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Abstract

Introduction: Primary open angle glaucoma (POAG) is a leading cause of blindness globally. Characterized by progressive retinal ganglion
cell degeneration, the precise pathogenesis remains unknown. Genome-wide association studies (GWAS) have uncovered many genetic
variants associated with elevated intraocular pressure (IOP), one of the key risk factors for POAG. We aimed to identify genetic and
morphological variation that can be attributed to trabecular meshwork cell (TMC) dysfunction and raised IOP in POAG. Methods: 62
genes across 55 loci were knocked-out in a primary human TMC line. Each knockout group, including five non-targeting control groups,
underwent single-cell RNA-sequencing (scRNA-seq) for differentially-expressed gene (DEG) analysis. Multiplexed fluorescence coupled
with CellProfiler image analysis allowed for single-cell morphological profiling. Results: Many gene knockouts invoked DEGs relating to
matrix metalloproteinases and interferon-induced proteins. We have prioritized genes at four loci of interest to identify gene knockouts
that may contribute to the pathogenesis of POAG, including ANGPTL2, LMX1B, CAV1, and KREMEN1. Three genetic networks of gene
knockouts with similar transcriptomic profiles were identified, suggesting a synergistic function in trabecular meshwork cell physiology.
TEK knockout caused significant upregulation of nuclear granularity on morphological analysis, while knockout of TRIOBP, TMCO1 and
PLEKHA7 increased granularity and intensity of actin and the cell-membrane. Conclusion: High-throughput analysis of cellular structure
and function through multiplex fluorescent single-cell analysis and scRNA-seq assays enabled the direct study of genetic perturbations
at the single-cell resolution. This work provides a framework for investigating the role of genes in the pathogenesis of glaucoma and
heterogenous diseases with a strong genetic basis.
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Introduction
Glaucoma is a heterogeneous group of diseases leading to irre-
versible blindness with characteristic optic nerve damage. The
most common glaucoma subtype is primary open-angle glau-
coma (POAG) [1, 2]. Elevated intraocular pressure (IOP) is the only
known modifiable risk factor and plays a major role in the pro-
gression of POAG [3]. The circulatory system maintains IOP in the
anterior segment of the eye [4, 5]. Aqueous humor is produced by
the ciliary body and passes through the pupil before draining out
to the episcleral blood vessels via conventional or unconventional
pathways [1, 6]. The conventional outflow pathway through the

trabecular meshwork accounts for approximately 80% of total
aqueous humor outflow. Structural alterations observed in the
trabecular meshwork are considered to increase outflow resis-
tance in POAG [5, 7, 8].

Many POAG-associated loci have been identified through
genome-wide association studies (GWAS) [9], with loci encom-
passing Caveolin 1 and 2 (CAV1/CAV2), Transmembrane and
coiled-coil domain-containing protein 1 (TMCO1), cyclin-dependent
kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1), ATB binding
cassette subfamily A member 1 (ABCA1), actin filament associ-
ated protein 1 (AFAP1), GDP-mannose 4,6-dehydratase (GMDS),
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Forkhead Box C1 (FOXC1), thioredoxin reductase 2 (TXNRD2), and
Ataxin 2 (ATXN2) [10–13]. Furthermore, protein altering variants
in genes such as MYOC, LTBP2, FOXC1, GMDS and CYP1B1 have
been found to cause both congenital and juvenile onset glaucoma.
These particular variants are generally associated with abnormal
development of the aqueous circulatory system and Schlemm’s
canal rather than maintenance, however some are also involved
in maintenance such as TEK [14–18].

More recently, a GWAS meta-analysis identified 85 novel SNPs
associated with IOP using data from the UK Biobank, the Inter-
national Glaucoma Genetic Consortium, and the Australian &
New Zealand Registry of Advanced Glaucoma Cohort [19]. Novel
gene variants, including ANGPT1, ANKH, MECOM and ETS1 were
associated with POAG and IOP. However, this study also identified
SNPs at ADAMTS6, MYOF, ANAPC1, GLIS3, and FNDC3B that are
associated with phenotypes such as central corneal thickness
and corneal hysteresis [19]. This highlights potential confounding
factors in GWAS that make identification of genes implicated in
the pathogenesis of POAG challenging. Furthermore, various SNPs
identified in IOP associated GWAS are associated with more than
one gene, making it difficult to precisely implicate the disease-
causative gene.

Recent advances in clustered regularly interspaced short
palindromic repeats (CRISPR) and single-cell RNA sequencing
(scRNA-seq) technology have allowed for high-throughput genetic
screens at single-cell transcriptome resolution. In CRISPR droplet
sequencing (CROP-seq), a guide-RNA (gRNA)-encoding vector
makes gRNAs detectable in scRNA-seq, and as such, these gRNAs
can be used to tag individual cells [20]. To investigate the role of
POAG-associated loci in TMCs, we knocked out gene candidates
in human TMC lines using CROP-seq. We then performed single-
cell RNA sequencing as well as morphological profiling to identify
the genotypic and phenotypic roles of each gene (Fig. 1A). The
cell painting protocol involves cultured cells being stained
with fluorescent dyes to reveal eight cellular substructures,
thus allowing morphological features to be extracted from
individual cells to display the effects of genetic perturbation
[21, 22]. Morphological profiling can then be undertaken using
CellProfiler, a high-throughput single-cell image analysis program
designed to extract and analyze over one thousand phenotypic
features. Taken together, this study screens gene candidates
based on expression profiles and morphology profiles and helps
understand the pathway in which these genes are involved in the
causation of elevated IOP in TMCs.

Results
Data overview
A total of 134 gRNAs sequences were designed (124 gRNAs tar-
geting 62 genes and 10 gRNAs for human non-targeting control;
Supplementary Table 1), and after being cloned into a CROP-seq
plasmid which also expressed SpCas9, were delivered to a primary
TMC line in arrayed format. A total of 105 273 cells were captured
with 25 879 (24.58%) cells passing our stringent quality control
filtering to be included in transcriptional profiling.

To compare the similarity of cells to primary human TMCs
we used the scPred package, an unbiased gene-marker free cell
classification method [23]. As anticipated, our cultured cells were
less heterogeneous than in vivo trabecular meshwork tissue (Sup-
plementary Fig. 1). Beam A cells and non-myelinating Schwann
cells were previously identified by van Zyl et al. as the most
common cells (excluding Ciliary Muscle) in samples of human tra-
becular meshwork tissue [24]. The most commonly identified cell
types in our data were Beam A cells and fibroblast-like cells, with

non-myelinating Schwann cells contributing a smaller proportion
(Fig. 1B and Supplementary Fig. 1). Our major cell types expressed
key canonical genes (Supplementary Fig. 2). Importantly, Beam A
cells expressed BMP5, fibroblast-like cells expressed COL14A1 and
ANGPTL7, while the non-myelinating Schwann cells expressed
SCN7A (Supplementary Fig. 2).

From this analysis, we then sought to determine if the target
gene knockout groups were unequally distributed throughout
these predominant cell-types. Overall, cells from all gene knock-
out groups were assigned to each previously classified primary
cell group (Supplementary Fig. 3).

Despite the fact that many CRISPR-edited gene transcripts
would still be transcribed and thus captured using the 3′ RNAseq
10X technology, given presence of nonsense mediated decay, we
sought to formally assess the knockout efficiency by comparing
the targeted gene transcript in each knockout line to that of the
non-targeting control cells. Overall, 25 of the target cell lines had
lower on-target transcript counts compared to the controls at
the Bonferroni corrected level (P < 0.0008; Supplementary Fig. 4,
Supplementary Table 1). ABO and TEX41 were found not to be
expressed in our TMCs. We also investigated the concordance in
transcriptome-wide profile of cells with different gRNAs targeting
the same gene (Supplementary Table 2). Given that the lowest
Pearson Correlation Coefficient was found to be 0.992, cells with
each gRNA were combined for analysis (Supplementary Table 2).
Canonical markers of the cell cycle were expressed in a similar
pattern across all target gene knockout groups (Supplementary
Fig. 5).

Differentially-expressed gene (DEG) analysis was then per-
formed to investigate the effects of gene knockout at select
IOP-associated loci. DEG analysis was performed for each gRNA
individually against non-targeting control gRNAs (Supplementary
Table 3). Potentially reflecting reduced power from the smaller
number of cells profiled, or the fact that the cultures were
transfected with the CRISPR construct at a relatively high
multiplicity of infection (MOI), no distinct pattern in concordance
of differentially expressed genes were observed between the indi-
vidual gRNA and the combined gene-based knockout groupings
(Supplementary Fig. 6). gRNA targeting the same target gene were
combined for subsequent analyses.

The Euclidean distance of DEG expression between each knock-
out group and controls was computed to identify gene knockouts
with similar expression patterns that may indicate novel gene
networks involved in the pathogenesis of POAG. DEG analysis was
also used to prioritize multi-gene loci to identify a pathological
variant. Ward’s hierarchical clustering method was used to gen-
erate a cluster tree for further characterization of perturbed genes
(Fig. 1C and Supplementary Fig. 7). This process of cell line-based
clustering was then undertaken for the morphological features
identified following Cell Painting and extracted using CellProfiler
(Fig. 1D and Supplementary Fig. 8) [21, 25].

To investigate the similarity between clustering based on tran-
scriptomic or morphology profiles we calculated the Rand index
at branch 32 of the Ward tree. At this branch, where the non-
targeting control cell line expression appeared to diverge most
from the other gene knockout lines (Fig. 1C), the Rand index was
0.86, suggesting strong agreement between the two clustering
approaches (Fig. 1E).

scRNAseq clustering allows prioritization at
multi-gene loci
DEG and morphological profiling analysis was used to prioritize
the most likely pathological gene implicated at a locus contain-
ing many candidate genes (Table 1). We selected three genes
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Figure 1. CROP-seq interrogation of intraocular pressure associated loci. (A) Schematic overview of the study, where primary human TMC lines were
cultured, each with a single gene at an IOP-associated loci, knocked out. A further 5 cell lines were maintained as controls. All groups underwent
transcriptional profiling and morphological profiling analysis. (B) Following single cell RNA sequencing CRISPR edited cells were compared to primary
human TMCs. (C) Ward’s cluster tree displaying the hierarchical clustering of each cell line based on the single cell RNA expression profiles. The red dots
display the cluster containing the non-targeting control lines. The dashed line represents cluster 32. (D) Ward’s cluster tree displaying the hierarchical
clustering of each cell line based on the morphological profiles. The red dots display the cluster containing the non-targeting control lines. The dashed
line represents cluster 32. (E) Agreement between clustering of cell lines based on morphology or expression profiles. The less distributed the knockout
groups within each cluster are across clusters in the alternative approach, the higher the agreement between approaches. Alt-text: CROP-seq profiling
of intraocular pressure associated genes using transcript and morphological features.

chromosome 9q33 to knockout (ANGPTL2, RALGPS1 and LMX1B).
The ANGPTL2 knockout cell line was shown to have the highest
Euclidean distance (d = 18.79) as well as cluster independently
from non-targeting control cells on the transcriptomic analy-
sis (Supplementary Fig. 7). Furthermore, ANGPTL2 also had the
highest number of statistically significant DEGs (n = 23), which
were primarily involved in interferon alpha/beta signaling. The
LMX1B knockout group had the next highest Euclidean distance
(14.06) and significant DEGs [11], which are primarily involved in
regulating cell proliferation. LMX1B also clustered independently
from the non-targeting control cell lines. Furthermore, the mor-
phological profiling data revealed that RALGPS1 had almost no
significant changes in cellular morphology and was concordantly
clustered with the non-targeting control cell line gene expression

profiles. The ANGPTL2 knockout, evoked a significant reduction of
intensity and granularity in both the mitochondrial and actin/cell
membrane channels, which was also observed in LMX1B knock-
out cells (Fig. 2A). Interestingly, the transcriptional start site for
ANGPTL2 is located further from the top IOP-associated SNP than
LMX1B (Supplementary Fig. 9).

At the chromosome 7q31 locus associated with variation in IOP,
we selected three genes to knockout (CAV1, CAV2, and TES). Cells
with CAV1 knocked out were found to transcriptionally cluster
separately from the non-targeting control cells (Supplementary
Fig. 7), and also had the highest number of statistically significant
DEGs (Table 1). However, it is noteworthy that the CAV2 knockout
cells were found to significantly upregulate (6.23-fold increase,
P = 2.06×10−14) the expression of MYOC, a gene whereby disease
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Figure 2. Morphological features of selected genes at multi-gene loci. (A) ANGPTL2, LMX1B, and RALGPS1; (B) CAV1, CAV2, and TES; (C) EMID1, and
KREMEN1. Scatter plots of the mean value of each group of features with representative images (jitter was applied to avoid overplotting)(scale bar:
5 μm). Alt-text: Profiles for selected morphological features of genes from multi-gene loci.
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Table 1. Breakdown in number of differentially expressed genes from the individual knockout of genes at overlapping loci.

Multi-gene locus# Overlapping genes Dendrogram
cluster at
Branch 32

Transcriptional
Euclidean distance
from Control Lines

Significant DEGs
compared to control
(P-value < 10−6, log2 fold
change > 2)#

chr1 bp:165714416 ALDH9A1 5 13.98 22
TMCO1 12 12.96 7

chr9 bp:129367398 ANGPTL2 9 18.79 23
chr9 bp:129369971 LMX1B 22 14.06 11
chr9 bp:129373110 RALGPS1 10 7.1 4
chr9 bp:129863168
chr7 bp:115810676 CAV1 2 8.93 4
chr7 bp:116151338 CAV2 10 6.19 3

TES 10 5.57 2
chr11 bp:86406159 ME3 23 16.51 28

PRSS23 28 18.03 28
chr22 bp:29620325 EMID1 10 7.29 4

KREMEN1 13 11.51 5
chr22 bp:19860977 GNB1L 14 10.34 4

TXNRD2 8 10.44 5

#base pair position on chromosome

causing variants lead to elevated IOP and POAG [14, 26–29]. This
could infer that the knockout of CAV2 may induce cellular effects
similar to MYOC, and this effect appeared to predominate in the
Beam A cells (Supplementary Table 4). CAV1 knockout resulted in
a small reduction in mitochondrial intensity, while CAV2 knock-
out produced a statistically significant reduction in the inten-
sity and granularity of the mitochondrial and actin/cell mem-
brane channels (Fig. 2B). CRISPR knockout of TES resulted in min-
imal morphological variation, with TES knockout cells clustering
with the non-targeting control group (Fig. 2B and Supplementary
Fig. 7).

We selected two genes (EMID1 and KREMEN1) on chromosome
22q12 to knockout in our TMCs. Although the transcriptional start
site for EMID1 is closer to the top IOP-associated SNP (Supple-
mentary Fig. 9), cells with KREMEN1 knocked-out, but not EM1D1
knockout cells, were found to transcriptionally cluster separately
to the non-targeting controls (Supplementary Fig. 7). KREMEN1
knockout cells were also found to have a greater number of
DEGs, though these did not appear to act via a single pathway.
Interestingly, knockout of EMID1 resulted in intensity reduction
in the mitochondrial and actin/cell membrane channels (Fig. 2C).
The remaining multi-gene loci all clustered independently from
the control group and had similar degrees of DEG expression,
which makes it difficult to resolve the prioritized gene (Table 1).

Key up- and downregulated DEGs of interest
DEG analysis revealed key genes with potential roles in the vari-
ation in IOP. Volcano plots of all gene knockouts across each cell
type (i.e. similar to bulk RNA-seq) are displayed in Supplementary
Fig. 10. Using the predicted cell-type from our scPred model, we
also undertook DEG analysis on the subset of cells with the high-
est representation. Given the majority of cells were classified as
Beam A cells or Fibroblast-like cells, differential gene expression
was performed for these subsets. The results for this have been
included in Supplementary Table 4, and the volcano plots from
these analyses are displayed in Supplementary Figs 11 and 12.

We sought to identify direct patterns of expression across
genes at different loci. In addition to a putative link between
CAV2 knockout and overexpression of MYOC, as outlined above,
knockout of ZNF280D resulted in an over expression of EMCN

in Beam A cells (fold change = 4.24, adjusted P = 5.22 × 10−22). In
fibroblast-like TMCs, knockout of ABCA1 led to an over expression
of ANGPT2 (fold change = 6.23, adjusted P = 1.25 × 10−18). Finally,
knockout of ADAMTS6, ALDH9A1, ARHGEF12, FBXO32, FER, FMNL2,
GAS7, LMO7, ME3, MECOM, MYOF, PARD3B, PRSS23, or ZNF280D
result in reduced expression of EFEMP1 in both Beam A cells or
fibroblast like cells (P < 10−6). Murine expression of EFEMP1 has
been shown to interact with tissue inhibitor of metalloproteinase-
3 (TIMP3), and may play a role in cell adhesion and migration [30].

Matrix metalloproteinases previously associated with POAG
were upregulated across several gene knockouts. MMP1 was
statistically significantly (P < 10−6) upregulated in nine knockout
cell lines (ABCA1, ADAMTS6, ALDH9A1, ANAPC1, ANGPT1, FER,
FERMT2, FMNL2, PDE7B) with a fold-change ranging from 4.05–
7.27. MMP3 was similarly statistically significantly (P < 10−6)
upregulated in seven knockout lines (ADAMTS6, ANGPTL2,
COL24A1, ETS1, MYOC, PDE7B, TRIOBP) with a fold-change of 4.17–
5.31 (Fig. 3A). Finally, MMP10 was upregulated in four knockout
lines (ADAMTS6, ANAPC1, FERMT2, PDE7B) with a fold-change
of 4.82–46.37 (P < 10−6) (Fig. 3A). The proteins encoded by these
genes are part of a family of proteins involved in the breakdown
of extracellular matrix in physiologic and pathologic processes.
The matrix metalloproteinase family of proteins have also been
previously implemented in TMC function and the pathogenesis
of POAG, with upregulation of MMPs 1, 9, and 12 previously
implicated in POAG [31–33].

Another group of highly upregulated DEGs were interferon-
induced proteins, which are generally involved in antiviral
immunity though appear to have a pleiotropic effect on IOP
regulation in TMCs. IFI44L was statistically significantly (P < 10−6)
upregulated in nine knockout lines (ABCA1, ADAMTS6, ANAPC1,
ANGPT1, FER, FERMT2, PDE7B, TMCO1, ZNF280D) across a fold-
change range of 4.39–10.39. Similarly, IFIT1 was also upregulated
in seven knockout cell lines (ABCA1, ADAMTS6, ANAPC1, ANGPT1,
FER, FERMT2, ZNF280D) with a fold-change ranging from 4.31 to
7.30 (P < 10−6). IL1RN was also statistically significantly (P < 10−6)
upregulated with a fold-change across 4.03–12.68 among 14
knockout lines (ABCA1, ADAMTS6, ANGPT1, ANGPTL2 FBXO32,
FER, FERMT2, FMNL2, MYOC, PARD3B, PDE7B, PRSS23, TIMP3,
ZNF280D) (Fig. 3A).
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Figure 3. Selected expression and morphological features in TMC knockout and control lines. (A) Heatmap illustrating significant up-regulation of
matrix metalloproteinases (MMP1, MMP3, MMP10) and interferon-related proteins (IFI27, IFI6, IFI44L, IFIH1, IFIT1, IFIT2, IFIT3, IFITM1, IFITM10). (B) Gene
expression network in non-targeting control cells. A gene expression network for non-targeting control trabecular meshwork cells was generated to
highlight target genes that are normally expressed in TMCs. Closer proximity between the genes indicate similar degrees of co-expression and the size
of the node corresponds to the node centrality of PAGErank. Genes selected for knockout, found to have a Pearson correlation above 0.7 with another
gene are displayed in green. (C) Heatmap displaying variation in TMC morphological features for knockout of genes at IOP-associated loci. Morphological
features extracted by CellProfiler grouped by organelles of the same fluorescent channel are displayed. Features extracted are based on pixel intensities
and calculations based on area and appearance. Alt-text: Selected transcript and morphological features in TMC control lines.
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Identification of putative genetic networks
involved in the pathogenesis of POAG.
To investigate gene-based networks we initially mapped the
expression profile from the non-targeting controls cells, high-
lighting all genes selected for targeted knockout (Fig. 3B). This
gene regulatory network was generated by retaining the most
significant correlations, to generate as many edges as possible,
with only Pearson correlations above 0.7 [34]. All but two genes
were found to be expressed in the control cells, as outlined
previously, yet 30 (58%) of the 62 target genes were found to be
above this Pearson correlation threshold (Fig. 3B).

We next compared the DEG profile of knockout groups found
to cluster together at the branch where the non-targeting control
cell line expression appeared to diverge most from the other gene
knockout lines (branch 32 of the Ward tree, Fig. 1C). One cluster
contained three genes: ABO, CAV1, as well as MYOC, and targeted
knockout led to upregulation of TAC1 and LCE1C. TAC1 is a potent
vasodilator, and has previously been shown to be upregulated
in specific MYOC mutations [35]. Conversely, LCE1C, which is
predicted to be involved in keratinization and has not previously
been implicated in TMC homeostasis. The MYOC knockout also
induced upregulation of SPP1, which has been found to be highly
expressed during trabecular meshwork differentiation [36].

Cells with ANGPT2, PKHD1, TNS1, or TXNRD2 knocked-out were
found to cluster together. There were five statistically significantly
(P < 10−6) upregulated DEGs (CXCL11, CST1, LCE1C, OASL, CD70)
and three downregulated DEGs (STEAP4, CCN5, C1orf87); however,
these genes have not previously been found to cause TMC dys-
function or POAG. Knockout of CAPZA1, KALRN, LMO7, PLEKHA7,
GNB1L, or TEX41 resulted in a similar DEG profile. There were
two key DEGs identified on bulk analysis of this cluster, MT1G
(upregulated) and STEAP4 (downregulated); however, there was
no previous association with POAG among these DEGs. Knockout
of ATXN2, FBXO32 or PRSS23, resulted in an over expression of
ANGPTL4 in fibroblast like cells (fold change range 4.12–4.83;
adjusted P < 1.01E-24), which is noteworthy given that ANGPT2,
which encodes for angiopoietin, is critically involved in the devel-
opment of Schlemm’s canal, with monogenic variants known
cause congenital glaucoma through elevated IOP [37–39].

Key morphological features
A heatmap was constructed showing cell lines with a difference
of >1.5 or <−1.5 compared to non-targeting controls (P-
value < 10−40) (Fig. 3C). This identified key genes of interest
that had particular morphological changes. The TEK knockout
group particularly showed an increase in the outputs referring to
nuclear granularity identified with mitochondrial stain (Fig. 4A).
The LTBP2 knockout was the only group to show a significant
increase in the mean nuclear intensity as well as the standard
deviation nuclear intensity (Fig. 4B). Finally, TRIOBP and TMCO1
both showed similar increases in actin/cell membrane granularity
and intensity which was greater than any other groups; TRIOBP
and PLEKHA7 also demonstrated similar morphological profiles
with similar degrees of feature increase across mitochondrial and
actin/cell membrane channels (Fig. 4C).

Discussion
GWAS have uncovered a large range of novel loci associated with
many complex traits [40–43]. With such significant amounts of
data generated from these studies, the challenge is posed as
to how to efficiently identify the most relevant gene(s) at each

implicated locus [44]. A thorough understanding of the disease
is required to identify new pathological pathways and thus; new
therapeutic interventions. This study sought to investigate the
effects of IOP-associated gene knockouts on the morphological
and transcriptome profiles of primary human TMCs. Applied in
the context of POAG, this study aimed to identify genes associated
with IOP to highlight potential TMC dysfunction with the goal of
distinguishing new therapeutic pathways for drug discovery. We
conservatively estimate that at least a fifth of the loci identified as
influencing variation in IOP act through transcriptional perturba-
tion of cells which constitute the majority of the trabecular mesh-
work (Beam A cells, Fibroblasts and non-myelinating Schwann
cells). It is likely that genes at the remaining loci modulate cells
in other tissue such as the ciliary body, Schlemm’s canal or the
uveoscleral outflow. Future work exploring this in other cell types
will hopefully also lead to new molecular insights into the direct
pathogenesis of POAG.

In the gene knockout groups with genes related to congen-
ital glaucoma, GMDS, FOXC1, LTBP2, TEK, and CYP1B1, no dis-
tinct patterns were observed in the transcriptome of these gene
knockout groups. Similarly, the morphological profiles of these
gene knockout groups demonstrated minimal change from non-
targeting control groups. This supports the premise that these
genes are more involved in trabecular meshwork embryogenous
and development rather than ongoing cellular homeostasis. Pre-
vious work has shown that CYP1B1 and LTBP2 are also involved
in modulating ocular development with disease causing variants
resulting in abnormal development of the trabecular meshwork
and anterior ocular circulation [45, 46]. Furthermore, FOXC1 is
known to be primarily involved in the development of the trabec-
ular meshwork with disease causing variants leading to anterior
segment dysgenesis and elevated IOP [47]. In addition to this,
disease causing variants in these genes are often gain-of-function
and as such may not exhibit a pathological response in knockout
experiments. For example, MYOC mutations are typically gain-
of-function resulting in protein misfolding inducing endoplasmic
reticulum stress and extracellular matrix dysfunction [48].

This work highlights the power of using high throughput single
cell profiling to resolve the likely causative gene at complex
disease-associated loci identified via GWAS; a known challenge
of GWAS-based drug discovery [41]. We were able to prioritize
four genes at seven of the “multi-gene loci” studied. ANGPTL2,
LMX1B, and EMID1 were found to have a greater transcriptomic
and morphological variation from non-targeting control cell lines
than other genes at their corresponding loci, and appear most
likely to contribute to the regulation of IOP and pathogenesis
of POAG. Interestingly, although knockout of CAV1 resulted in a
greater number of DEGs than knockout of CAV2, CAV2 knockout
caused up-regulation of MYOC.

Hierarchical clustering was used to identify potential genetic
networks of similar genes contributing to IOP physiology. Three
clusters containing between three and five distinct gene knock-
outs produced similar DEG patterns indicating a potential interac-
tion between these genes and thus; a genetic network contribut-
ing to IOP physiology and the pathogenesis of POAG. When analyz-
ing individual DEG expression across gene knockouts, it was noted
that genes related to matrix metalloproteinases and interferon-
related proteins were significantly up- or down-regulated. Matrix
metalloproteinases have a distinct footprint of evidence showing
a role in the pathogenesis of POAG [31–33, 49, 50]. However,
interferon-alpha and interferon-induced proteins have minimal
previous associations with POAG potentially highlighting this as a
novel pathological pathway in disease progression. Of note, IFIH1
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Figure 4. Morphological features of key gene knockout groups. (A) TEK; (B) LTBP2; (C) PLEKHA7, TMCO1, and TRIOBP. Panels display the scatter plots of
the mean value of each group of features (jitter was applied to avoid overplotting) (scale bar: 5 μm). Alt-text: Profiles for selected morphological features
of key gene knockout groups.
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was the only interferon-related gene identified in DEG analysis
which has been associated with glaucoma in literature. Mutations
in IFIH1 have been associated with Aicardi-Goutières syndrome
and Singleton-Merten syndrome, both of which have similar over-
lapping features and are associated with glaucoma [51–56].

One of the limitations of this study is that only trabecular
meshwork cells have been investigated ex vivo, and there are
several other ocular cells implicated in regulation of IOP and POAG
(such as the ciliary body, uveoscleral outflow, and Schlemm’s
canal) [5]. Further work applying our novel CROP-seq constructs
could be conducted to directly investigate these cells.

It is also important to note the variability in knockdown effi-
ciency across gRNA as detected by 3′ scRNA-seq (Supplementary
Table 1). This could reflect poor on-target efficacy in vivo of some
gRNA, differing effects of gene domains being targeted, or even
variability in lentiviral processing and nonsense mediated decay
across TMCs. Interestingly, there was not a distinct pattern in the
overlap in differentially expressed genes for each individual gRNA
or combined gRNA, when the expression of the target gene was
significantly reduced (Supplementary Fig. 6). We hypothesize that
robust gene knockdown in a scRNA-seq screen would be better
observed using CRISPR interference. A further limitation of this
study is that the CRISPR gene knockout results in unpredictable
effects on gene function and gene-network perturbations [57, 58].
CRISPR-mediated gene knockout may not actually recapitulate
the molecular pathogenesis in POAG. For example, the loci found
to influence variation in IOP may act through a variety of mecha-
nisms from gain-of-function through to gene silencing. That said,
the allelic effect size a specific locus confers on disease devel-
opment, does not necessarily mirror the therapeutic potential of
targeting that gene or pathway. For example, in the case of neovas-
cular age-related macular degeneration, the genetic contribution
of vascular endothelial growth factor A locus is relatively small, yet
VEGF monoclonal antibodies have been remarkably successful at
controlling disease [59–61]. Finally, although we knocked out a
single gene to investigate its effect on the pathogenesis of POAG
and IOP regulation, disease processes are often contributed to
by a network of genes functioning in unison indicating that the
knockout of a single gene may be insufficient to reproduce the
complete disease phenotype [62]. This is further highlighted by
the role of polygenic risk scores in POAG indicating that future
studies may investigate knockout of arrays of genes as a method
of quantifying the transcriptional profiles of polygenic genetic
variations [63–65].

In summary, this work is the first time that high-throughput
multiplex morphological profiling has been combined with
scRNA-seq analysis. Together, these platforms have uncovered
unifying pathways involved in the homeostasis of TMCs, variation
in IOP, and the pathogenesis of glaucoma. Robust pipelines have
been generated to create transcriptomic and cell morphology
profiles. These results demonstrate that gene perturbation
can be reflected in the cell morphology with corresponding
regulatory pathways, and as a consequence, this resource further
improves our understanding of gene function in disease. This
comprehensive transcriptomic and morphological dataset of
trabecular meshwork cells represent the largest functional
follow-up of genes implicated through GWAS to date. In the
gene expression comparison, different cell types may be grouped
according to their transcriptome patterns [24], and the influence
of the non-normal distributions and outliers may be minimized.
For the cell morphology, using the median value of each feature,
and adding features’ dispersion and covariances to the profiles

may increase the hit rates and reliability in finding positive genes
related to the disease.

Materials and methods
Cell culture
Primary human TMCs were isolated from donors through the
Lions Eye Bank at the Royal Victorian Eye and Ear Hospital
(ethics approval reference: 13-1151H) before being cryopreserved
and delivered frozen to the Menzies Research Institute. TMCs
were thawed and cultured in Dulbecco’s Modified Eagle Medium
(DMEM, Gibco, 11965118) with 10% fetal bovine serum (FBS, Gibco,
16000044), and supplemented with 0.5% antibiotic-antimycotic
(Gibco, 15240-062). The culture medium was changed as per local
protocol after 72 h or when cells reached 80% confluence. All cell
lines were cultured at 37◦C with 5% CO2 in the incubator. Each
fortnight cell lines were tested for mycoplasma using the PCR
Mycoplasma Test Kit (PromoKine, PK-CA91-1096).

Cloning and validation of the single-vector
CROPseq system
To generate a single-vector system CROPseq plasmid express-
ing both SpCas9 and sgRNA(CROPseq-EFS-SpCas9-P2A-EGFP;
Addgene #99248), the EF1a promoter in the CROPseq-Guide-
Puro 124 (Addgene plasmid # 86708) was replaced with the
EFS promoter to drive the expression of SpCas9 using the
Gibson Assembly method (NEBuilder HiFi DNA Assembly
master mix). The EFS-SpCas9-P2A fragment was amplified from
lentiCRISPRv2 (Addgene plasmid # 52961) using Q5 high-fidelity
DNA polymerase. The puromycin resistance gene was then
subsequently replaced with EGFP using an amplified fragment
from the pMLS-SV40-EGFP plasmid (Addgene plasmid # 46919).
The expression and activity of the single-vector CROPseq plasmid
was tested by cloning in a sgRNA targeting the DNMT3B (sgRNA
sequence: CAGGATTGGGGGCGAGTCGG) or LacZ control gene
(sgRNA sequence: TGCGAATACGCCCACGCGAT) using Gibson
Assembly method and transformed into NEBStable bacteria
(NEB) as outlined by Datlinger and colleagues [20], and tested in
HEK293A cells (Life Technologies). EGFP expression was visualized
using the Eclipse Ti-E inverted fluorescence microscope (Nikon).
The cleavage activity of the SpCas9 was measured through
the indel formation using SURVEYOR assay (Integrated DNA
Technologies). Briefly, genomic DNA was extracted (QIAamp
DNA mini kit; Qiagen) from HEK293A cells transfected with
CROPseq-EFS-SpCas9-P2A-EGFP DNMT3B sgRNA plasmid using
Fugene HD (Promega). PCR fragment for SURVEYOR assay
was amplified using Q5 high-fidelity polymerase using the
primers F: 5′-CAAGAGCATCACCCTAAGAATGC-3′ and R: 5′-
GTTGTCAGAGACTCTCCCCAAAG-3′ from Datlinger et al. [20] Q5
PCR conditions were as per the manufacturer’s protocol with the
following thermocycling conditions: 98◦C 30 s; 35 cycles of 98◦C
10 s, 71◦C 30 s, 72◦C 15 s; 72◦C 2 min. PCR products were gel
purified using the QIAquick gel extraction kit (Qiagen). 200 ng of
purified PCR product was used in the SURVEYOR assay as outlined
in the manufacturer’s protocol.

Confirmation of sgRNA sequence via sanger
sequencing
In total, 134 sgRNAs sequences were designed to generate the 67
trabecular meshwork cell lines (124 sgRNAs for 62 genes and 10
sgRNAs for human non-targeting control, 2 sgRNAs for each cell

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae003#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae003#supplementary-data
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line) (Supplementary Table 1). Each of the sgRNAs was cloned
into CROPseq-Guide-pEFS-SpCas9-p2a-puro backbone (Addgene:
#99248). The sequences of all sgRNAs templates were confirmed
by in-house Sanger sequencing. Firstly, each template was ampli-
fied by the BigDye Terminator Cycle v3.1 Sequencing kit (Applied
Biosystems, 4337454). The 10 μl reaction system contained 1 μl
template, 1 μl 10 μM primer, 0.25 μl Reaction Mix, 1.75 μl 5X
Sequencing Buffer, and 6 μl nuclease-free water. Cycling was per-
formed using the following program: initial polymerase activation
for 1 min at 96◦C and 25 cycles of amplification (denaturation
for 10 s at 96◦C, annealing for 5 s at 50◦C, and extension for
4 min at 60◦C), then held at 15◦C. Samples were purified with
the CleanSEQ kit (Beckman Coulter, A29151) following the Agen-
court CleanSEQ Dye-Terminator Removal protocol. Briefly, 10 μl of
vortexed CleanSEQ reagent and 42 μl of 85% ethanol was added
to each 10 μl sample and gently mixed. The sample was placed
on the 96-well magnetic plate for 3–5 min until the magnetic
beads formed a ring and the solution was clear. The supernatant
was removed and samples were washed twice with 100 μl 85%
ethanol with 30 s of incubation and then air dried for five minutes.
Lastly, 30 μl nuclease-free water was added to each sample and
incubated for 3–5 min on the magnetic tray to elute the purified
DNA. Next, 15 μl of purified cycle sequencing product was added
to the sequencing plate, then denatured by incubating at 95◦C
for 5 min. Sequencing Genetic Analyzer 3500, Applied Biosystems)
was undertaken using the default program for 850 bp DNA length.
Finally, the online alignment tool MAFFT (version 7) was used
to confirm whether the sequences of all the 134 sgRNAs were
matched with reference sequences.

Cell transfection
The primary TMCs were transfected with 50 μl of lentiviral
plasmid and 450 μl of TMCs culture medium mixed with 1:100
lentiblast (OZ Bioscience, LB01500). Each well was seeded with
approximately 3.0×104 cells. Cell cultures were incubated for
72 h before 1 μg/ml puromycin selection occurred over four days.
Then the primary TMCs were growing in regular TMC culture
medium for one week of recovery.

Single-cell RNA sequencing
The cells were recovered in culture medium and single-cell cap-
ture was performed at the Garvan-Weizmann Centre for Cellu-
lar Genomics. Single-cell suspensions from different wells were
pooled, centrifuged and resuspended in DPBS containing 1% BSA
(Sigma-Aldrich, A8806-5G), and filtered by 37 μm strainer (STEM-
CELL, 27215). The estimated number of cells in each well in the
Chromium chip was optimized to capture about 16 000 cells. The
Chromium library was then generated following the protocol of
the Chromium Single Cell 3′ v2 Library (10× Genomics). Briefly,
individual cells were allocated into nanoliter-scale Gel Bead-in-
EMulsions, in which the bead carries the primers containing a
read 1 primer sequence, a 16 nt 10× barcode, a 10 nt Unique
Molecular Identifier, and a poly-dT primer sequence. A barcoded,
full-length cDNA was produced from each poly-adenylated mRNA
after incubation with the Gel Bead-in-EMulsions. llcDNAs were
pooled and amplified by PCR. In the library construction, P5, P7,
a sample index, and read 2 primer sequences were added to each
of the cDNA by End Repair, A-tailing, Adaptor Ligation, and PCR.
The region of P5 and P7 allowed the library fragment to attach
to the flow cell surface during the sequencing. Read 1 and read
2 sequences are standard Illumina sequencing primer sites used
in paired-end sequencing. Then part of the library samples were
sequenced on an Illumina NovaSeq 6000 system using the S4

flowcell with a read depth of 16 785 reads per cell resulting in a
mean number of RNA features of 4195 per cell. Following this, the
cell UMI-sgRNA sequence in the NGS library was also amplified
and sequenced on an Illumina MiSeq-based sequencing.

Cell painting immunohistochemistry
For each group, 4.0 × 103 puromycin-selected TMCs were seeded
to 96-well plates by fluorescence-activated cell sorting (FACS) via
a Beckman Coulter MoFlo Astrios EQ with three replicates of each
knockout group allocated at random. The whole experiment was
performed in three batches of TMCs, thus, nine wells of cells were
captured for each gene knockout group. The plate layout can be
assessed on GitHub. TMCs were stained and fixed 48 h after FACS
following the CellPainting protocol [21, 22]. TMCs were washed
three times with HBSS without final aspiration and then sealed
with parafilm. All 96-well plates were kept at 4◦C in the dark
before imaging.

Automated image acquisition
Images were captured at 20× magnification in Phase Gradient
Contrast (PGC), and five fluorescent channels, DAPI (385/465 nm),
AF488(470/517 nm), AF514 (511/543 nm), AF594 (590/618 nm),
AF647 (625/668 nm) on ZEISS Celldiscoverer 7 system. In each well,
25 sites were imaged, with autofocus in the DAPI channel as the
reference.

Morphological image feature extraction
CellProfiler (Version 3.1.9) was used to locate and segment the
cells for single-cell feature extraction [25]. The pipelines in Cell-
Profiler were set up to correct uneven illumination, flag aberrant
images and identify the nuclei from DAPI channel and the entire
cell from AF594 channel, then measure the features of the size,
shape, texture, intensity, and the local density of the nuclei, cell
and cytoplasm.

Establishing the CellProfiler pipeline
The CellProfiler image processing pipeline consists of three parts;
illumination correction, quality control and image analysis. The
illumination correction pipeline begins by improving fluorescence
intensity measurement followed by the quality control pipeline to
identify and exclude aberrant images such as unfocussed images
and debris. To identify cell components, the nucleus was defined
as the primary object with the cell body defined as the secondary
object, and the cytoplasm as the tertiary object. Subsequently, the
features of size, shape, granularity, colocalization, local density,
and textures were measured, and the data was saved in an
SQLite database. Image analysis was carried out on a Nectar (The
National eResearch Collaboration Tools and Resources project)
Cloud workstation instance.

Data curation and analysis
Data preparation was performed using R (Version 3.6.3) as
described by Caicedo et al. [66], which included feature trans-
formation, normalization and batch-effect correction. Firstly, all
the negative controls were selected to explore the distribution of
the features and the batch effects. Two transformation methods
were applied, generalized logarithmic function [67] and Box-Cox
transformation [68]. To avoid nonpositive values, generalized
logarithmic function used a shrinkage strategy while Box-Cox
transformation used a shift strategy [66]. The Anderson-Darling
test was performed to evaluate the normality of each feature [69].
Next, the value of each feature was normalized by subtracting the
median value of each feature from the control group and dividing

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae003#supplementary-data
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by the corresponding median absolute deviation (MAD) ∗1.4826 in
each plate, respectively. The single-cell data was aggregated by the
median value of each well to create profiles of each replicate. The
Spearman’s correlation was calculated for all replicates within a
plate and across different plates. The replicates are selected with
Spearman’s correlation score >0.2.

Computational analysis of single cell sequencing
data:
We used the scPred package to train a cell-type classification
model on single cell RNA-seq data from human trabecular mesh-
work tissue [23, 24], and applied it to our dataset to investigate
the projected cell-type distribution of our cells against primary
TMC. All gene knockout groups underwent hierarchical cluster-
ing and were plotted as a cluster tree. The optimal number of
clusters was determined by the silhouette method. To annotate
each of the clusters, the top features and tail features were
extracted. The library was mapped to the GRCH38 Homo sapiens
genome, and the resulting mapped counts between all samples
were depth-equalized via the cellranger aggr pipeline. Each gRNAs
was assigned to a respective cell, and cells were dropped from
further analysis if no gRNA was identified, or if more than 1 gRNA
was mapped. Then the scRNA-seq data was loaded into R via the
Seurat package (Version 3.0), and SCTransform function was used
to normalize the data. All cells passing QC and targeted by a single
sgRNAs were visualized in a uniform manifold approximation
and projection (UMAP) plot and were clustered with the Louvain
method. The differentially expressed genes (DEGs) of each gene
knockout group were selected with log2 fold change >2 compared
to the human non-targeting controls. Then a hierarchical cluster-
ing was performed on the subset of all DEGs of all gene knockout
groups. The optimal number of clusters was determined by the
silhouette method. DEGs to the human non-targeting controls
were selected to present each cluster.

To investigate the similarity between clustering based on
transcriptomic or morphological profiles we calculated the
Rand index, which is a measure of similarity between two data
clusterings and represents the probability that the two clusterings
will agree on a randomly selected pair of data points. Branch 32 of
the Ward tree was selected as this is the branch where the non-
targeting control cell lines diverged most from the gene knockout
lines in the transcriptome analysis.
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