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Abstract T-cell trafficking is determined by expres-
sion patterns of chemokine receptors. The chemokine
receptor CXCR3 is expressed on a subpopulation of
type 1 T cells and plays an important role for migration
of T cells into inflamed and tumor tissues. Here, we
studied the chemokine receptor expression on specific
T cells generated against the neoantigen keyhole lim-
pet hemocyanin (KLH) in patients who had been
immunized in the context of a tumor peptide vaccina-
tion trial with or without the adjuvant granulocyte-
macrophage colony-stimulating factor (GM-CSF). In
patients immunized in the presence of GM-CSF the
fraction of CXCR3* KLH-specific T cells was signifi-
cantly higher than in patients immunized in the
absence of GM-CSF (median 45 vs. 20%, P = 0.001). In
contrast, the chemokine receptor CCR4, associated
with migration to the skin was found in both cohorts on
less than 10% of KLH-specific T cells. These results
show that CXCR3 expression on vaccine-induced T
cells can be modulated by modifying the local vaccine
milieu.
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Introduction

T-cell migration is a multistep process, in which
chemokines and chemokine receptors play a key role.
The chemokine receptor CXCR3 is expressed on a
subset of differentiated CD4* and CD8" T cells.
CXCR3 plays an important role in mediating migration
of T cells into type 1-dominated inflammatory pro-
cesses, where the specific ligands CXCL9 (Mig),
CXCL10 (IP-10), and CXCLI11 (I-TAC) are abun-
dantly expressed [2, 13, 17, 26]. These chemokines have
also been found upregulated in human immunodefi-
ciency virus (HIV)-infected macrophages and dendritic
cells and were implicated in the recruitment of T cells
to HIV-infected lymph nodes and central nervous sys-
tem (CNS) [5, 16]. Furthermore, CXCL9, 10, and 11
are frequently expressed in tumor tissues as shown for
renal cell carcinoma and melanoma [11, 25]. CXCL9
and CXCL10 have been associated with heavy infiltra-
tion of T cells in human melanoma suggesting that
CXCR3 can mediate T-cell migration into tumor tissue
[11]. Transfection of CXCL11 into tumor cells resulted
in increased infiltration by CXCR3* CD8* T cells and
tumor rejection [7]. A recent study analyzing the
chemokine receptor profile of melanoma-peptide
stimulated T cells in melanoma patients showed that
expression of CXCR3 on T cells was associated with
increased survival [15]. Thus, it is of considerable inter-
est for both cancer and infectious disease vaccine
development to find out conditions to enhance the
expression of CXCR3 on T cells generated by vaccina-
tion.

In vitro, CXCR3 is expressed within a few days
following activation of T cells independently of the
cytokine milieu. After stimulation, however, CXCR3
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expression is maintained preferentially on T cells that
have been activated in type 1 conditions [10, 18].

GM-CSF is frequently given as vaccine adjuvant due
to its ability to enhance the immunogenicity of protein
or peptide vaccines [3, 23]. GM-CSF stimulates the
activation and migration of dendritic cells and induces
their expression of MHC class II molecules. GM-CSF
was reported to induce CXCR3 expression on CD34*
stem cells [8].

In the current study expression of CXCR3 was ana-
lyzed on specific T cells generated in melanoma
patients in a peptide vaccine trial either in the presence
or absence of the adjuvant GM-CSF as previously
described [21]. As T-cell responses against the mela-
noma peptide tyrosinase were only generated in a
subset of patients who received GM-CSF, we studied
T-cell responses generated against the neoantigen key-
hole limpet hemocyanin (KLH), which was included in
the vaccine as unspecific T helper protein and against
which all patients mounted a T-cell response.

Materials and methods
Patient samples and vaccination protocol

Cell samples analyzed in this study were those avail-
able from patients with stage III or IV melanoma who
had been vaccinated within the context of two consecu-
tive phase I melanoma peptide vaccine trials, which
have been previously reported [12, 21]. The trials had
been approved by the Institutional Ethics Committee.
All patients had received six cycles of intradermal and
subcutaneous injections of 4 mg KLH (Vacmun; Bio-
syn, Stuttgart, Germany) admixed with tyrosinase pep-
tide(s) (Bachem, Bubendorf, Switzerland). Patients in
one cohort received in addition GM-CSF (Leukomax;
Essex, Munich, Germany) as adjuvant in a dose of
75 pg for 4 days injected at the same site beginning
2 days before peptide vaccination. Blood samples were
obtained from each patient before and 4 weeks after
the fourth and sixth vaccination. Written informed
consent was obtained from all patients.

T-cell response assessment by Interferon y (IFNy) flow
cytometry analysis

Peripheral blood mononuclear cells (PBMC) were
thawed and after overnight resting incubated with
1 mg/ml KLH and without antigen as negative control
for 18 h. After 2 h, 10 pg/ml brefeldin A (Sigma, Deis-
enhofen, Germany) were added. In case PBMCs were
stimulated with 10 pg/ml peptide tyrosinase 368-376,
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370D [22, 29], influenza matrix protein, 58-66 (Thermo
BioSciences, Ulm, Germany) or 100 ng/ml phorbol
myristate acetate (PMA) and 1ng/ml ionomycin
(Sigma-Aldrich, Munich, Germany) incubation times
were 6 h, and brefeldin A was added after 1 h. In pep-
tide stimulation experiments, HIV reverse transcrip-
tase 476-84 (Sigma-Genosys, Cambridge, United
Kingdom) was used as negative control. PBMC were
then stained extracellularly with fluorescence-conju-
gated monoclonal antibodies against CD4, CDS8, CD3
(BD Bioscience, Heidelberg, Germany) and intracellu-
larly with IFNy fluorescence-conjugated monoclonal
antibody (BD Bioscience). Staining with the fluores-
cence-conjugated monoclonal antibodies against
CXCR3, CCR4 and CCR9 (BD Bioscience, and R&D,
Wiesbaden, Germany) was performed prior to the
antigen incubation. Data acquisition was performed on
FACSCalibur and analyzed using Cellquest Software
(BD Bioscience). For calculation of percentages of
KLH-specific T cells CD3*CD4* IFNy* T cells counted
in the absence of antigen were subtracted from those
counted in the presence of KLH.

Statistical analysis

The Mann-Whitney U test was used to determine
whether there was a statistically significant difference
in the percentage of chemokine receptor positive T
cells between the two patient cohorts.

Results

Assessment of CXCR3 on antigen-specific T-cells
€X VIVo

Specific T-cell responses to protein antigens can be
assessed in unstimulated PBMC samples by antigen-
induced intracellular accumulation of IFNy. In order to
facilitate the chemokine receptor expression on anti-
gen-specific T cells we first analyzed conditions how to
determine chemokine receptor expression on T cells
after short time stimulation with antigen. It had been
shown previously, that T-cell receptor stimulation can
result in transient CXCR3 downregulation [19, 20].
When we incubated T cells with peptide or protein
antigens for 6 or 18 h in the presence of brefeldin A
and stained T cells thereafter for CXCR3 expression,
all T cells specifically secreting IFNy in response to
various antigens or stimulation with PMA/Ionomycin
were CXCR3-negative (Fig. 1a, left column). When the
CXCR3 antibody was, however, added prior to stimu-
lation, both CXCR3-positive and CXCR3-negative



Cancer Immunol Immunother (2007) 56:391-396

393

A
AL‘_ -
o 8.1/0.0 | ..
2 91.4/05 | = .
o o influenza
100 102 1% 109 1o 4
ceo f“’o
o =4
[ ol IR PMA
0 -
Xz
o -
DD
-
o, tyrosinase
—D
»
L4
B
A .
HIV influenza
o -1 .| MFI=100.8
g we ] . CXCR3ab
g % Influenza
p=d .
"2 e brefeldin A
ot Y I M R TR w2 10% 107
IFNg FITC IFMg FITC
o o MFI=64.5
el e wo Influenza
&l ee 2t CXCR3ab
= .
515 52 brefeldin A
= ot 102 103 = ol 102 108 q0d
IFNg FITC IFNg FITC
o o MFI=19.8 | .
WZ W influenza
£t o S brefeldin A
S S a1 CXCR3ab
B R O TR T o1 102 03 104
IFNg FITC IFNg FITC

[
>

IFNy

antigen-specific T cell responses could be detected
(Fig. 1a, right column). To further study the underlying
mechanisms we stained antigen-specific T cells either
before antigen stimulation, after antigen stimulation
but before addition of brefeldin A, and after addition
of brefeldin A (Fig. 1b). As shown in Fig. 1b (middle
dot plots) stimulation with influenza for 1 h led already
to marked CXCR3 downregulation in accordance to
previous studies [19, 20]. CXCR3 completely disap-
peared following addition of brefeldin A for Sh
(Fig. 1b, lower dot plots). Brefeldin A is known to

<

Fig.1 CXCR3 is downregulated in vitro following antigen stim-
ulation and incubation with brefeldin A. a CXCR3/IFNy profile
of CD3"CD8" gated lymphocytes stimulated with influenza pep-
tide, phorbol myristate acetate/lonomycin or tyrosinase peptide
are shown. CXCR3 was stained after antigen stimulation and bre-
feldin A incubation (left dot plots) or prior to antigen stimulation
(respective right dot plots). T cells reactive with tyrosinase pep-
tide were from a HLA-A2+ melanoma patient who exhibited a
spontaneous high-frequency specific T-cell response [28]. b PB-
MCs of a HLA-A2+ healthy donor were stimulated with HIV
(left dot plots) and influenza (respective right dot plots) peptides.
The CXCR3/IFNy profile of CD3*CD8" gated lymphocytes are
shown. CXCR3 staining was either performed before antigen
stimulation (b, upper dot plots), or after antigen stimulation but
before addition of brefeldin A (b, middle dot plots) or after anti-
gen stimulation and addition of brefeldin A (b, lower dot plots).
MFI mean fluorescence intensity of CXCR3 expression of influ-
enza-specific IFNy-producing T cells, ab antibody

inhibit the transport of immunoglobulin receptors to
the cell surface [1], it probably inhibits reexpression of
CXCR3 on the cell surface. As a control CCRY expres-
sion was analyzed which was always negative on influ-
enza-reactive T cells irrespective of the staining
sequence (data not shown). In our series of experi-
ments analyzing the chemokine receptor profile of
KLH-specific T cells we therefore assessed chemokine
receptor expression by adding the antibodies prior to
antigen stimulation.

Chemokine receptor profile of KLH-specific T-cell
responses

PBMC samples of 15 patients who had received
repeated immunizations with tyrosinase peptides and
KLH either in the presence (n = 8) or absence of GM-
CSF (n =7) were available for this study. Specific T-
cell responses to KLH were detected in all patients
after vaccination (median 0.10%, range 0.05-0.32%
with GM-CSF, median 0.27%, range 0.05-0.69%
without GM-CSF), in contrast to T-cell responses to
tyrosinase, which were only detectable in patients
immunized in the presence of GM-CSF [21]. Before
vaccination, no T cells in response to KLH were
detected [21]. KLH-reactive T cells were costained
with antibodies against the chemokine receptors
CXCR3, CCR4 and CCR9. CCR4 has been associated
with trafficking to the skin, and is predominately
expressed on type 2 T cells, but also on a subpopula-
tion of CXCR3* T cells [9]. CCRY, which is expressed
on T cells primed in the small intestine [27], was used
as negative control. The analyses of CCR4 and CCR9
were done in a subset of samples only due to paucity
of clinical samples. Figure 2a shows a representative
dot plot of the CXCR3/IFNy profile of KLH-reactive
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lar in patients immunized in the presence or absence of
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Fig. 2 Chemokine receptor expression by KLH-specific T cells in
patients immunized in the presence or absence of GM-CSF. a
CXCR3/IFNy profile of CD3"CD4" gated lymphocytes in unstim-
ulated (left) or KLH-exposed (right) PBMCs in two patients
immunized in the absence (upper dot plots) or presence of GM-
CSF (lower dot plots) are shown. The percentages of total
CD3*CD4" T cells and KLH-specific CD3"CD4" T cells are dis-
played expressing CXCR3 (b), CCR4 (¢) or CCRO9 (d) in patients
immunized in the presence (n = 8, filled cycles) or absence (n =7,
open squares) of GM-CSF. In each patient, chemokine receptor
expression of all CD3"CD4* T cells was compared with the
respective chemokine receptor expression of the KLH-specific
CD3*CD4* T cells (connecting line). CCR4 and CCR9 were only
determined in a subset of samples (GM-CSF cohort: CCR4 n = 5;
CCRY9: nn = 4;non GM-CSF cohort: CCR4 n =6, CCR9n =7) due
to paucity of material. Bars indicate the median

GM-CSF (Fig. 2b—d). The percentage of KLLH-specific
CD4* T cells expressing CXCR3 was significantly
higher in patients vaccinated in the presence of the
adjuvant GM-CSF (median 45.3%, range 30.0-76.7%)
than in patients who did not receive GM-CSF (median
20.0%, range 1.3-37.0%, P = 0.001, Fig. 2a, b). In con-
trast, no obvious difference in the percentages of
CCR4* KLH-specific CD4" T cells was found among
the two patient cohorts (median 0%, range 0-42.4%,
versus median 7.7%, range 0-20.4%, P = 0.33, Fig. 2c).
Less than 1% of KLH-specific CD4" T cells did express
CCR9 in both groups (Fig. 2d).

In two patients from whom consecutive post-vacci-
nation samples were available the percentages of
CXCR3" KLH-specific T cells were repeatedly ana-
lyzed in samples 1, 6/4 and 17/18 months post-vaccina-
tion (Fig. 3). In patient A who had been immunized in
the presence of GM-CSF the percentage of CXCR3* T
cells among the KLH-specific CD4* T-cell fraction was
always higher than the percentage of CXCR3" T cells
among the total CD4* T-cell fraction. In contrast, in
patient B, who had been immunized without GM-CSF,
frequencies of CXCR3" T cells among the KLH-spe-
cific CD4* T-cell fraction remained lower compared to
frequencies of CXCR3* cells among total CD4* T cells
at all time points.

Discussion

In this study we investigated whether GM-CSF given
as vaccine adjuvant can modulate the chemokine
receptor expression of vaccine-induced T cells. Results
from our study show that vaccination in the presence of
the adjuvant GM-CSF promotes the generation of
enhanced frequencies of KLH-specific CD4" T cells
expressing CXCR3. In contrast, few KLH-specific
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Fig. 3 Course of CXCR3 profile of KLH-specific T cells in two
patients. Analysis of PBMCs was performed in two patients (pa-
tient A: GM-CSF cohort, patient B: non GM-CSF cohort) 1, 6/4
and 17/18 months after immunization. The percentages of
CXCR3"* T cells among the KLH-specific CD4" T-cell fraction
(black columns) and the total CD4" T-cell fraction (hatched col-
umns) are shown

T cells beared CCR4 despite intradermal injection of
the vaccine and no obvious difference between the
cohorts was observed. CCR4 is, however, predomi-
nantly expressed on type 2-cytokine producing T cells,
which we have not analyzed in this study and this may
explain our failure to detect generation of CCR4*
KLH-specific T cells.

The influence of GM-CSF on CXCR3 expression
during the priming of naive T cells has not been studied
in vitro or animal models yet. Although GM-CSF has
been shown to be able to induce CXCR3 expression on
CD34" stem cells [8], GM-CSF was unable to directly
induce CXCR3 expression on T cells (data not shown).
GM-CSF is known to enhance recruitment of dendritic
cells to the injection site [3, 14], which may promote
induction of CXCR3 on KLH-specific T cells. In vitro
activation of T cells by dendritic cells induces CXCR3
expression independently of the cytokine milieu [10].
However, T cells primed in the presence of IL-4 loose
CXCR3 expression within 7 days while it is maintained
stably expressed on T cells that have been activated in
the presence of interleukin 12 [18]. As we have found
CXCR3 expression on KLH-specific T cells 4 weeks
after the last vaccination this suggests that GM-CSF
promotes conditions under which T «cells stably
expressing CXCR3 are primed.

A prerequisite for effective T-cell therapy is the
migration of antigen-specific T cells into the tumor.

Very little is known so far about the migratory charac-
teristics of vaccine-induced T cells. In experimental
models the failure of adoptively transferred T cells to
migrate to tumor tissues was shown [6]. CXCR3
expression on vaccine-induced T cells may enhance
their ability to migrate into tumors as CXCR3 ligands
were shown to be frequently expressed in tumors [11,
25].

Addition of GM-CSF to peptide-, protein- or gene
transfer-based vaccination has resulted in the augmen-
tation of antitumor immune responses by enhancing T-
cell responses in several studies [3, 4]. Findings from
clinical trials suggest that GM-CSF given alone or as
vaccine adjuvant may result in improved clinical out-
come [23, 24]. Our findings suggest that GM-CSF as
vaccine adjuvant can also qualitatively enhance the
T-cell response to vaccination.

In summary, our study is the first in humans suggest-
ing that the local vaccine milieu can modulate the
chemokine receptor expression on specific T cells gen-
erated by vaccination. Upregulation of CXCR3 may
facilitate migration of vaccine-generated T cells into
inflammatory and tumor sites.
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