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Réjean Lapointe

Received: 8 September 2008 / Accepted: 12 November 2008 / Published online: 4 December 2008

� Springer-Verlag 2008

Abstract

Objectives Patients with renal cell carcinomas (RCC)

have few treatment options, underscoring the importance

of developing new approaches such as immunotherapy.

However, few tumor associated antigens (TAA), which can

be targeted by immunotherapy, have been identified for this

type of cancer. von Hippel-Lindau clear cell RCC

(VHL-/-RCC) are characterized by mutations in the VHL

tumor suppressor gene. Loss of VHL function causes the

overexpression of transforming growth factor (TGF)-a,

leading us to hypothesize that TGF-a could be a potential

TAA for immunotherapy of kidney cancer, which was

evaluated in this study.

Methods and results We first confirmed the absent or

weak expression of TGF-a in important normal tissues as

well as its overexpression in 61% of renal tumors in

comparison to autologous normal kidney tissues. In addi-

tion, we demonstrated the immunogenicity of TGF-a, by

expanding many T cell lines specific for certain TGF-a
peptides or the mature TGF-a protein, when presented by

major histocompatibility complex (MHC) molecules on the

surface of antigen-presenting cells. Interestingly, some of

these TGF-a-specific T cells were polyfunctionals and

secreted IFN-c, TNF-a and IL-2.

Conclusion We have shown that TGF-a is a valid can-

didate TAA, which should allow the development of a

targeted immunotherapy.
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Abbreviations

APC Antigen presenting cells

CCRCC Clear cell renal cell carcinoma

CD40-B CD40-activated B lymphocytes

EBV-B Immortalized B lymphocytes with the

Epstein–Barr virus

GM-CSF Granulocyte/macrophage-colony

stimulating factor

HIF Hypoxia inducible factor

HLA Human leukocyte antigen

IFN-c Interferon-c
MHC Major histocompatibility complex

PBMC Peripheral blood mononuclear cells

TAA Tumor-associated antigen

TIL Tumor-infiltrating lymphocytes

TGF-a Transforming growth factor-a
VHL von Hippel-Lindau
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Introduction

Renal cell carcinomas (RCC) account for 90–95% of all

kidney cancer types [1]. Surgery is the treatment of choice

for patients with localized RCC, but 20–30% of them will

develop metastases [2]. Although 5-year survival is 60%

overall for kidney cancer, it drops to 10% for metastatic

disease [2]; alternative approaches are clearly required to

improve survival, since very few therapeutic regimens are

available. Immunotherapy is an alternative approach, and,

currently, high-dose interleukin (IL)-2 and interferon

(IFN)-a are deployed clinically but objective clinical

responses have been reported in only 10–23% of cases [3,

4]. Furthermore, a specific immune response can be elicited

against tumor-associated antigens (TAA), but only few

have been identified for RCC. Specifically, carbonic

anhydrase IX (CA IX) [5, 6], C-Met [7], cyclin D1 [8] and

renal tumor antigen (RAGE-1) [9] have been identified as

relevant TAA for RCC, and may be of clinical interest.

However, to be highly suitable for immunotherapy, a TAA

needs to: (1) be expressed by tumor cells; (2) be absent

from important normal tissues; (3) demonstrate immuno-

genicity, and ideally; (4) be involved in tumor progression.

When considering the last point, very few TAA for RCC

are available. Given the central role of transforming growth

factor (TGF)-a in RCC progression [10, 11], we studied the

possibility of targeting this protein as a TAA.

The vast majority of clear cell RCC (CCRCC) bear an

inactivated von Hippel-Lindau (VHL) tumor suppressor

gene leading to stabilized and constitutive expression of

hypoxia-inducible factor (HIF)-1a and HIF-2a proteins

[12–16]. Such abnormal expression results in the accumu-

lation of different proteins involved in angiogenesis, such as

vascular endothelial growth factor (VEGF). Many therapies

have been tested based on inhibition of VEGF including:

recombinant human monoclonal antibody against VEGF

(bezacizumab) [17], and VEGF tyrosine kinase receptor

inhibitors (sorafenib [18] and sunitinib [19]). Phase II and

III clinical trials have shown that these new drugs increase

objective response rates and progression-free survival, but

patients still do not achieve complete remission. Constitu-

tive expression of HIF-1a and HIF-2a proteins also results

in the accumulation of growth factors, such as glucose

transporter-1 (Glut-1) [20] and TGF-a [11]. When consid-

ering this pathway, TGF-a has emerged as a compelling

TAA candidate because of its potentially weak expression

in normal tissues and its direct involvement in tumor pro-

gression. However, its expression pattern needs to be

extensively defined in the context of TAA, and its potential

immunogenicity in RCC patients should be explored.

The current study investigates TGF-a expression in a

panel of normal tissues and numerous human kidney cancer

specimens. In addition, T lymphocytes specific to TGF-a

could be detected from tumor-infiltrating lymphocytes

(TIL) and peripheral blood mononuclear cells (PBMC)

obtained from RCC patients. Based on these data, we

believe that TGF-a could be a valuable candidate TAA.

Materials and methods

Clinical specimens

Kidney tumors and normal kidney tissues were obtained

after total or partial nephrectomy from patients recruited by

Dr. Simon Tanguay at the Montreal General Hospital

(McGill University Health Centre). Tumor histology,

grade, and staging (TNM) are presented in Table 1. Blood

was drawn from kidney cancer patients at the time of

surgery. All study subjects signed an informed patient

consent form and the project has been reviewed and

approved by the Ethics Committee at both CHUM-Notre-

Dame Hospital and Montreal General Hospital. Staging

Table 1 Clinicopathological characteristics of kidney cancer patients

Patients Tumor histology Grade pTNM

1 CCRCC 2 pT2

2 CCRCC 2 pT1a

3 CCRCC n/a pT1a

4 RCC chromophobe – pT1b

5 RCC papillary – pT1b

6 RCC chromophobe – pT3a

7 RCC chromophobe – pT1a

8 CCRCC 2 pT2

9 CCRCC 2 pT3a

10 CCRCC 2 pT2

11 CCRCC 3 pT1b

12 CCRCC 3 pT1b

13 CCRCC 2 pT1b

14 CCRCC 2 pT1a

15 CCRCC 1 pT1a

16 CCRCC 3 pT1a

18 RCC papillary – pT1b

19 CCRCC 3 pT2

20 CCRCC 2 pT3b

21 CCRCC 2 pT1a

22 CCRCC 1 pT1a

23 CCRCC 2 pT2

24 RCC chromophobe – pT3a

25 CCRCC 2 pT1a

27 CCRCC 1 pT1a

28 CCRCC 3 pT3a

29 Angiomyolipoma – –

CCRCC clear cell renal cell carcinoma
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(pTNM) was undertaken according to the AJCC Cancer

Staging Manual (http://www.cancerstaging.org).

Cell culture

A498, 786-0, and KTCL140 cell lines are VHL-/-RCC. The

A498 ? VHL cell line is derived from A498 cells stably

transfected with hemagglutinin (HA)-tagged VHL. All these

cell lines were prepared as described elsewhere [21]. The

HeLa cell line is a cervical cancer cell line containing wild-

type VHL. All cell lines were obtained from the American

Type Culture Collection (Manassas, VA). They were cul-

tured in Dulbecco’s modified Eagle’s medium (DMEM;

Wisent, St-Bruno, Québec, Canada) supplemented with 10%

fetal bovine serum (FBS) (Invitrogen, Carlsbad, CA and

Wisent), 2 mM L-glutamine, 100 lg/ml penicillin/strepto-

mycin and 10 lg/ml gentamicin (all from Invitrogen).

Peripheral blood mononuclear cells (PBMC) from kid-

ney cancer patients or normal donors were enriched with

lymphocyte separation medium (Cellgro, Herndon, VA and

Wisent). PBMC were cryopreserved in 90% calf serum

(Wisent)/10% DMSO (Sigma, St-Louis, MO), and stored in

liquid nitrogen.

To generate CD40-activated B-cell cultures (CD40-B)

[22], PBMC were cultured in complete B cell medium

defined as Iscove’s Modified Dulbecco’s medium (Invit-

rogen) supplemented with 7.5% human serum (heat-

inactivated, prepared from 3 normal donors recruited by Dr

Jean-Pierre Routy at the Royal Victoria Hospital (McGill

University Health Centre), Montréal, Québec, Canada),

2 mM L-glutamine, 100 U/ml penicillin/streptomycin and

10 lg/ml gentamicin. Soluble trimeric CD40L (500 ng/ml)

(Immunex Corporation, Seattle, WA), recombinant human

IL-4 (250 U/ml) (Peprotech, Rocky Hill, NJ) and cyclo-

sporin A (0.66 lg/ml) (Calbiochem, San Diego, CA) were

added to PBMC on the first day. Fresh complete medium

containing 250 U/ml IL-4 and 250 ng/ml CD40L was

added on day 3. After the first round of proliferation (days

5–8), cells were either frozen for future use or re-stimu-

lated every 2–3 days when the culture reached a density of

1.5–2 9 106 cells/ml. B lymphocytes immortalized by the

Epstein–Barr virus (EBV-B) were generated, as described

previously [23].

RNA extraction and reverse transcription: polymerase

chain reaction (RT-PCR)

Kidney tumors and normal tissues were stabilized in

RNAlater (Sigma) and homogenized with a Medima-

chineTM (Dako Cytomation, Glostrup, Denmark) according

to the manufacturer’s instructions and as described else-

where [24]. RNA was prepared with Qiazol reagent

(QIAGEN GmbH, Hilden, Germany), followed by a

cleanup and concentration procedure using RNeasyTM

Mini or Micro kits (QIAGEN) according to the manufac-

turer’s instructions [24].

For quantitative RT-PCR (qRT-PCR) analysis, cDNA

was synthesized from RNA (1 lg) with random hexamer

primers (Operon Biotechnologies, Huntsville, AL) and

Omniscript Reverse Transcriptase kit (QIAGEN). TGF-a
amplification was performed by QuantiTect custom

assay (QIAGEN) and QuantiTect Probe PCR Master mix

(QIAGEN). Primer and probe sequences were: TGF-a for-

ward: 50-CAGATTCCCACACTCAGTT-30; TGF-a reverse:

50-TACCCAGAATGGCAGACACA-30; TGF-a internal

probe: 50-(Eclispe Dark Quencher)-GCAGGAGGACAA

GCCAG-(FAM)-30. The 18S subunit of the ribosome was

amplified by QuantiTect Gene Expression Assay (QIAGEN)

and QuantiTect Probe PCR Master mix (QIAGEN). Cycling

conditions were implemented according to the manufac-

turer’s instructions. Amplification was performed in a Rotor

Gene (Corbett Research, Sydney, Australia), and relative

TGF-a expression was established according to the follow-

ing mathematical formula [25, 26] :

Ratio = (ETGF�aÞDCP TGF�aðcontrol�sampleÞ=

ðEreferenceÞDCP referenceðcontrol�sampleÞ

The relative TGF-a expression ratio over the 18S

subunit of the ribosome was reported in relation to A498

cell line expression established at a value of 1. The

equation takes into account the PCR efficiencies (E) of

both genes and the difference (D) between the moment at

which the fluorescence of a given sample versus A498

crosses the threshold (CP). Standard curves were generated

in every run with serial dilutions of cDNA from the 786-0

cell line. All samples were tested in duplicate in at least

two independent runs.

Pulsing of antigen presenting cells (APCs)

with exogenous antigens

Eight synthetic 20-residue-long peptides overlapping by

10 amino acids derived from the TGF-a sequence were

prepared (Fig. 3a) (Alpha Diagnostic International, San

Antonio, TX; Service de synthèse de peptides de l’Est du

Québec, Centre hospitalier de l’Université Laval, Canada

(peptide 81–100 only). Peptides were reconstituted at a

concentration of 25 mM in DMSO, except for peptides 91–

110 and 111–130, which were reconstituted at 12.5 mM,

and for peptide 101–120 which was reconstituted at

6.25 mM, because of lower solubility. Cells were plated at

1 9 106 cells/ml in complete B cell medium containing

500 ng/ml of soluble CD40L for CD40-B cells and in

RPMI 1640 complete medium for EBV-B cells. Recom-

binant, mature TGF-a (amino acids 40–89 of the precursor
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TGF-a protein; Fig. 3a) (PeproTech, Ottawa, Ontario,

Canada) or synthetic peptides were added to B cells at a

final concentration of 10 lg/ml for the mature protein, and

from 6 to 115 lM for the peptides depending on their

solubility. Cells were incubated for 16–20 h, then washed

to remove unloaded protein or peptide. In some recognition

assays, CD40-B cells were previously incubated for 20 min

with 40–80 lg/ml of blocking antibodies specific for either

major histocompatibility complex (MHC) class I (clone

W6/32), MHC class II (clone IV A12), or HLA-DR (clone

HB55). CD40-B cells were used for recognition assays and

for stimulation assays, while immortalized EBV-B cells

were employed for recognition assays only.

Tumor infiltrating lymphocytes (TIL) culture

After tumor resection, kidney tumors were desegregated

mechanically and homogenized with a MedimachineTM

(Dako) to prepare single cell suspensions, from which TIL

were enriched by centrifugation in lymphocyte separation

medium (Cellgro and Wisent). About 1–5 9 105 TIL were

then activated [27] with 5 lg/ml phytohemaglutinnin (PHA)

(Sigma) in the presence of 2.5 9 107 irradiated (5,000 rads)

PBMC from three different normal donors and IL-2 (300 IU/

ml) (Chiron, Emeryville, CA) in complete T cell medium

consisting of AIM-V (Invitrogen) supplemented with

5% heat-inactivated AB serum (Gemini Bio-Products,

Calabasas, CA), 2 mM L-glutamine, 100 U/ml penicillin/

streptomycin and 10 lg/ml gentamicin. On day 2, 300 IU/

ml IL-2 was added, and on day 5, the supernatant was

replaced by fresh complete medium and 300 IU/ml IL-2.

After the first round of proliferation (days 8–10), cells were

either frozen for future use or replated at 5–8 9 105 cells/ml

in complete T cell medium containing 300 IU/ml of IL-2.

Expansion of peripheral T lymphocytes specific

to TGF-a or TGF-a-derived peptides

PBMC from kidney cancer patients were cultured in mul-

tiple wells in complete T cell medium supplemented with

500 ng/ml CD40L. The recombinant mature TGF-a or

individual peptides were then added at a concentration of

6–10 lg/ml for the protein, and 7–60 lM for the peptides,

according to their solubility. On days 8–15, cells were re-

stimulated with autologous 1.7–5.5 9 104 CD40-B cells

pulsed with the corresponding peptide or protein, and 150–

300 IU/ml of IL-2 were added to T cells on that same day

and every 2–3 days.

Recognition assays

Tumor infiltrating lymphocytes were tested on days 14–20,

and peripheral T cell lines on days 16–27, for their

specificity to TGF-a on the basis of cytokine secretion.

Specifically, 5 9 104 TIL or peripheral T cell lines were

co-cultured with 5 9 104 CD40-B or EBV-B pulsed with

TGF-a peptides or mature protein. When screening many

peripheral T cell lines, 100 ll of cells were used. INF-c
secretion was measured by ELISPOT, and granulocyte–

macrophage-colony stimulating factor (GM-CSF) was

measured by ELISA.

For ELISPOT, 96-well filtration plates (MultiScreenTM-

HTS; Millipore, Bedford, MA) were coated with anti-IFN-

c mAb (5 lg/ml, Mabtech, Stockholm, Sweden) and

incubated for 18 h at 4�C. On the following day, plates

were washed with phosphate buffered saline (PBS,

Wisent), and blocked with complete T cell medium for 2 h

at 37�C. T cells were then added to wells. One hour later,

pulsed autologous CD40-B cells or EBV-B cells were

added to T cells for 16–20 h. Supernatants were collected

and frozen at -20�C for future evaluation of GM-CSF

secretion by ELISA. Meanwhile, ELISPOT plates were

washed with PBS/0.01% Tween 20 (Sigma) and biotinyl-

ated anti-IFN-c filtered mAb (2 lg/ml, Mabtech) were

added. After 2 h of incubation at 37�C, plates were washed

and incubated for 45 min at room temperature with strep-

tavidin-HRP (1:100 or 1:1,000 dilution, Mabtech). The

plates were again washed, and spots were revealed with

3-amino-9-ethyl-carbazole substrate (Sigma). Spots were

counted with the ImmunoSpot Series 3B Analyzer (Cel-

lular Technology Ltd., Cleveland, OH). In ELISPOT, a T

cell line was scored positive when [10 spot-forming cells

(SFC) and more than twice the number of SFC were

observed in the well with the relevant peptide or protein,

when compared with negative controls (irrelevant peptide

from TGF-a).

For ELISA, MaxiSorp 96-well plates (Nalge Nunc

International, Rochester, NY) were coated with anti-GM-

CSF mAb (0.4 lg/ml; Endogen, Rockford, IL) overnight at

4�C. Plates were washed, blocked with PBS/5%FBS,

washed again, and then secondary biotinylated mAb

(1.4 lg/ml; Endogen) and T cell co-culture supernatants

were added. After 90 min, plates were washed and incu-

bated with Poly HRP20-streptavidin (0.25 lg/ml; Research

Diagnostics Inc, Concord, MA) for 30–45 min. Plates were

then revealed with TMB substrate (Neogen, Lexington,

KY), and the reaction was stopped with 2 N H2SO4. In

GM-CSF secretion assays, a T cell line was scored positive

when secretion was [50 pg/ml and was twice the amount

obtained with relevant controls.

Flow cytometric analyses

For intracellular cytokine staining, T cell lines and pulsed

autologous-antigen presenting cells were co-cultured at a

ratio of 1:1 for 3 h and for an additional 12 h in the
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presence of brefeldin A (5 lg/ml; Sigma). Cells were

stained using Pacific Blue, Alexa-700, APC-Cy7-conju-

gated antibodies specific for human CD3, CD4, CD8 or

corresponding isotype controls (all from BD Biosciences

Mississauga, ON). Dead cells were excluded by staining

with the Live/Dead Fixable Dead Cell Stain Kits (Invitro-

gen). Cells were surface stained for 30 min at 4�C, washed

with staining buffer (PBS containing 1% FBS and 0.1%

NaN3) and then fixed and permeabilized in 4% (w/v)

paraformaldehyde with 0.1% (w/v) saponin in Hank’s

Balanced Salt Solution for 10 min at room temperature.

Intracellular staining was performed by incubating cells

with antibodies against IFN-c, TNF-a, IL-2 or corre-

sponding isotype controls (all from BD Biosciences) for

30 min on ice in staining buffer containing 0.1% (w/v)

saponin. Cells were washed twice and resuspended in

staining buffer. Flow cytometry data was acquired using

LSRII instrument (BD Bioscience), and analyzed using

FlowJo software (Tree Star, Ashton, OR).

Statistical analyses

The differential TGF-a expression in kidney tumors and

adjacent normal kidney tissues was evaluated by paired t

test. Mean values of TGF-a expression were compared by

clinicopathological clusters by the two-tailed t test for

independent samples, or ANOVA if more than two groups.

Differences were considered significant when P \ 0.05.

The data were analyzed by SPSS 13.0 software for Win-

dows (LEAD Technologies, Chicago, IL).

Results

TGF-a is expressed in CCRCC and detected marginally

in normal tissues

TGF-a expression has been demonstrated previously in

kidney cancers [28–32]. Our previous in vitro functional

experiments linked TGF-a expression to HIF accumulation

which is a consequence of VHL loss specifically in

CCRCC [11, 33]. Here, we exploited real time qRT-PCR to

assess expression in clinical samples of CCRCC and a few

other kidney cancer types. As predicted, TGF-a expression

was significantly higher in multiple CCRCC compared

to adjacent normal kidney tissues (Fig. 1a, c). TGF-a
expression was significantly higher in CCRCC than in

other kidney cancer types (Fig. 1b) and normal adjacent

margins (Fig. 1c), but marginal expression was similar in

kidney cancers other than CCRCC and autologous normal

kidney tissues (Fig. 1d). No correlation was established

between TGF-a expression and tumor size or grade (data

not shown).

TGF-a expression was also reported in very specific

situations in some normal human tissues [34–40]. Con-

sidering that a TAA must be minimally expressed from

Fig. 1 TGF-a expression in

kidney cancers and adjacent

normal tissues. a RNA and

cDNA were prepared from

resected kidney cancers (black
bar) and normal kidney tissues

adjacent to the tumor (white
bar), and TGF-a expression was

evaluated by qRT-PCR (relative

to 18S ribosomal RNA).

Number corresponds to patient

number as listed in Table 1.

HeLa cells were used as

negative controls whereas the

VHL-/-RCC lines: A498 and

KTCL140 were used as positive

controls. Reintroduction of

VHL resulted in decreased

TGF-a expression (see hatched
bar). Expression levels were

compared between CCRCC and

other kidney cancer types (b),

CCRCC and adjacent normal

margins (c), and kidney cancers

other than CCRCC and adjacent

tissue (d)
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normal tissues in immunotherapies, to avoid autoimmunity

and strong immune tolerance, we evaluated expression in a

panel of normal tissues (n = 20; including the brain, heart,

lung, and digestive tract), some being essential for survival.

As illustrated in Fig. 2, relative TGF-a mRNA was barely

detectable from normal tissues but was positive for the

A498 CCRCC line.

Altogether, considering its high expression from

CCRCC clinical samples, and its relative absence from

multiple normal tissues, TGF-a appears to be a compelling

target as a TAA.

Human TGF-a-specific T cells are expanded from both

tumor infiltrates and peripheral blood of RCC patients

Immunogenicity is an essential attribute for a TAA. We

first evaluated whether TGF-a-specific T cells could be

detected in kidney tumor infiltration. T cells were expan-

ded by PHA stimulation in enriched cells from kidney

cancers. We routinely isolated 3 9 105–2 9 106 TIL from

kidney cancer specimens and expanded them to 5 9 107–

1 9 108 T cells after 2 or 3 weeks in culture. The speci-

ficity of expanded T cells was examined by co-culture with

mature TGF-a protein or peptide-pulsed autologous APC,

and reactivity was assessed by IFN-c release (with ELI-

SPOT) and GM-CSF release (with ELISA). The peptides

and mature TGF-a are presented in Fig. 3a. As seen in

Fig. 3b, specific T cells were detected from 6 of 15 tumors

analyzed. These results are based on IFN-c secretion only

since GM-CSF secretion was not detected from any of the

specific T cells. There was no correlation between the

frequency of specific T cells and TGF-a expression by

tumors, since TGF-a-specific T cells could be detected

regardless of tumor TGF-a expression levels. TGF-a-

specific T cells were also expanded in vitro from peripheral

blood using pulsed autologous APC in multiple wells for

each TGF-a peptide or mature protein. After expansion,

specificity was assessed by co-culture with APC pulsed

with the same peptide/protein employed for expansion. An

irrelevant peptide served as a negative control. As shown in

Fig. 3c, for each patient at least one TGF-a-activation

condition led to a specific response with either peptide or

mature protein. Moreover, expanded TGF-a-specific T

cells from different patients recognized different peptides

from TGF-a, which may reflect different peptide/MHC

interactions.

Finally, we further characterized some T cell lines to

define whether TGF-a was recognized by CD4? or CD8? T

cells and to establish the poly-functionality of these cells.

Characterization of three T cell lines specific to different

peptides from two patients are presented in Fig. 4. The

results of the specificity assay (IFN-c ELISPOT and GM-

CSF ELISA) for T cells (T cell lines A–H) from patient #8

expanded in vitro in the presence of TGF-a peptide 121–

140 are illustrated in panel a. T cell lines C and D were

specific only according to the GM-CSF assay, but T cell E

showed a strong specificity in both assays. The results

of the specificity assay (IFN-c ELISPOT and GM-CSF

ELISA) for T cells (T cell lines A–E) from patient #22

expanded in vitro in the presence of TGF-a peptide 71–90

and peptide 131–150 are illustrated in panels b and c,

respectively. TGF-a 71–90 specific response could be

observed for line D (panel b) as detected by IFN-c ELI-

SPOT although levels of GM-CSF were low but still above

control peptide. Regarding TGF-a 131–150 specific

responses, line D (panel c) was also significantly above the

control peptide in both assays.

We further characterized T cell line E TGF-a 121–140

specific for MHC restriction. Blockade of MHC class II

HLA-DR or pan-specific MHC class II using blocking

antibodies abrogated IFN-c and GM-CSF secretion

(Fig. 4d), while antibodies blocking MHC class I margin-

ally decreased cytokine production.

There have been numerous reports on distinct poly-

functional properties in human T cells especially in the

context of HIV infection [41]. To determine such poly-

functional profiles of our TGF-a-specific T cell lines, we

co-cultured our T cell lines in the presence of autologous

APC loaded with either the specific peptide or an irrelevant

peptide, and assessed the T cell subsets CD4 versus CD8

and the cytokine production looking by intracellular

staining for IFN-c, IL-2, and TNF-a simultaneously. A

typical example is illustrated in Fig. 5 panel a. Results

obtained from three T cell lines are illustrated in panel b

(patient #22 T cell line D TGF-a 71–90 specific, patient

#22 T cell line D TGF-a 131–150 specific and patient #8 T

cell line E TGF-a 121–140 specific). The patient #22 T cell

Fig. 2 Expression profile of TGF-a in normal tissues. cDNA was

prepared from commercial RNA from normal human tissues, and

TGF-a expression was evaluated by real-time qRT-PCR. Expression

was normalized according to 18S ribosomal RNA and reported

relative to the expression level of A498. The results presented are

representative of at least two independent experiments

1212 Cancer Immunol Immunother (2009) 58:1207–1218
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line D TGF-a 71–90 specific contained mainly CD4 T cells

(86.1%) although both CD4? and CD8? T cells specifically

produced IFN-c (CD4, 0.58% for irrelevant peptide vs.

7.83% for TGF-a 71–90; CD8, 2.58% for irrelevant peptide

vs. 33.2% for TGF-a 71–90). These data confirmed our

IFN-c ELISPOT data. The other two cell lines tested

(patient #22 T cell line D TGF-a 131–150 specific and

patient #8 T cell line E TGF-a 121–140 specific) were

mainly composed of CD4? T cells (90.9% and 97.5%) and

a similar pattern was observed with a significant IFN-c
secretion. The results obtained from patient #8 T cell line E

TGF-a 121–140 specific are in line with those obtained in

Fig. 4d, meaning that peptide 121–140 is MHC-class II

restricted and recognized by CD4? T cells. In addition to

secreting IFN-c, 74.4–87.8% of these specific T cells also

secreted TNF-a and only 0.5–15.3% of them secreted TNF-

a and IL-2. In summary, we raised anti-TGF-a-specific T

cells which are poly-functional based on cytokine secretion

and a typical Th1/Tc1 profile being positive for both IFN-c
and TNF-a.

In summary, we have demonstrated that poly-functional

T lymphocytes from blood and infiltrating tumors can

recognize TGF-a-derived peptides or the mature protein

when pulsed on autologous APC.

Discussion

In this report, we have demonstrated that TGF-a is a

valuable TAA candidate, considering its distinct expression

Fig. 3 Expansion of T

lymphocytes specific to TGF-a
or TGF-a-derived peptides.

a Schematic representation

of the TGF-a precursor and

localization of synthesized

overlapping peptides.

b Resected tumors from kidney

cancers were homogenized, and

T cells from infiltrating single

cell suspensions were expanded

with PHA for 10–15 days prior

to be tested for TGF-a-

specificity. The symbol ?

means production of IFN-c
above background. Absence

means no TGF-a-specific T cell

detected. c PBMC from kidney

cancer patients were co-cultured

in multiple duplicated wells

with peptide or TGF-a-pulsed

autologous CD40-B cells as in

Sect. ‘‘Materials and methods’’.

The specificity of expanded

cells in b and c was evaluated

by co-culture with autologous-

pulsed CD40-activated B cells

in IFN-c (ELISPOT) and GM-

CSF (ELISA). In ELISPOT,

a T cell line was scored positive

when [10 SFC and more than

twice the number of SFC were

observed in the well with the

relevant peptide or protein,

when compared with negative

controls (irrelevant peptide from

TGF-a). In GM-CSF secretion

assays, a line was scored

positive when secretion was

[50 pg/ml and was twice the

amount obtained with relevant

controls. SFC spot-forming

cells. c Numbers indicate

number of wells positive over

number of tested wells
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in CCRCC, its very low level or absence from important

organs, and its potential immunogenicity as evaluated in

PBMC and TIL obtained from kidney cancer patients.

Among previously-identified TAA for kidney cancer,

most are expressed in a low proportion of tumor samples,

and some are shared with normal tissues crucial for

survival, such as CA IX, C-Met, cyclin D1 and RAGE-1.

As reported here, TGF-a mRNA appears to be marginally

expressed from the normal tissues as evaluated by sensi-

tive, state-of-the-art qRT-PCR. Actually, the highest

detected expression was in normal kidney samples, and it

was still 22 times less than the referenced A498 kidney

Fig. 4 Anti-TGF-a-specific

T cell lines are MHC class II

restricted. The specificity of

T lymphocytes expanded from

PBMC with TGF-a peptide

121–140 (a), 71–90 (b) and

131–150 (c) was evaluated as

described in Fig. 3. Data for

IFN-c ELISPOT and GM-CSF

secretion assays are presented.

T cell line specificity was based

on criteria described in Fig. 3

legend. D. The T cell line

specific to TGF-a peptide 121–

140 was co-cultured with

allogeneic or autologous APC

pulsed with the relevant peptide

with or without antibodies

blocking antigenic presentation

mediated by MHC class I or

class II molecules. TNTC to

numerous to count, auto
autologous, allo allogenic
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cancer line (Fig. 2). These data further corroborate previ-

ous studies reporting weak TGF-a expression from normal

tissues [28, 34, 36, 37, 39, 40]. Normal brain tissue also

expressed TGF-a at low levels similar to normal kidney

tissue, but autoimmunity mediated by TGF-a-specific T

cells is not likely to occur because of the decreased

trafficking of lymphocytes through the blood–brain barrier.

This should be taken into consideration before designing

future clinical trials. Conversely, TGF-a was expressed

at least three times more in 13/17 (77%) of CCRCC

compared with autologous normal kidney tissues, which

confirms previous reports [28–30], and further illustrates

Fig. 5 Anti-TGF-a-specific T cell lines are poly-functional. a Flow cytometry analysis of cytokine production by T cell line specific for peptide

71–90 from patient #22. b Summary of cytokine production by T cell lines
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divergence between CCRCC and other kidney cancers for

TGF-a expression. Moreover, at least six CCRCC expres-

sed levels higher than our positive control A498 cells.

Interestingly, HIF-2a, which regulates TGF-a expression

[11, 33], also occurs in pre-malignant multicellular islets in

VHL-deficient nephrons [20]. It is thus possible that TGF-a
production is initiated at such an early pre-cancer state and

persists during CCRCC development.

Considering its relevant expression profile as a candi-

date TAA, TGF-a was evaluated for potential immuno-

genicity, and T cells reacting against several peptides and

mature TGF-a protein were found in blood samples and

even in TILs obtained from RCC patients. We observed

expected variations from patient to patient, which may

reflect HLA polymorphisms, but all tested patients had T

cells specific for at least one epitope of TGF-a. The

selection of 20-mers peptides spanning the TGF-a protein,

may have favored MHC class II-restricted presentation and

responses since 20-mers are too long to fit into the MHC

class I pocket. The use of shorter peptides, such as 9–10-

mers, might show a higher frequency of spontaneous CD8?

T cell immunity to TGF-a. We further evaluated the

polyfunctionality of the TGF-a-specific T cells and

observed that a large proportion of the IFN-c? cells also

secreted TNF-a, but not IL-2. In HIV infection, CD4? and

CD8? T cells secreting only IFN-c have a weaker prolif-

erative capacity than IFN-c?IL-2? and IFN-c-IL-2? T cells

[42–44]. If this is the case with TGF-a-specific T cells,

which is yet to be determined, the low frequency of IL-2

secreting cells might have a negative impact on the pro-

liferation and differentiation of antigen-specific T cells. In

contrast, given its important role for regulatory T cells, low

levels of IL-2 might limit their proliferation and conse-

quently favor an effective anti-tumor immune response.

Potential other cytokines include Th2 cytokines such as

IL-4, and Th17 cytokines such as IL-17. Although TGF-a-

specific CD8? T cells were detected only in one T cell line,

and this maybe due to the use of 20 amino acid peptides, the

cytotoxic capacity of these cells should also be evaluated. In

addition, studies in HIV infection have shown that produc-

tion of MIP-1b is more important than IFN-c for enumerating

the total number of antigen-specific CD8? T cells [41].

Several studies on viral infections have correlated higher T

cell polyfunctionality with lower antigen loads [41, 42, 44].

However, it is unknown if higher T cell polyfunctionality

correlates with lower TAA load, such as early tumor devel-

opment versus tumor progression and metastasis.

Finally, although TGF-a-specific T cells in peripheral

blood and TIL exist, tumors still progress in RCC patients,

which could be explained by several hypotheses. First,

TGF-a-specific T cells infiltrating tumors could be func-

tional but not in sufficient numbers to control the rapid

growth of tumor cells. Second, tumors cells could develop

strategies to evade the immune system. Indeed, many

mechanisms have been described, such as decreased

expression of MHC class I and II by tumor cells [45],

natural selection of tumor cells refractory to the immune

system [46], secretion of inhibitory cytokines by tumor

cells such as TGF-b and IL-10[47], and finally the absence

of co-activation signals on APC leading to T cell anergy

[47]. It is thus possible that one or many of these mecha-

nisms could be responsible for tumor progression instead of

its elimination by tumor-specific T cells.

With these experiments, we believe that TGF-a is a

valuable candidate TAA, considering its relevant expres-

sion profile, its involvement in tumor progression, and its

potential immunogenicity involving polyfunctional specific

T cells. Work is currently underway to integrate TGF-a in

different experimental immunotherapy models to further

evaluate it as a rejection TAA in CCRCC. In addition,

TGF-a as a TAA could also be transposed to other cancer

types in view of its shared overexpression with colon

cancer [36], lung cancer [48, 49], pancreatic cancer [50],

colorectal cancer [51], and others.
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