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Abstract

Rapid developments in machine vision technology have impacted a variety of applications, such 

as medical devices and autonomous driving systems. These achievements, however, typically 

necessitate digital neural networks with the downside of heavy computational requirements and 

consequent high energy consumption. As a result, real-time decision-making is hindered when 

computational resources are not readily accessible. Here we report a meta-imager designed to 

work together with a digital back end to offload computationally expensive convolution operations 

into high-speed, low-power optics. In this architecture, metasurfaces enable both angle and 

polarization multiplexing to create multiple information channels that perform positively and 

negatively valued convolution operations in a single shot. We use our meta-imager for object 

classification, achieving 98.6% accuracy in handwritten digits and 88.8% accuracy in fashion 

images. Owing to its compactness, high speed and low power consumption, our approach could 

find a wide range of applications in artificial intelligence and machine vision applications.

The rapid development of digital neural networks and the availability of large training 

datasets have enabled a wide range of machine-learning-based applications, including image 

analysis1,2, speech recognition3,4 and machine vision5. However, enhanced performance 

is typically associated with a rise in model complexity, leading to larger computing 
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requirements6. The escalating use and complexity of neural networks have resulted in 

increases in energy consumption and limiting real-time decision-making when large 

computational resources are not readily accessible. These issues are especially critical 

to the performance of machine vision7–9 in autonomous systems where the imager and 

processor must have a small size, weight and power consumption for onboard processing 

and still maintain low latency, high accuracy and highly robust operation. These opposing 

requirements necessitate the development of new hardware and software solutions as the 

demands on machine vision systems continue to grow.

Optics has long been studied as a way to speed up computational operations as well 

as increase energy efficiency10–16. In accelerating vision systems, there is the unique 

opportunity to offload computation into the front-end imaging optics by designing an imager 

that is optimized for a particular computational task. A free-space optical computational, 

based on Fourier optics17–20, actually predates modern digital circuitry and allows for the 

highly parallel execution of convolution operations, which comprise a majority of floating-

point operations in machine vision architectures21,22. The challenge with Fourier-based 

processors is that they are traditionally employed by reprojecting the imagery using spatial 

light modulators and coherent sources, enlarging the system size compared with chip-based 

approaches23–28. Although coherent illumination is not strictly required, it allows for more 

freedom in convolution operations including the ability to achieve the negatively valued 

kernels needed for spatial derivatives. Optical diffractive neural networks29–31 offer an 

alternative approach even though they are also employed with coherent sources and thus are 

best suited as back-end processors with image data being reprojected.

Metasurfaces offer a unique platform for implementing front-end optical computation 

as they can reduce the size of the optical elements and allow for a wider range of 

optical properties including polarization32,33, wavelength34,35 and angle of incidence36,37 

to be utilized in computation. For instance, metasurfaces have been demonstrated with 

angle-of-incidence-dependent transfer functions for realizing compact optical differentiation 

systems38–41 with no need to pass through the Fourier plane of a two-lens system. In 

addition, wavelength-multiplexed metasurfaces, combined with optoelectronic subtraction, 

have been used to achieve negatively valued kernels for executing single-shot differentiation 

with incoherent light42,43. Differentiation, however, is a single convolution operation 

whereas most machine vision systems require multiple independent channels. There have 

been recent studies on multichannel convolutional front ends, but these have been limited 

in transmission efficiency and computational complexity, achieving only positively valued 

kernels with a stride that is equal to the kernel size, preventing the implementation of 

common digital designs44,45. Although these are important steps towards a computational 

front end, an architecture is still needed for generating the multiple independent, and 

arbitrary, convolution channels that are used in machine vision systems.

Here we demonstrate a meta-imager that can serve as a multichannel convolutional 

accelerator for incoherent light. To achieve this, the point spread function (PSF) 

of the imaging meta-optic is engineered to achieve parallel multichannel convolution 

using a single aperture implemented with angular multiplexing (Fig. 1). In addition, 

positively and negatively valued kernels are achieved for incoherent illumination by 
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using polarization multiplexing46, combined with a polarization-sensitive camera and 

optoelectronic subtraction. A second metasurface corrector is also employed to widen 

the field of view (FOV) for imaging objects in the natural world and both metasurfaces 

are restricted to phase functions, yielding high transmission efficiency. As a proof of 

concept, the platform is used to experimentally demonstrate the classification of modified 

National Institute of Standards and Technology (MNIST) and Fashion MNIST datasets47 

with measured accuracies of 98.6% and 88.8%, respectively. In both cases, 94% of the 

operations are offloaded from the digital platform into the front-end optics.

Angular and polarization multiplexing

The meta-optic described here is designed to optically implement the convolutional layers at 

the front end of a digital neural network. In a digital network, convolution comprises matrix 

multiplication of the object image and an N × N pixel kernel, with each pixel having an 

independent weight, as illustrated for N = 3 (Fig. 2a). The kernel is multiplied over an area 

of the image using a dot product and then rastered across the image, moving by a single 

pixel at each step until it is swept across the entire image, forming a single feature map. 

Under incoherent illumination, the optical convolutional is expressed as Image = Object 

⊗ |PSF(x, y)|, where PSF(x, y) is the PSF of the optics. Typically, in implementing the 

optical version of digital convolution, PSF(x, y) is a continuous function that is discretized 

in forming the digital kernel. Here we take a different approach, creating a true optical 

analogue to the digital kernel. This is done by engineering the PSF(x, y) value (Fig. 2a) to 

possess N × N focal spots, each with a different weight, or image intensity, that matches 

the desired digital kernel weight. These focal spots will result in N × N images of the 

object being formed, which are spatially overlapped on the sensor and offset based on the 

separation in the focal-spot positions. In this case, we are rastering the weighted images with 

the summing operation in the dot product being achieved by overlapping the images on the 

camera.

In this architecture, positively and negatively valued kernel weights are achieved by 

encoding the focal spots with either right-hand circular polarization (RCP) or left-hand 

circular polarization (LCP), respectively. The circularly polarized signal is decoded by 

using a quarter-wave plate combined with a polarization-sensitive camera containing four 

directional gratings integrated onto each pixel. The RCP- and LCP-encoded feature maps 

(Fig. 2a) are then independently recorded using the polarization-sensitive camera, with 

summing being achieved by digitally subtracting the LCP feature map from the RCP feature 

map. The convolution generated by this method is identical to the digital process, which 

is evidenced by comparing the digital and optical feature maps (Fig. 2a). We have used 

this approach for several reasons. First, as explained later, the phase and amplitude profiles 

associated with our desired PSF(x, y) is analytical, substantially simplifying the design 

process and allowing us to achieve numerous independent feature maps, or channels, using 

one aperture. In addition, since we have a true optical analogue to a digital system, we 

can directly implement digital kernel designs with optics, removing the optic stage from 

the design loop, further speeding up the design process. To achieve the desired optical 

response, we employ a bilayer-metasurface architecture (Fig. 2b). In this architecture, the 

first metasurface splits the incident signal into angular channels of varying weights, whereas 

Zheng et al. Page 3

Nat Nanotechnol. Author manuscript; available in PMC 2024 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



birefringence in this layer is used to encode the positive and negative kernel values in the 

RCP and LCP cases, respectively. The second metasurface is polarization insensitive and 

serves as the focusing optic to create an N × N focal-spot array for each channel.

Meta-optic design

Meta-optic design began by optimizing a two-metasurface lens, comprising a wavefront 

corrector and a focuser, to be coma free over a ±10° angular range using the commercial 

software Zemax (Methods). Supplementary Note 1 provides the phase profiles and 

angular response of the metasurfaces, which shows a constant focal-spot shape within the 

designed angular range. A wider FOV can be achieved by further cascading metasurfaces 

(Supplementary Note 2). Once the coma-free meta-optic was designed, angular multiplexing 

was applied to the first metasurface to form focal-spot arrays as the convolution kernels. The 

focal-spot position is controlled using angular multiplexing, with each angle corresponding 

to a kernel pixel. By encoding a weight to each angular component, the system PSF, 

serving as the optical kernel, can be readily engineered. The analytical expression of the 

complex-amplitude profile multiplexing all the angular signals is given by

A(x, y) = ∑
m

M
∑
n

N
wmnexp i2π

λ xsin θx ∣ mn + ysin θy ∣ mn

(1)

where A(x, y) is a complex-amplitude field. Also, M and N denote the row and column 

number of the elements in the kernel, respectively; wmn is the corresponding weight of each 

element, which is normalized to a range of [0, 1]; λ is the working wavelength; x and y are 

spatial coordinates; and θx|mn and θy|mn are the designed angles with a small variation to 

form the kernel elements. The deflection angles are selected to realize the desired PSF for 

incoherent light illumination, which is given by

PSF (x, y) = ∑
m

M
∑
n

N
wmnΘ x − f1c

x0
f2

+ tan θx ∣ mn

y − f1c
y0
f2

+ tan θy ∣ mn

(2)

where x0 and y0 are the location of the object and Θ(x, y) is the focal spot excited by 

a plane wave. Also, f1 is the focal length of the meta-imager, whereas c is a constant 

fitted based on the imaging system; f2 is the distance from the object to the front aperture. 

Supplementary Note 3 provides the detailed derivation. The separation distance of each focal 

spot, Δp, defines the imaged pixel size of the object. Based on the prescribed PSF, the 

required angles θmn can be derived from equation (2), which can be further extended into an 

off-axis imaging case (Supplementary Note 4) for the purpose of multichannel, single-shot 

convolutional applications.
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In equation (1), we employ a spatially varying complex-valued amplitude function 

(Supplementary Note 5 shows the workflow of the design process) that would ultimately 

introduce a large reflection loss, leading to a low diffraction efficiency48. To overcome 

this limitation, an optimization platform was developed based on the angular spectrum 

propagation method and stochastic gradient descent solver, which converts the complex-

amplitude profile into a phase-only metasurface. The algorithm encodes a phase term, 

exp(iϕmn), onto each weight wmn based on the loss function, namely, ℐ = ∑ |A |2 − I 2/N. 

Here I is a matrix consisting of unity elements and N is the total pixel number. The intensity 

profile becomes more consistent and closer to a phase-only device by minimizing the loss 

function during optimization (Supplementary Note 6 shows the detailed algorithm). The 

phase-only approximation can effectively avoid loss in the complex-amplitude function, 

leading to a theoretical diffraction efficiency as high as 84.3% where 14.0% of the loss is 

introduced by Fresnel reflection, which can be removed by adding antireflection coatings.

Hybrid neural network for object classification

To validate the performance of this architecture, a shallow convolutional neural network was 

trained for the purpose of image classification. The neural network architecture (Fig. 3a) 

contains an optical convolution layer followed by digital max pooling, a rectified linear unit 

activation function and a fully connected layer. In the convolution process, 12 independent 

kernels are used to extract the feature maps and the overall intensity of positive and negative 

channels was set to be equal due to energy conservation from the phase-only approximation 

in the meta-optic design. Since neural network training is a high-dimensional problem with 

infinite solutions, the above kernel restrictions do not notably affect the final performance 

(Supplementary Note 7). Each kernel comprised N = 7 pixels instead of a more typical N 
= 3 format, to correlate neurons within a broader FOV49, leading to better performance for 

large-scale object recognition. Methods describes the detailed training process. To finish 

the classification, the feature maps extracted by the compound meta-optic are fed into the 

digital component of the neural network. In this architecture, 94% of the total operations are 

offloaded from the digital platform into the meta-optic, leading to a substantial speed up for 

classification tasks (Supplementary Note 8).

Meta-optic implementation

To realize the first polarization-selective metasurface, elliptical nanopillars were chosen as 

the base meta-atoms (Fig. 3b). The width and length of the nanopillars were designed 

so that the nanopillars serve as half-wave plates. This choice introduces a spin-decoupled 

phase response by simultaneously introducing geometrical and a locally resonant phase 

delay; hence, independent phase control over orthogonal circularly polarized states can be 

achieved. The analytical expression of the phase delay for the different polarization states is 

described as

ϕLCP

ϕRCP
=

ϕx + 2θ + π/4
ϕx − 2θ − π/4

(3)
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Here ϕx is the phase delay of the meta-atoms along the x axis at θ = 0. Hence, by 

tuning the length, width and rotation angle, the phase delay of LCP and RCP light can be 

independently controlled (Supplementary Note 9 shows the detailed derivation). The second 

metasurface was designed based on circular nanopillars arranged in a hexagonal lattice for 

realizing polarization-insensitive phase control. Supplementary Note 10 shows the phase 

delay of the circular nanopillars as a function of diameter.

Fabrication and characterization of meta-optic

Two versions of the meta-optic classifier were fabricated based on networks trained for the 

MNIST and Fashion MNIST datasets (Supplementary Note 11 shows one set of the phase 

profiles). The fabrication of the meta-optic began with a silicon device layer on a fused silica 

substrate patterned by standard electron-beam lithography followed by reactive ion etching. 

A thin polymethyl methacrylate layer was spin coated over the device as the protective 

and index-matching layer. Methods describes the detailed fabrication process. An optical 

image of the two metasurfaces comprising the meta-optic is exhibited in Fig. 4a,b, with the 

inset showing the meta-atoms. To align the compound meta-optic, the first metasurface was 

mounted in a rotational stage (CRM1PT, Thorlabs), whereas the second layer was fitted in 

a three-axis translational stage (CXYZ05A, Thorlabs). The metasurfaces are aligned in situ 

and characterized in a cage system (Supplementary Note 12 shows the detailed alignment 

setup). A meta-hologram was fabricated on the first layer alongside the device to assist the 

alignment process by forming an alignment pattern at a prescribed distance along the optical 

axis corresponding to the designed separation distance. The alignment process was finished 

by overlapping the alignment pattern with the low-transmission register on the second layer. 

Due to the large size (millimetre scale) of each metasurface layer, the meta-optic exhibits 

a high alignment tolerance. The system performance remains constant under a horizontal 

misalignment of 65 μm and vertical displacement of ±400 μm, indicating the robustness of 

the entire convolutional system. Supplementary Note 13 shows the alignment error analysis.

To characterize the optical properties of the fabricated meta-optic, a linearly polarized laser 

was used for illumination in obtaining the PSF (Supplementary Note 14 shows the detailed 

characterization setup). The linearly polarized light source includes the LCP and RCP 

components with equal strength. The PSF at the focal plane of the compound meta-optic 

(Fig. 4c,d) indicates a good match between the ideal and measured results, where the red and 

blue colours represent positive and negative values, respectively.

Optical convolution of a grey-scale Vanderbilt logo was used to characterize the accuracy 

of the fabricated meta-optic (Fig. 4e). To accomplish this, an imaging system using a liquid-

crystal-based spatial light modulator was built (Supplementary Note 15). An incoherent 

tungsten lamp with a 10-nm-wide bandpass filter was used for spatial light modulator 

illumination. The feature maps extracted by the meta-optic were recorded by a polarization-

sensitive camera (DZK 33UX250, Imaging Source) where orthogonally polarized channels 

are simultaneously recorded using polarization filters on each camera pixel. A comparison 

between the digital and measured feature maps, recorded on the camera, is illustrated in 

Fig. 4e. The pixel intensity from the digital and measured convolutional results at the same 

position were extracted and compared to evaluate the convolution fidelity. The deviation 
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between the ideal and measured results, defined by σ = ∑n = 1
N Di, n − Dm, n /(2N), was calculated 

as 3.83%, where Di and Dm are the ideal and measured intensity, respectively, and N is 

the number of total pixels. The error originates from stray light, fabrication imperfections, 

local phase approximation and metasurface misalignment (Supplementary Note 16 shows 

the detailed system error analysis). These errors also result in a small amount of zeroth-order 

diffracted light being introduced from the first metasurface, leading to a spot at the centre 

of the imaging plane. However, the polarization state of the zeroth-order light remains 

unchanged, with the energy evenly distributed in the two circularly polarized channels. 

Hence, subtraction between the information channels allows the zeroth-order pattern to be 

cancelled, not affecting the classification performance. Supplementary Note 17 provides a 

detailed discussion.

Object classification for machine vision

As a proof of concept in demonstrating multichannel convolution, a full meta-optic classifier 

was first designed and fabricated based on the classification of the MNIST dataset, which 

includes 60,000 handwritten digit training images with a 28 × 28 pixel format. The 

feature maps of 1,000 digits, not in the training set, were extracted using the meta-optic 

to characterize the system performance. An example input image is exhibited in Fig. 5a, 

with the corresponding feature maps shown in Fig. 5b. Supplementary Note 18 shows the 

kernels and feature maps for all the channels. The measured feature maps match well 

with the theoretical prediction (Fig. 5b), indicating good fidelity in the optical convolution 

process. The theoretical and experimental confusion matrices for this testing dataset are 

shown in Fig. 5c, demonstrating 99.3% accurate classification in theory and 98.6% accurate 

classification in the measurement. The small drop in accuracy probably results from the 

small inaccuracy in the realized optical kernels. Although the system was designed at a 

single wavelength, simulations indicate a minimal accuracy drop up to an illumination 

bandwidth of 50 nm, indicating that the experimental bandwidth of 10 nm should have a 

minimal impact (Supplementary Note 19).

To explore the flexibility of the approach, a dataset with higher spatial frequency 

information, namely, the Fashion MNIST dataset, was used for training the model with 

an example input image provided in Fig. 5d. This dataset includes 60,000 training images 

of clothing articles that contain images with higher spatial frequencies than the MNIST 

handwritten digit dataset. The ideal and measured feature maps are compared in Fig. 

5e, indicating good agreement. Supplementary Note 20 shows all of the designed kernel 

profiles and feature maps. The confusion matrices for Fashion MNIST are illustrated in 

Fig. 5f, with 90.2% accurate classification in theory and 88.8% in measurement. To validate 

the role of the optical convolution layer, a reference model for the MNIST handwritten 

digit classification, without a convolutional layer, was trained, resulting in an accuracy 

of 80.3%, illustrating the importance of the convolution operations (Supplementary Note 

21). Compared with the MNIST dataset, the Fashion MNIST model has a slightly lower 

accuracy, in theory, due to the higher resolution features in the dataset. Specifically, for class 

7 in the Fashion MNIST dataset, the accuracy predicted by the optical front end dropped 

from 81.4% to 67.0%, with the model misidentifying the images as classes 1, 3, 4 and 5. 

We expect these classes to share the same features during model training (Supplementary 
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Note 22). These mixed features can be potentially distinguished by adaptively tuning the 

loss function during model training50 or utilizing novel neural network architecture such as a 

vision transformer51 with better performance at comparable floating-point operations.

To understand the scalability of the meta-imager, the accuracy of classification as a function 

of the areal density of the basic computing unit was calculated (Fig. 5g). The optical 

computing unit density is defined as the convolutional pixels per unit area, where we assume 

each convolutional pixel is matched to a physical pixel on a photodetector. The pixel size is 

dictated by the separation distance between the neighbouring focal spots in the PSF, which is 

ultimately dictated by the diffraction limit. The prediction accuracy is based on the MNIST 

dataset and the theoretical accuracy remains as high as ~99% until the pixel size drops below 

2 μm, at which point the neighbouring focal spots are below the diffraction limit, resulting 

in additional aberration in the output features (Fig. 5g, inset). Thus, although a pixel size of 

12 μm is demonstrated in this work as a proof of concept, the system functionality would 

remain unchanged, in theory, with up to six times higher areal computing unit density. For 

perspective, the meta-imager computing unit density can be compared with the multiply–

accumulation unit density and size based on the current 7-nm-node architecture52, which 

results in multiply–accumulation units with a size of ~7 μm × 7 μm.

Conclusions

Our meta-imager is a proof of concept for a convolutional front end that can be used to 

replace the traditional imaging optics in machine vision applications, encoding information 

in a more efficient basis for back-end processing. In this context, negatively valued kernels 

and multichannel convolution, enabled by the meta-optic, allows one to increase the number 

of operations that can be offloaded into the front-end optics. Furthermore, the architecture 

allows for incoherent illumination and a reasonably wide FOV, both of which are needed 

for implementation in imaging natural scenes with ambient illumination. Although a 

tradeoff exists between the channel number and the viewing-angle range, a multiaperture 

architecture could be designed without deteriorating the FOV in a single imaging channel53. 

In addition, we have not attempted to optimize the operation bandwidth, which could 

be addressed through dispersion engineering, over modest apertures, combination with 

broadband refractive optics or use of dispersion to perform wavelength-dependent functions. 

Further acceleration can be realized via the integration of a meta-imager front end directly 

with a chip-based photonics back end such that data readout and transport can be achieved 

without analogue-to-digital converters for ultrafast and low-latency processing.

Our meta-imager does put restrictions on the depth, or number of layers, in the optical front 

end, which means that it provides the most benefit in lightweight neural networks such as 

those found in power-limited or high-speed autonomous applications. Recent advances in 

machine learning, such as the use of larger kernels for network layer compression54 and 

reparameterization55, could further improve the effectiveness of single-layer, or few-layer, 

meta-imager front ends. In addition, the capability of the meta-optic for multifunctional 

processing, including wavelength- and polarization-based discrimination, can be used 

to further increase information collection44. As a result, this general architecture for 

meta-imagers can be highly parallel and bridge the gap between the natural world and 
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digital systems, potentially finding use beyond machine vision56 in applications such as 

information security57,58 and quantum communications59.

Methods

Optimization of coma-free meta-optic

The coma-free meta-optic contains two metasurfaces, whose phase profiles were optimized 

by the ray-tracing technique using a commercial optical design software (Zemax 

OpticStudio). The phase profile of each layer was defined by even-order polynomials 

according to the radial coordinate ρ as follows:

ϕ(ρ) = ∑
n = 1

5
an

ρ
R

2n

(4)

where R is the radius of the metasurface and an is the optimized coefficient to minimize the 

focal-spot size of the bilayer metasurfaces system under an incidence angle of up to 13°. 

The diameter of the second layer of the metasurface was 1.5 times that of the first layer to 

capture all the light under high-incidence-angle illumination. The phase profiles were then 

wrapped within 0 to 2π to be fitted by meta-atoms.

Digital neural network training

The MNIST and Fashion MNIST databases, each containing 60,000 training images with 

the 28 × 28 pixel format, were used to train the digital convolutional neural network. 

The channel number for convolution was set to 12, whereas the kernel size was fixed 

at 7 × 7, with the size of the convolutional result remaining the same. The details of 

the neural network architecture are shown in Fig. 3a. During forward propagation in the 

neural network, an additional loss function defined by ℒ = ∑n = 1
N wn was added to ensure 

an equal total intensity of positive and negative kernel values, where wn is the weight of 

each kernel. All the kernel values are normalized to [−1, 1], by dividing with a constant, 

to maximize the diffraction efficiency in the optics. An Adam optimizer was utilized for 

training the digital parameters with a learning rate of 0.001. The training process is sustained 

over 50 epochs, during which the performance is optimized by minimizing the negative 

log-likelihood loss from comparing prediction probabilities and ground-truth labels. The 

algorithm was programmed based on PyTorch 1.10.1 and CUDA 11.0 with a Quadro RTX 

5000/PCIe/SSE2 as the graphics card.

Numerical simulation

The complex transmission coefficients of the silicon nanopillars were calculated using an 

open-source rigorous coupled-wave analysis solver called RETICOLO60. A square lattice 

with a period of 0.45 μm was used for the first metasurface with a working wavelength at 

0.87 μm. The second metasurface was assigned a hexagonal lattice with a period of 0.47 

μm. During full-wave simulation, the indices of silicon and fused silica characterized by 

ellipsometry were set at 3.74 and 1.45, respectively.
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Metasurface fabrication

Electron-beam-lithography-based lithography was used to fabricate all the metasurface 

layers. First, low-pressure chemical vapour deposition was utilized to deposit a 630-nm-

thick silicon device layer on a fused silica substrate. A polymethyl methacrylate photoresist 

was then spin coated on the silicon layer, followed by thermal evaporation of a 10-nm-thick 

Cr conduction layer. The electron-beam lithography system then exposed the photoresist, 

and after removing the Cr layer, the pattern was developed by a methyl isobutyl ketone/

iso-propyl alcohol solution. A 30 nm Al2O3 hard mask was deposited via electron-beam 

evaporation, followed by a lift-off process with an N-methyl-2-pyrrolidone solution. The 

silicon was then patterned using reactive ion etching, and a 1-μm-thick layer of polymethyl 

methacrylate was spin coated to encase the nanopillar structures as a protective and index-

matching layer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Schematic of the meta-imager.
The meta-imager enables multichannel signal processing for replacing convolution 

operations in a digital neural network. A bilayer meta-optic system encoded by the 

predesigned kernels is utilized to achieve optical convolution with the incoherent light 

source to be used for object illumination. The positive and negative values are distinguished 

and recorded as feature maps by a polarization-sensitive photodetector, where an oriented 

grating sits on each photodetector pixel for polarized signal sorting.
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Fig. 2 |. Meta-optic architecture.
a, Comparison between the digital and optical convolution process. A random 3 × 3 

kernel, normalized within [−1, 1], was defined to digitally convolve an image. The 

equivalent optical PSF was designed and simulated by the angular spectrum propagation 

method, with the optical output calculated based on the premise of a coma-free system. 

b, Architecture of the compound meta-optic forms three independent focal spots as the 

PSF. Angular multiplexing is used in the first layer of the metasurface, which can split 

light into multiple signal channels and correct the wavefront for wide-view-angle imaging. 

Meanwhile, polarization multiplexing is used to realize an independent response for 

orthogonal-polarization states. In our case, RCP and LCP signals are used for the positive 

and negative kernel values, respectively.
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Fig. 3 |. Design of the meta-imager.
a, Design process of the hybrid neural network. A shallow convolutional neural network 

was trained at first. In this case, the input is convoluted by 12 independent channels, each 

comprising 7 × 7 pixel kernels. The convolution operations are implemented using the 

meta-imager, with the extracted feature maps, including multiplexed polarization channels, 

recorded by a polarization-sensitive camera (polarsens cam). The processed feature maps 

were then fed into the pretrained digital neural network to obtain the probability histogram 

for image classification. The percentage of relevant computing operations is indicated in the 

corner. ReLU, rectified linear unit; FC, fully connected. b, Schematic of the meta-atoms for 

the first (MS1) and second (MS2) metasurfaces. The height is fixed at 0.63 μm, whereas the 

lattice constant is chosen as 0.45 and 0.47 μm, respectively.
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Fig. 4 |. Fabrication and characterization of the meta-imager.
a,b, Optical images of the fabricated metasurfaces comprising the meta-imager. The inset 

is a scanning electron microscopy image of each metasurface. Scale bar, 5 μm. c, An ideal 

optical kernel calculated using the angular spectrum propagation method. The weight of 

each spot is equal to the predesigned digital kernel. d, Measured intensity profile of the 

kernel generated by the fabricated meta-optic. e, Comparison between convolutional results 

based on the ideal and measured kernels. The dashed white line indicates the sampled pixels 

for comparison. The demonstration kernel is the same as those in c and d.
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Fig. 5 |. Classification of MNIST and Fashion MNIST objects.
a, An input image from the MNIST dataset. b, Ideal and experimentally measured feature 

maps corresponding to the convolution of the data in a with channels 9 and 12. The top-left 

corner label indicates the channel number during convolution. c, Comparison between the 

theoretical and measured confusion matrices for MNIST classification. d, An input image 

from the Fashion MNIST dataset. The top-left corner label indicates the object class number. 

e, Ideal and experimentally measured feature maps corresponding to the convolution of the 

data in d with channels 9 and 12. The top-left corner label indicates the channel number 

during convolution. f, Comparison between the theoretical and measured confusion matrices 

for Fashion MNIST classification. g, Predicted accuracy curve for the MNIST dataset and 

the areal density of the basic computing unit as a function of pixel size. The insets depict the 

kernel profiles and feature maps at different pixel sizes.
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