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Abstract

Background: The intensities (i.e., number of protons in monitor unit (MU)) of deliverable 

proton spots need to be either zero or meet a minimum-MU (MMU) threshold, which is a 

nonconvex problem. Since the dose rate is proportionally associated with the MMU threshold, 

higher-dose-rate proton radiation therapy (RT) (e.g., efficient intensity modulated proton therapy 

(IMPT) and ARC proton therapy, and high-dose-rate-induced FLASH effect needs to solve the 

MMU problem with larger MMU threshold, which however makes the nonconvex problem more 

difficult to solve.

Purpose: This work will develop a more effective optimization method based on orthogonal 

matching pursuit (OMP) for solving the MMU problem with large MMU thresholds, compared to 

state-of-the-art methods, such as alternating direction method of multipliers (ADMM), proximal 

gradient descent method (PGD), or stochastic coordinate descent method (SCD).

Methods: The new method consists of two essential components. First, the iterative convex 

relaxation method is used to determine the active sets for dose-volume planning constraints and 

decouple the MMU constraint from the rest. Second, a modified OMP optimization algorithm is 

used to handle the MMU constraint: the non-zero spots are greedily selected via OMP to form 

the solution set to be optimized, and then a convex constrained subproblem is formed and can be 

conveniently solved to optimize the spot weights restricted to this solution set via OMP. During 

this iterative process, the new non-zero spots localized via OMP will be adaptively added to or 

removed from the optimization objective.

Results: The new method via OMP is validated in comparison with ADMM, PGD and SCD 

for high-dose-rate IMPT, ARC, and FLASH problems of large MMU thresholds, and the results 

suggest that OMP substantially improved the plan quality from PGD, ADMM and SCD in terms 

of both target dose conformality (e.g., quantified by max target dose and conformity index) and 

normal tissue sparing (e.g., mean and max dose). For example, in the brain case, the max target 

dose for IMPT/ARC/FLASH was 368.0%/358.3%/283.4% respectively for PGD, 154.4%/179.8%/

150.0% for ADMM, 134.5%/130.4%/123.0% for SCD, while it was <120% in all scenarios for 
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OMP; compared to PGD/ADMM/SCD, OMP improved the conformity index from 0.42/0.52/0.33 

to 0.65 for IMPT and 0.46/0.60/0.61 to 0.83 for ARC.

Conclusions: A new OMP-based optimization algorithm is developed to solve the MMU 

problems with large MMU thresholds, and validated using examples of IMPT, ARC, and FLASH 

with substantially improved plan quality from ADMM, PGD, and SCD.
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1. Introduction

The radiation therapy (RT) is to deliver the tumoricidal dose for tumor controls while at 

the same time minimize radiation-induced normal tissue toxicities, for which pencil beam 

scanning (PBS) proton RT has become increasingly popular due to its conformal dose to 

tumor targets and less integral dose to normal tissues with the introduction of intensity 

modulated proton therapy (IMPT) [2].

For the presentation purpose, the treatment plan optimization problem (e.g., IMPT) 

considered in this work is formulated mathematically as to solve the following optimization 

problem

min
x ∈ ℝNx, x ≥ 0

f x ,

(1)

where x denotes the spot weight with the non-negative constraint, Nx is the number of spots, 

and f(x) is the sum of planning objectives. The unit of x is the so-called monitor unit (MU), 

i.e., the number of protons.

For proton spots to be deliverable, there exists a machine-specific minimum-MU (MMU) 

threshold Gmin, such that the number of protons delivered per spot must be at least Gmin. On 

the other hand, it is desirable to have a treatment plan with large MMU threshold g (g≥Gmin) 

to be satisfied by all proton spots, since larger value of g corresponds to higher dose rate. 

This will be useful to improve the delivery efficiency of IMPT [2] and proton ARC therapy 

[13], such as the recent push for lung cancer treatment with a single-breath-hold delivery of 

IMPT [41]. This will also be needed for FLASH [25], which demands the ultra-high dose 

rate in order to induce the biological FLASH effect to realize the full biological efficacy 

of FLASH for normal tissue protection. The core optimization problem for achieving these 

applications is the so-called the MMU optimization problem

min
x ∈ ℝNx

f x

s.t . xj ∈ 0 ∪ g, + ∞ , j ≤ Nx

.

(2)
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The MMU constraint in Eq. (2) is nonconvex and states that the spot weight x is nonnegative 

and at least g if x is nonzero. Note that g is the planning MMU threshold, which has to be 

larger than or equal to the machine MMU threshold Gmin, i.e., g≥ Gmin.

Note that the MMU problem can also be formulated as a mixed integer problem

min
x ∈ ℝNx, s ∈ 0, 1 Nx

f x ⋅ s

s . t . xj ∈ g, + ∞ , j ≤ Nx

,

(3)

where s is a binary vector. This formulation again shows the nonconvexity of the problem, 

and the high dimensionality of the problem makes it difficult to solve, especially for large g.

Various methods have been developed to solve the MMU problem, including postprocessing 

methods [9,16,21] and optimization methods [11,19,22,24]. For example, a post-processing 

method [9] with simple thresholding of proton spots was used by Varian Eclipse treatment 

planning system; the spot-reduction method [42,43] was proposed to solve the MMU 

problem, which heuristically handles the MMU constraint by iteratively removing small-

weight spots, i.e., the smallest m% spot weights are set to 0 every n iterations during a total 

of N iterations; a mathematically rigorous optimization approach was developed to solve the 

MMU problem, using alternating direction method of multipliers (ADMM) [22,24,37]; very 

recently, a so-called stochastic coordinate descent (SCD) method was proposed to solve the 

MMU problem with relatively large g [31].

However, the MMU problem with large g remains challenging, as it becomes increasingly 

difficult to maintain the plan quality (e.g., the conformal dose coverage for tumor target 

and the low dose for normal tissue) for large value of g. Note that although some methods 

can have better plan quality than others, this observation of deteriorated plan quality for 

the MMU problem with large g is intrinsic to the MMU problem, and not specific to an 

optimization method. To demonstrate this point, we will also compare with another popular 

optimization algorithm called proximal gradient descent (PGD) method (a generalization of 

proximal forward-backward splitting or FISTA method) [38–40] that can be used to solve 

the MMU problem.

The contribution of this work is to develop a new optimization method based on orthogonal 

matching pursuit (OMP) [5] that can substantially improve the solution to the MMU 

problem with large g in terms of plan quality.

2. Methods

2.1. Notations

Before introducing the new optimization method (Section 2.2), we will provide the notations 

and planning objectives based on dose-volume-histogram (DVH) constraints.

The dose d is calculated based on the spot x via dose influence matrix D, i.e.,
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di = Dix = ∑
j = 1

Nx

Dijxj, i ≤ Nd,

(4)

where x is the spot weight vector of Nx spots indexed by j, d is the dose vector of Nd voxels 

indexed by i, and Di is the ith row of D with the jth entry Dij as the dose from the jth spot of 

the unit weight to the ith voxel.

The planning objective f (Eq. (2)) is the sum of various optimization objective terms 

corresponding to DVH constraints [1,3], including DVH-max constraint (e.g., for organs-at-

risk (OAR))

Dp% ≤ c : ≤ p% of ROI receives  ≥ c dose,

(5)

and DVH-min constraint (e.g., for planning target volume (CTV))

Dp% ≥ c :  ≥ p% of ROI receives ≥ c dose,

(6)

where ROI denotes the region of interest for a DVH constraint under consideration.

The DVH planning constraints Eq. (5) and (6) are nonconvex with respect to d and therefore 

nonconvex with respect to x. This is because, for specific DVH constraints, not all voxels of 

d need to be included and the locations (i.e., the active set Ω of indices) of d where these 

planning constraints are enforced (i.e., as included in corresponding optimization objectives) 

also depend globally on d and this DVH constraint (e.g., c and p).

The active set Ω for the optimization objective corresponding to a given DVH constraint 

can be rigorously determined as a set of indices where the DVH constraint is least-violated 

[3,26,31]. Mathematically, Ω for DVH-max constraint can be determined by

Ω = i p ≤ i′ ≤ p*, dp*
′ = c , if dp

′ > c,

(7)

for DVH-min constraint by

Ω = i p∗ ≤ i′ ≤ p, dp*
′ = c , if dp

′ < c,

(8)

where d’ (indexed by i’) is the sort of d (indexed by i) in descending order.

The total planning objective f is
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f x = ∑
m = 1

M W m
2Nm

∑
i ∈ Ωm

Dix − cm 2
2,

(9)

where cm is the dose objective, Ωm the active set, Nm the number of voxels in Ωm, wm the 

objective weight for the mth DVH constraint, and M is the number of DVH constraints.

To simplify the notation, Eq. (9) is rewritten as

f x = 1
2 A Ω x − b Ω 2

2,

(10)

where the matrix A consists of D, ωm, Nm, and the vector b consists of cm, ωm, Nm. Both A 
and b depend on Ω via Eq. (7)–(9).

Note that although the total planning objective Eq. (10) is nonconvex and nonlinear with 

respect to x (i.e., A and b depend on Ω, which depends on x), it is a convex least-square 

summation in x once Ω is fixed. This motivates the use of iterative convex relaxation (ICR) 

method [22–24,26]. ICR for solving Eq. (2) consists of two following iterative steps.

In Step 1, we fix Ωk and solve the MMU problem with a convex optimization objective

xk + 1 = argmin
x

1
2 A Ωk x − b Ωk

2

2

s . t . x ∈ 0 ∪ g, + ∞
.

(11)

In Step 2, we update the active set Ωk+1 based on xk+1

Ωk + 1 = H Dxk + 1 ,

(12)

where H denotes the determination of Ω based on d=Dx formally via Eq. (7) and (8).

2.2. Orthogonal Matching Pursuit

However, although the optimization objective in Eq. (11) is convex, Eq. (11) is still a 

nonconvex problem, because the MMU constraint is nonconvex, which poses the major 

optimization challenge. The nonconvexity of the MMU constraint is also apparent from the 

alternative formulation of the problem as the mixed-integer programming Eq. (3).
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Here we propose to use a modified version of orthogonal matching pursuit (OMP) method 

[5] to handle the MMU constraint, i.e., an iterative process consisting of first the selection of 

nonzero spots and then convex optimization problem restricted to this nonzero set.

To start with, we will provide the OMP method (Algorithm 1) for solving Eq. (11) without 

the MMU constraint, i.e.,

min
x ∈ ℝ Nx

1
2 Ax ‐ b 2

2 .

(13)

OMP belongs to the category of greedy optimization methods: starting from a null set, OMP 

iteratively adds to the current support one element index at a time, which has the maximal 

residual among all indexes. For clarity, the OMP algorithm for solving Eq. (13) is provided 

as follows.

Algorithm   1:   OMP   for   solving   Eq .   13

Input:   A, b . S0 = ∅,   x0 =   0.
1.           For n = 1,   2, …Nx

2.                     jn + 1 = argmax
j

A* b ‐ Axn
j

3.                     Sn + 1 = Sn ∪ jn + 1

4.                     xn + 1 = min
suppt z ∈ Sn + 1

b ‐ Az 2
2

5.                     Set   n: = n + 1
6.           End
Output:   xNx .

It can be rigorously proven that the objective value monotonically decreases with respect 

to the number of iterations for OMP. In another word, the newly added spot guarantees the 

maximal reduction of optimization objective. This nice property of OMP motivates us to 

develop an OMP method for solving the MMU problem Eq. (11) by OMP.

However, the OMP method does not directly apply to the MMU problem Eq. (11), due to the 

MMU constraint, for which we propose the following modified OMP method (Algorithm 2).
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Algorithm   2:   Modified   OMP   for   solving   Eq . 11
Input:A Ω , b Ω , S1 0 = S2 0 = ∅ ,   x0 = y0 = 0,   NInner and g .
1.           For n = 0, 1,   2,   · · · ,   NInner − 1

2.                 jn + 1 = argmax
j

AT b − Ayn
j

3.                 S1
n + 1 = S1

n ∪ jn + 1

4.                 yn + 1 = argmin
Supp(z) ⊂ S1

n + 1
b − Az

2

2

5.                 S2
n + 1 = S2

n ∪ jn + 1

6.                 fn + 1, xn + 1 =
argmin

z
1
2 Az − b 2

2

s . t . z ≥ g, Supp z = S2
n + 1

7.                 If fn + 1 ≥ fn

8.                             S2
n + 1 = S2

n

9.                             xn + 1 = xn
10.         endif
11.       End
Output:   xNInner .

The key components of modified OMP (Algorithm 2) include the followings.

• Two support sets S1 and S2 are defined in modified OMP instead of just one 

in OMP: S1 is the support set from original OMP to iteratively add the index 

with the most contribution to the planning objective (without considering MMU 

constraint), and S2 is a subset of S1 that has decreasing total planning objective 

(when the MMU constraint is accounted for) and is also feasible in the sense that 

all spot weights satisfy the MMU constraint.

• Steps 3, and 4 correspond to the steps in the original OMP to update S1, 

for identifying the spot jn+1 that makes the most contribution to the planning 

objective residual based on the most recent spot weight yn, and then reoptimizing 

for yn+1 based on the new support S1
n+1 that includes jn+1.

• Steps 5 and 6 are modified OMP steps to update S2 and x subject to the MMU 

constraint. Note that in Step 6, the MMU constraint becomes a convex constraint 

when restricted to S2 that consists of nonzero spots, and thus the optimization 

of x is a convex constrained problem which can be effectively solved, e.g., by 

ADMM or PGD.

• Steps 7–11 are to ensure that the updated x has a decreasing total planning 

objective f; otherwise, x and thus f are not updated.

The overall solution algorithm for solving the MMU problem Eq. (2) via ICR and modified 

OMP is summarized in Algorithm 3, where Algorithm 2 is denoted by OMP(Ω,NInner) with 

NInner as the number of OMP iterations for the inner loop.
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Algorithm   3:   Solution   algorithm   to   Eq . 2
Input:x0 = 0,   NInner,   Nouter .
1.           For k = 0, 1, 2,   · · · ,   Nouter − 1

2.                         Ωk + 1 = H Dxk

3.                       xk + 1 = OMP Ωk + 1, NInner

4.           End
Output:xNOuter .

2.3. Materials

The new MMU method via OMP was validated in comparison with methods (ADMM 

and PGD) and a recently developed MMU method SCD, for solving the MMU problems 

with large MMU threshold g for three clinical cases: brain (fraction prescription dose of 

2Gy, 2Gy and 20Gy for IMPT, ARC and FLASH respectively), lung (fraction prescription 

dose of 2Gy, 2Gy and 12Gy for IMPT, ARC and FLASH respectively) and head-and-neck 

(HN) (fraction prescription dose of 2.12Gy, 2.12Gy and 15Gy for IMPT, ARC and FLASH 

respectively). For each case, we considered three scenarios of the MMU constraints for high 

dose rates: IMPT (3–4 beam angles), ARC (24 equally sampled beam angles), and FLASH 

(3–4 transmission beams) and the MMU threshold g is chosen as the largest value that 

reasonable plan quality (e.g., Dmax<120% for the tumor target) can be achieved by OMP. 

MatRad [17] was used to generate dose influence matrices D with 5mm spot lateral spacing 

on 3 mm3 dose grid. The planning details of IMPT, ARC, and FLASH can be found in 

[22,24], [36,48], and [32] respectively. All plans were normalized to have D95 = 100% 

to CTV. The FLASH coverage was quantified using FLASH modifying factor based on a 

sigmoid model of FLASH dose and dose rate [32]. The conformal index (CI) was defined as 

V2 100/(V×V’ 100) (V100 : CTV volume receiving at least 100% of prescription dose; V : 

CTV volume; V’ 100 : total volume receiving at least 100% of prescription dose). The plan 

robustness is quantitively evaluated in the robustness variance (RV): RVp defined at p% dose 

is the averaged variation between maximum and minimum percentage volume at (p-1)%, p% 
and (p+1)%.

3. Results

ADMM, PGD, SCD, and OMP are comparatively evaluated in terms of target coverage and 

OAR sparing for IMPT, ARC and FLASH respectively.

3.1. IMPT

In terms of the target coverage, Table 1–3 show that OMP was quantitatively better than 

PGD, ADMM and SCD: the CI improved from 0.42, 0.52 and 0.33 respectively to 0.65 

for brain (Table 1), from 0.50, 0.54 and 0.59 respectively to 0.79 for lung (Table 2), and 

from 0.33, 0.52 and 0.44 respectively to 0.81 for HN (Table 3); under the same target dose 

normalization, the max target dose decreased from 368.0%, 154.4% and 134.5% to 119.5% 

for brain, from 322.9%, 151.8% and 125.6% to 117.5% for lung, and from 574.5%, 174.4% 

and 130.6% to 119.1% for HN. The improvement of target coverage via OMP was also 
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illustrated by comparing dose plots in (a), (e), (i), (m) and DVH plots in (q) of Figure 

1–3, e.g., the DVH curve of the target (red solid line) was generally under that from PGD 

(magenta solid line), ADMM (blue solid line), and SCD (green solid line).

In terms of the OAR sparing, Table 1–3 demonstrate that OMP generally had a lower OAR 

dose than PGD, ADMM and SCD. For example, compared to PGD, ADMM and SCD, OMP 

decreased the max dose of the brainstem from 49.2%, 25.4% and 22.9% to 20.0% (Table 1), 

mean heart dose from 7.6%, 3.6% and 7.2% to 1.4% (Table 2), and mean cavity oral dose 

from 15.4%, 16.7% and 21.0% to 12.4% (Table 3).

3.2. ARC

In terms of the target coverage, Table 1–3 show that OMP was substantially better than 

PGD, ADMM and SCD: CI improved from 0.46, 0.60 and 0.61 respectively to 0.83 for 

brain (Table 1), from 0.64, 0.72 and 0.50 respectively to 0.87 for lung (Table 2), and from 

0.35, 0.51 and 0.62 respectively to 0.83 for HN (Table 3). PGD and ADMM failed to 

generate an acceptable plan, e.g., the max target dose of PGD was 358.3%, 419.6%, and 

311.2% respectively for brain, lung, and HN; the max target dose of ADMM for three cases 

was 179.8%, 163.3%, and 212.1% respectively; Although SCD had lower max dose, e.g., 

130.4% for brain, 129.3% for lung and 118.2% for HN, OMP still outperformed SCD, e.g., 

with max target dose 119.8%, 119.3%, and 116.8% for brain, lung and HN respectively. 

The improvement of target coverage and organ at risk sparing via OMP was also evident by 

comparing dose and DVH plots in (b), (f), (j), (n) and (r) of Figure 1–3.

In terms of the OAR sparing, Table 1–3 suggest that OMP also had a lower OAR dose 

than PGD, ADMM and SCD. For example, compared to PGD, ADMM and SCD, OMP 

decreased max dose of the brainstem from 41.8%, 26.6% and 22.6% to 20.8% (Table 1), 

mean esophagus dose from 7.3%, 4.3% and 7.9% to 3.8% (Table 2), and mean oral cavity 

dose from 21.5%, 5.2% and 15.3% to 3.9% (Table 3).

3.3. FLASH

In terms of the target coverage, Table 1–3 show that PGD did not provide acceptable plan, 

and OMP had comparable results with ADMM and SCD. However, OMP had smaller max 

target dose: a decrease from 283.4%, 150.0% and 123.0% to 119.6% for brain (Table 1), 

from 286.1%, 125.1% and 125.3% to 118.7% for lung (Table 2), and from 120.3%, 128.7% 

and 126.0% to 118.5% for HN (Table 3). The improved target dose and DVH plots via OMP 

were also evident in in (c), (d), (g), (h), (k), (l), (o), (p) and (s) of Figure 1–3.

In terms of the OAR sparing, Table 1–3 demonstrate that OMP generally had lower OAR 

dose than PGD, ADMM and SCD. For example, compared to PGD, ADMM and SCD, OMP 

generally decreased max dose of the brainstem from 35.7%, 15.2%, and 12.1% to 14.3% 

(Table 1) (here SCD had lower max dose than OMP), mean esophagus dose from 8.1%, 

4.9% and 5.1% to 2.4% (Table 2), and mean oral cavity dose from 15.2%, 7.3% and 11.1% 

to 2.0% (Table 3). On the other hand, OMP provided comparable dose rate and FLASH 

coverage for the OAR CTV10mm (10mm isotropic expansion of CTV excluding CTV) as 

summarized in Table 4.
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3.4. Robust Analysis

The robust analysis for the brain case is presented in Table 5 and Fig. 4, using 3mm setup 

uncertainty and 3.5% range uncertainty. As shown in Fig. 4, since PGD and ADMM had 

severely deteriorated target dose conformality due to large MMU threshold g, the robustness 

comparison is primarily between SCD and OMP, which still relatively preserved target 

dose conformality. Fig. 4 suggests that OMP had tighter DVH’s from various uncertainty 

scenarios to each other than SCD. This was also quantitatively true as summarized in Table 

5: compared to OMP, SCD had smaller RV115 for CTV and smaller RV30 for brainstem, e.g., 

the reduction of RV115 from 12.94% to 2.63% for IMPT, from 6.09% to 3.39% for ARC, 

and from 19.23% to 2.67% for FLASH.

4. Discussion

It is interesting to note the plan difference between PGD, ADMM, SCD and OMP for 

solving the proton FLASH problem as presented in Fig. 1–3 (c), (d), (g), (h), (k), (l), (o) and 

(p): for OMP, the proton spots are added for optimization one by one in a greed fashion that 

minimizes the total objective residual (Step 3 of Algorithm 2), while in PGD, ADMM, all 

proton spots are included in optimization from the beginning. As a result, the beam angles 

for each axial dose slice were utilized differently in OMP: for the brain case (Fig. 1), the 

FLASH dose was mostly from one beam (90º) for S1 (Fig. 1(o)) and three beams (0º, 45º, 

90º) for S2 (Fig. 1(p)); for the lung case (Fig. 2), the FLASH dose was mostly from two 

beam (0º, 60º) for S1 (Fig. 2(o)) and all three beams (0º, 60º, 120º) for S2 (Fig. 2(p)); for 

the HN case (Fig. 3), the FLASH dose was mostly from one beam (90º) for S1 (Fig. 3(o)) 

and two beams (45º, 90º) for S2 (Fig. 3(p)). In comparison, all the beam angles were always 

utilized for all dose slices in PGD, ADMM and SCD: for the brain case (Fig. 1), the FLASH 

dose was from all four beams (0º, 45º, 90º, 135º) (Fig. 1(c), (d) (g), (h), (k) and (l)); for the 

lung case (Fig. 2), the FLASH dose was from all three beams (0º, 60º, 120º) (Fig. 2 (c), (d), 

(g), (h), (k) and (l)) for the HN case (Fig. 3), the FLASH dose was from all four beams (0º, 

45º, 90º, 135º) (Fig. 3 (c), (d), (g), (h), (k) and (l)). This observation of does distribution 

difference between OMP and PGD, ADMM, SCD further suggests OMP is more efficient 

to solve the MMU problem with large g, in the sense that it selects the most relevant spots 

for optimization to meet the planning objective. On the other hand, OMP used fewer spots 

than ADMM with generally more weights per spot, which helped to meet the large MMU 

threshold.

In current clinical practice, stereotactic body radiation therapy (SBRT) is not commonly 

used for IMPT. This is partially due to the combination of the long treatment time and the 

lack of effective motion management to monitor patient movement during the treatment. 

With this respect to this, the proposed MMU method may enable the SBRT plan of 

preserved plan quality (which cannot be generated by IMPT optimizer such as ADMM) and 

at the same time high-dose-rate IMPT delivery per beam to within a single breathing-hold 

time, which we plan to investigate in a future work, by exploring the combination of this 

new MMU optimization method together with other techniques for high-dose-rate IMPT, 

such as the use of range modulator [18], energy layer reduction method [22], and variable 

MMU threshold method [24].
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It is noted that conventional optimization methods such as sequential quadratic programing 

(SQP) [44] and interior point (IP) method [45] have been widely used to handle the 

convex constraints in RT, such as lower bounds. However, it is not straightforward for these 

conventional methods to handle the nonconvex MMU constraint (i.e., allowing spots to be 

turned on or off). The main challenge of the MMU problem is to localize non-zeros spots. 

After the non-zero spots are localized, the optimization problem degenerates to a convex 

low-bounded problem that can be handled easily by many optimization methods, including 

conventional methods. For example, SQP or IP can replace ADMM or PGD for solving Step 

6 in OMP, which however is likely to make little or no difference.

In contrast, ADMM or PGD can be directly used to solve the nonconvex MMU problem, 

noting that the projection onto the nonconvex MMU bounded set admits an analytical 

solution, although the performance of ADMM or PGD is not satisfactory for large MMU 

threshold [31]. That is, the MMU problem can be reformulated as an unconstrained 

problem by lifting the MMU constraint into the objective using the indicator function. 

Then the splitable structure of the objective of this reformulation, and the non-smoothness 

of the objective (the indicator function) motivates the use of first-order proximal splitting 

algorithms such as ADMM or PGD.

Note that there are some convergence analysis results of using first-order proximal splitting 

algorithms for non-convex problems (e.g., [37] for ADMM, [38–40] for PGD and [46]). 

For example, the theoretical convergence relies on the Kurdyka-Łojasiewicz (KL) property 

[47]. It can be shown that the MMU constraint set is a semi-algebraic set and the indicator 

function of the semi-algebraic set is called the semi-algebraic function which satisfies the 

KL property. Regarding the optimization objective, which is the summation of least square 

function (a semi-algebraic function) and an indicator function of a semi-algebraic set when 

the active set Ω is fixed, it is also semi-algebraic [38], and therefore the optimization 

problem Eq. (2) also satisfies the KL property. However, since the active set Ω also varies 

iteratively, there is no theoretical guarantee of solution convergence for Eq. (2). Plus, even 

if the solution converges, it converges to a local minimum, which explains why different 

solution algorithms can have different solutions.

This OMP based MMU method should be also needed for spot-scanning ARC therapy 

[13], as the delivery time optimization is important to ARC. For example, frequent low-to-

high energy layer switching (so called switch-up (SU)) can significantly degrade delivery 

efficiency, because the SU takes much longer than the usual high-to-low energy layer 

switching [27,34,36]. It will be highly interesting to develop a full optimization method for 

efficient and accurate ARC therapy based on OMP to handle the MMU constraint that also 

explicitly minimizes the delivery time while optimizing the plan quality, by incorporating 

accurate machine delivery model [35] and the SU regularization method [27,34].

5. Conclusion

We have developed an OMP based optimization algorithm for solving MMU problems with 

large MMU threshold. The applications to IMPT, ARC, and FLASH have demonstrated 
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the effectiveness of the OMP method, with substantially improved plan quality from the 

methods (PGD and ADMM) and a recently proposed method SCD.
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Figure 1. Brain.
(a)-(d): PGD dose plots from IMPT, ARC, FLASH (slice 1), FLASH (slice 2) respectively; 

(e)-(h): ADMM dose plots from IMPT, ARC, FLASH (slice 1), FLASH (slice 2) 

respectively; (i)-(l): SCD dose plots from IMPT, ARC, FLASH (slice 1), FLASH (slice 

2) respectively; (m)-(p): OMP dose plots from IMPT, ARC, FLASH (slice 1), FLASH (slice 

2) respectively; (q)-(s): DVH plots for IMPT, ARC, FLASH respectively, where solid lines 

are for CTV and dotted lines are for Brainstem. The dose plot window is [0%, 120%]. 110%, 

100% 70% isodose lines and CTV are highlighted in dose plots.
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Figure 2. Lung.
(a)-(d): PGD dose plots from IMPT, ARC, FLASH (slice 1), FLASH (slice 2) respectively; 

(e)-(h): ADMM dose plots from IMPT, ARC, FLASH (slice 1), FLASH (slice 2) 

respectively; (i)-(l): SCD dose plots from IMPT, ARC, FLASH (slice 1), FLASH (slice 

2) respectively; (m)-(p): SCD dose plots from IMPT, ARC, FLASH (slice 1), FLASH (slice 

2) respectively; (q)-(s): DVH plots for IMPT, ARC, FLASH respectively, where solid lines 

are for CTV and dotted lines are for Lung. The dose plot window is [0%, 120%]. 110%, 

100% 70% isodose lines and CTV are highlighted in dose plots.

Zhu et al. Page 16

Med Phys. Author manuscript; available in PMC 2024 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. HN.
(a)-(d): PGD dose plots from IMPT, ARC, FLASH (slice 1), FLASH (slice 2) respectively; 

(e)-(h): ADMM dose plots from IMPT, ARC, FLASH (slice 1), FLASH (slice 2) 

respectively; (i)-(l): SCD dose plots from IMPT, ARC, FLASH (slice 1), FLASH (slice 

2) respectively; (m)-(p): OMP dose plots from IMPT, ARC, FLASH (slice 1), FLASH (slice 

2) respectively; (q)-(s): DVH plots for IMPT, ARC, FLASH respectively, where solid lines 

are for CTV and dotted lines are for Mandible. The dose plot window is [0%, 120%]. 110%, 

100% 70% isodose lines and CTV are highlighted in dose plots.
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Figure 4. Robustness analysis for the brain case.
(a)-(d): IMPT DVH plots for PGD, ADMM, SCD, OMP respectively; (e)-(h): ARC DVH 

plots for PGD, ADMM, SCD, OMP respectively; (i)-(l): FLASH DVH plots for PGD, 

ADMM, SCD, OMP respectively.
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Table 1.
Brain.

The dosimetric quantities from left to right: MMU threshold (unit: 106 protons), optimization objective value, 

max dose of CTV, conformal index, max dose of brainstem (BS), and mean dose of body. All quantities are in 

percentage except for g, with dose values in percentage to the prescription dose.

Unit：% g f Dmax CI BS Body

IMPT

PGD

80

223.8 368.0 42 49.2 17.3

ADMM 4.8 154.4 52 25.4 5.2

SCD 2.1 134.5 33 22.9 17.3

OMP 0.9 119.5 65 20.0 5.1

ARC

PGD

60

360.4 358.3 46 41.8 5.0

ADMM 21.1 179.8 60 26.6 4.6

SCD 1.5 130.4 61 22.6 6.9

OMP 1.5 119.8 83 20.8 3.2

FLASH

PGD

1300

875.7 283.4 43 35.7 1.8

ADMM 18.3 150.0 95 15.2 1.1

SCD 1.2 123.0 95 12.1 1.2

OMP 1.1 119.6 95 14.3 0.9
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Table 2.
Lung.

The dosimetric quantities from left to right: MMU threshold (unit: 106 protons), optimization objective value, 

max dose of CTV, conformal index, mean dose of lung, heart, esophagus (ESO), and body. All quantities are 

in percentage except for g, with dose values in percentage to the prescription dose.

Unit：% g f Dmax CI Lung Heart ESO Body

IMPT

PGD

45

133.5 322.9 50 1.4 7.6 6.4 3.3

ADMM 5.2 151.8 54 1.8 3.6 6.1 2.9

SCD 0.8 125.6 59 2.0 7.2 6.3 3.2

OMP 0.3 117.5 79 1.3 1.4 4.6 2.2

ARC

PGD

50

356.8 419.3 64 2.1 5.1 7.3 3.9

ADMM 6.1 163.3 72 1.3 0.8 4.3 2.0

SCD 0.9 129.3 50 2.3 12.6 7.4 3.8

OMP 0.5 119.3 87 1.1 0.4 3.8 1.7

FLASH

PGD

550

310.8 286.1 46 6.0 1.8 8.1 3.8

ADMM 0.30 125.1 95 3.7 1.3 4.9 2.3

SCD 0.21 125.3 95 3.3 1.5 5.1 2.4

OMP 0.04 118.7 93 2.7 0.9 2.4 1.8
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Table 3.
HN.

The dosimetric quantities from left to right: MMU threshold (unit: 106 protons), optimization objective value, 

max dose of CTV, conformity index, mean dose of mandible (MA), oral cavity (OC), and body All quantities 

are in percentage except for g, with dose values in percentage to the prescription dose.

Unit：% g f Dmax CI MA OC Body

IMPT

PGD

60

617.6 574.5 33 19.9 15.4 4.2

ADMM 8.1 174.4 52 14.2 16.7 2.4

SCD 1.0 130.6 44 19.8 21.0 3.3

OMP 0.4 119.1 81 11.4 12.4 1.9

ARC

PGD

45

190.6 311.2 35 20.5 21.5 4.4

ADMM 32.7 212.1 51 8.2 5.2 2.2

SCD 0.8 118.2 62 20.5 15.3 2.9

OMP 0.6 116.8 83 6.1 3.9 1.7

FLASH

PGD

550

0.6 120.3 95 19.4 15.2 3.3

ADMM 1.1 128.7 95 11.2 7.3 2.4

SCD 0.4 126.0 95 14.5 11.1 2.6

OMP 0.05 118.5 91 6.4 2.0 2.0
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Table 4.
Dose-rate and FLASH coverage.

Dose-rate coverage Pγ: the percentage of an OAR (CTV10mm: 10mm isotropic expansion of CTV excluding 

CTV) volume receiving γ≥40 Gy/s; Pd the percentage of the OAR volume receiving d ≥ 8 Gy; FLASH 

coverage Pγ,d : the percentage of the OAR volume receiving ≥ 40 Gy/s and d ≥ 8 Gy.

Case Method P γ P d P γ,d 

Brain

PGD 81.5 68.9 68.9

ADMM 89.1 64.7 64.7

SCD 96.2 70.1 70.1

OMP 94.8 63.5 63.5

Lung

PGD 82.0 76.6 76.6

ADMM 88.8 48.5 48.5

SCD 95.3 53.3 53.3

OMP 88.7 60.9 60.9

HN

PGD 99.7 95.5 95.5

ADMM 90.3 71.7 71.7

SCD 96.7 71.6 71.6

OMP 91.9 72.1 72.1
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Table 5.
Robust analysis for the brain case.

The dosimetric quantities include RV115 for the CTV and RV30 for the brainstem.

PGD ADMM SCD OMP

IMPT
RV115 1.02% 10.99% 12.94% 2.63%

RV30 1.82% 8.38% 8.68% 7.61%

ARC
RV115 0.83% 2.97% 6.09% 3.39%

RV30 1.66% 9.07% 3.32% 3.08%

FLASH
RV115 2.45% 21.93% 19.23% 2.67%

RV30 6.56% 3.12% 5.55% 5.51%
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