving
blockade of these signals [175, 348]. Anti-TGF-� treatment
should also lead to higher sCD26 levels [173, 176, 316].
Treatment with high exogenous concentration of TNF has
some anti-tumour eVects but TNF produced endogenously,
by several types of tumour cells (including colorectal) and
by many immunotherapy treatments that induce higher lev-
els of TNF, also favours the development and progression
of cancer [353]. Therefore, the use of anti-TNF therapy has
been proposed for cancer therapy and employed in some
clinical trials, with no need to avoid TNF administration in

cases of organ-conWned solid tumours, if required [348,
354]. Millions of patients with autoimmune/inXammatory
disorders have been treated with antibodies against TNF,
which enhance sCD26 levels [314]. In conclusion, the pro-
posed immunosuppressive mechanism may be easily short
circuited by a combination of stimulatory therapy, anti-
TGF-� and anti-TNF treatment.

Finally, sCD26 levels are higher in patients at late and
metastatic stages [241, 275] as well as in patients with liver
tumours in general and other liver diseases [261, 264, 266,
273, 276]. Consequently, drugs that inhibit DPP-IV activity
or anti-CD26 Ab [153] may be helpful in these cases.
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