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SUMMARY

Lung cancer mortality is exacerbated by late-stage diagnosis. Emerging evidence indicates the potential clin-
ical significance of distinct microbial signatures as diagnostic and prognostic biomarkers across various
cancers. However, circulating microbiome DNA (cmDNA) profiles are underexplored in lung cancer (LC).
Here, whole-genome sequencing is performed on plasma of LC patients and healthy controls (HCs). Differ-
entially enriched microbial species are identified between LC and HC. A diagnostic model is developed,
which has a high sensitivity of 87.7% and achieves an AUC of 93.2% in the independent validation dataset.
Crucially, this model demonstrates the capability to detect early-stage LC, achieving a sensitivity of 86.5% for
stage | and 87.1% for tumors <1 cm. In addition, we construct acmDNA model for recurrence, which precisely
predicts LC recurrence after surgery. Overall, this study highlights the significant alterations of cmDNA pro-
files in LC, indicating its potential as biomarkers for early diagnosis and recurrence.

INTRODUCTION

Lung cancer (LC) is the second most common cancer and the
leading cause of cancer mortality worldwide.' The prognosis of
LC is significantly associated with the stages at which cancer pa-
tients are diagnosed.” If diagnosed early, the 5-year survival rate
is >90%, but when diagnosed at the late metastatic stage, it
drops to <5%. Therefore, early detection is a critical strategy
in reducing LC mortality rates. Unfortunately, >80% of LC cases
are detected at an advanced stage, which contributes to the high
mortality rates.® Chest low-dose computed tomography
screening has been demonstrated to reduce cancer-related
deaths by 20% in large randomized trials*®. However, given its
unsatisfactory high rate of false positive imaging results, radia-
tion exposure, and cost,* its use as an early-screening method
is limited. Surgery is the treatment of choice for early-stage LC
patients. Although the surgery cures most cancer patients with
stages I-lIA, 10%-50% of them experience recurrence after
surgery, particularly within 3 years, which exacerbates LC mor-
tality.” Therefore, postoperative recurrence prediction is essen-
tial for obtaining a favorable prognosis and deciding on the
appropriate adjuvant therapy. Hence, it is crucial to develop ap-
proaches with a high degree of accuracy to improve early LC

detection and identify patients with high postoperative recur-
rence risk.

The lungs are a complex and unique organ system, which har-
bor one of the largest surface areas in the human body.®” The
mucosal surfaces of the lungs are exposed to the external envi-
ronment, facilitating the colonization of a vast number of micro-
biota communities.® These microbial communities play an
important role in the development, diagnosis, and prognosis of
lung cancer.” Previous studies have shown that commensal bac-
teria from LC promote cancer cell proliferation through cross-
talk with myeloid cells and y3 T cells.® In addition, a study re-
vealed that the bacterial burden in tumor cells is significantly
higher than that inimmune cells and stroma in LC."° Our previous
report indicated that LC manifesting as solid nodules and sub-
solid nodules have distinct microbiome compositions, and alpha
diversity is greater in the subsolid nodules subtype, which has
more indolent clinical behavior."" Importantly, reducing the pul-
monary bacterial load in LC is associated with fewer regulatory
T cells and enhanced T cell activation and leads to a significant
reduction in cancer metastases.'? These findings demonstrate
that the microbiome community is not only closely associated
with LC development but also modulates cancer metastasis
and recurrence.®
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A total of 416 participants were included in this study. WGS of plasma cfDNA was performed, and the cmDNA features of each subject were profiled. LC, lung

cancer; R, recurrence; NR, non-recurrence.

In recent years, various cancer tissues, including lung, breast,
colorectal, and prostate cancers, have been found to harbor the
tumor microbiome.” With advancements in molecular biology
and sequencing techniques, studies have highlighted the causal
implications of commensal microbiota for tumorigenesis and its
potential as diagnostic biomarkers of cancer.”'*'® Recently,
Poore et al.'® revealed that circulating microbiome DNA
(cmDNA), nonhuman, microorganism-derived cell-free DNA iso-
lated from peripheral blood, could discriminate between multiple
cancers and healthy controls (HCs), opening up a new paradigm
for cancer liquid biopsy and suggesting cmDNA as a valuable
tool in cancer detection.’”~'? In addition, several studies have re-
ported that cmDNA has high discriminatory performance as a
promising biomarker for noninvasive cancer detection, including
colorectal cancer,'” esophageal adenocarcinoma,'® and hepa-
tocellular carcinoma.?® Xiao et al.'” found reduced bacterial di-
versity in the cmDNA profiles of colorectal cancer and built a
classifier that could differentiate it from HCs. However, circu-
lating microbial profiles in LC, particularly their role as diagnostic
markers of early-stage cancer detection and postoperative
recurrence, have not been systematically characterized.

Therefore, this study used whole-genome sequencing (WGS)
of plasma samples for a systematic investigation of cmDNA pro-
files in 416 participants with LC and HCs. We have identified the
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distinct profiles of cmDNA and evaluated their potential as nonin-
vasive diagnostic biomarkers for early-stage detection of lung
cancer and postoperative recurrence.

RESULTS

Distinct cmDNA profiles in LC

The overall design of this study is shown in Figure 1. The 315
participants from the LC detection model study made up the
training cohort (LC: 69; HC: 97), and two independent validation
cohorts, including the validation | (LC: 48; HC: 48) and the vali-
dation Il (LC: 33; HC: 20) (Tables S1, S2, and S3). Circulating
free (cfDNA) was extracted from plasma samples of the training
cohort and underwent WGS, with an average sequence depth
of 5x (Figure 1). Human reads were removed, and the remain-
ing reads were classified using Kraken2 and estimated using
Braken to acquire cmDNA profiles. The sequencing results
showed that the mean percentages of human reads were
98.04% in HC and 97.25% in LC. The mean percentages of mi-
crobial reads were 0.012% in HC and 0.009% in LC (Table S4).
These results were consistent with a circulating bacterial DNA
study of colorectal cancer.'” Next, the biodiversity and compo-
sition of cmDNA in LC patients were compared to HCs. Within
the healthy group, the total number of species was significantly
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higher than that in the LC group (Figure S1A). In addition, alpha
diversity analysis indicated that both the Shannon diversity and
Simpson diversity of the healthy group were significantly higher
compared to that of LC patients (Figures S1B and S1C). Intrigu-
ingly, the reduced bacterial diversity in cmDNA was consistent
with the lower diversity of gut microbiome in LC, as previously
reported by Liu et al.”’

To investigate the association between cmDNA and lung
cancer, the relative abundances were compared between the
LC and HC groups at different phylogenetic levels. At the
phylum level, Proteobacteria, Actinobacteria, and Firmicutes
dominated the circulating microbial communities in both
groups, followed by Bacteroidetes and Ascomycota (Fig-
ure S2A). The abundance of Proteobacteria was higher in the
LC group than that in the HC group, although there was no sta-
tistical significance (Figure S2A). It was noteworthy that an in-
crease of the Proteobacteria phylum has previously been
observed in the lung tissue of LC patients.”” We observed a
similar pattern of composition at the order level (Figure 2A).
Specifically, the relative abundance of Pseudomonadales
from the Proteobacteria phylum was significantly higher in the
LC group (p = 0.006), whereas the relative abundance of Cory-
nebacteriales from the Actinobacteria phylum tended to be
higher in the HC group (p = 0.012; Figure 2B). Intriguingly, we
performed intratumor microbiome analysis of lung tissue from
a subgroup of 15 patients’ with cmDNA, including tumor tissue
and paired normal tissue, and found that the Pseudomonadales
order was also enriched in the tumor group, although there was
no significant difference (Table S5; Figures S2B and S2C). The
higher abundance of Pseudomonadales order in lung tissue
was reported to be associated with a worse disease-free sur-
vival among LC patients,”® whereas a higher abundance of
Corynebacteriales was associated with a reduced risk of
several cancers.’® Furthermore, the top 20 enriched species
belonged mainly to the Proteobacteria phylum, of which Pseu-
domonas azotoformans, Pseudomonas sp. SXM-1, and Pseu-
domonas fluorescens were enriched in the LC group (p =
0.004, p = 0.014, p = 0.005, respectively) (Figures 2C and
S2D). Among the statistically different genera or species,
most bacterial taxa enriched in the LC group belonged to the
Proteobacteria phyla. In particular, Acinetobacter, a well-known
microbe enriched in bronchoalveolar lavage fluid of LC,%®
showed significantly higher abundance in the LC group
(p < 0.001; Figure 2C). In addition, the microbiome analysis
among different subgroups of LC separated according to tumor
size and tumor stage revealed that the cmDNA composition re-
mained relative stable at the order level (Figure 2D). Taken
together, these findings suggested that baseline signatures of
cmDNA microbiome diversity and composition were correlated
with LC patients, indicating that cmDNA may serve as a
possible biomarker for distinguishing LC patients from HCs.

Cell Reports Medicine

cmDNA microbial panel as a novel diagnostic biomarker
for early-stage lung cancer

In addition to the significant disparity observed in alpha diversity,
the beta diversity, measured via the Bray-Curtis distance, ex-
hibited a clear separation between LC patients and HCs by
nonmetric multidimensional scaling (NMDS; Adonis R? = 0.027,
p = 0.001; Figure 3A). Next, we performed linear discriminant
analysis effect size (LEfSe) analysis to further compare the
cmDNA microbial features of each group. Initially, we conducted
pairwise analyses at all taxonomic levels and created a clado-
gram to visualize the differences in relative abundance of each
taxa when comparing the LC and HC groups (linear discriminant
analysis [LDA] >2.0 and p < 0.05) (Figure 3B; Table S6). Subse-
quently, we identified 46 species enriched in LC patients and
130 species enriched in HCs that potentially correlated with
lung cancer (Figure 3C; Table S7). Notably, Pseudomonasa zoto-
formans, Acinetobacter guillouiae, Acinetobacter johnsonii,
Pseudomonas fluorescens, and Pseudomonas sp. SXM-1 were
the most enriched species in the LC group. In contrast, Fusarium
oxysporum and Delftia sp. WY8 were significantly enriched in the
HC group (Figure 3C).

Next, we investigated the possibility of identifying LC patients
from HCs based on the significant species. We built a random for-
est machine learning model based on differentially expressed
species data. The 119 important features were chosen for model
development that had mean decrease accuracy scores >1 with
random forest analysis. This model achieved an area under the
receiver operating characteristic curve (AUC) of 95.6%, along
with a sensitivity of 81.2%, a specificity of 90.7%, and an accuracy
of 86.8% (Figure 3D; Table S8). Furthermore, we depicted cancer
scores for each participant in the training cohort in Figure S3. The
predicted scores of cancer patients in the early stage (stage I) and
late stages (stages IlI-IV) were significantly higher than those for
HCs. Moreover, we evaluated the predictive ability of the detec-
tion classifier on two subgroups based on tumor diameter: one
with smaller tumors (<1 cm) and the other with larger tumors
(=1 cm). Fivefold cross-validation was used to test the discrimi-
nate efficacy in the subgroups. We obtained AUCs of 91.5%
and 94.0% for the subgroup with smaller tumors (<1 cm) and
the subgroup with larger tumors (> 1 cm), respectively (Figure 3E).

Before we developed the model, a decontamination pipeline
was implemented to eliminate potential contaminants. Specif-
ically, a threshold analysis was conducted on three negative con-
trols (see STAR Methods) and a list of potential contaminants was
created based on previous studies.'® We found that the selected
important species genomes included in our model had no overlap
with the possible microbial contamination (Table S9).

Independent validation of the early detection model
Next, we evaluated the performance of the detection model in
two independent validation datasets separately. The age and

Figure 2. cmDNA microbiome composition of all participants in the training cohort
(A) cmDNA microbiome composition at the order level (ordered by the most abundant taxa, Pseudomonadales order).
(B) Relative abundance comparisons of Pseudomonadales, Moraxellales, Hyphomicrobiales, and Corynebacteriales in the LC and HC groups at the order level

(Wilcoxon test).

(C) Relative abundance comparison of significant taxa in the LC and HC groups at the genus level (left) and the species level (right) (Wilcoxon test).
(D) Dynamic microbial composition of different tumor size subgroups (left) and different tumor stage subgroups (right) in the LC and HC groups at the order level.
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(B) Taxonomic cladogram from LEfSe showed significantly different taxa enriched in the HC and LC groups (the top 30 according to LDA).
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gender distribution of LC patients and HCs were similar in both
datasets (Tables S1, S2, and S3). The LC group was highlighted
by the majority of early-stage diseases in the independent vali-
dation | (stage |, 45/48, 93.8%), whereas LC patients in the inde-
pendent validation Il were at the late stage (stages llI-IV, 33/33,
100.0%). Intriguingly, the model showed high AUC values in
external validations, with 92.1% (95% confidence interval [CI]:
86.7%-97.5%) and 97.2% (95% Cl: 93.7%-100.0%) in valida-
tion | and validation Il, respectively (Figure 4A). The resultant sen-
sitivities are 87.5% (95% Cl: 74.1%-94.8%) in validation | and
87.9% (95% CIl: 70.9%-96.0%) in validation Il (Figure 4B;
Table S10). Based on the 75.0% specificity in the validation |
cohort, we chose a cancer score cutoff of 0.511 as optimal.
This model also exhibited a specificity of 90.0% in the validation
Il cohort. When combining the two validation cohorts, the model
achieved a sensitivity of 87.7% (95% CI: 78.0%-93.6%) and a
specificity of 79.4% (95% Cl: 67.5%-87.9%), with an AUC of
93.2% (95% ClI: 89.2%-97.2%) (Figures 4A and 4B). Further-
more, in both validation datasets, patients with LC had signifi-
cantly higher predicted cancer scores than HCs (Figure 4C;
Table S11). Importantly, our model exhibited sensitivities of
86.5% and 87.1% for tumors at very early-stage (stage I) and
small-size (<1cm), respectively, pointing to its powerful detec-
tion capabilities for identifying early-stage traits. To further eval-
uate the stability and robustness of this model, we applied WGS
data with a reduced coverage depth in an independent, small-
sized validation dataset (Table S12). Upon reducing WGS cover-
ages to 1x, we found that the predicted cancer scores of these
cancer patients were higher than the cutoff value of 0.511
(Figures 4D and S4; Table S12). In conclusion, our findings sug-
gested the superior and reliable performance of this LC detec-
tion model based on cmDNA.

Distinct circulating microbial profiles in postoperative
recurrence patients

In view of the potential clinical application of cmDNA in LC detec-
tion, we next investigated the association between the cmDNA
microbial features and recurrence in resected LC patients with
clinical stage T1. It has been observed that LC patients generally
experience postoperative recurrence within 3 years.”® We first
established an early-stage LC recurrence cohort, including 36
patients who suffered recurrence within 3 years after surgery
(R group) and 65 long-term survivors who survived >3 years
without recurrence (NR group) (Figure 1). The patients in the R
and NR groups were matched with respect to age, gender, ciga-
rette smoking history, tumor diameter, and pathology
(Table S13). Subsequently, we randomly split the recurrence
cohort into training and test sets at a ratio of 6:4. In the training
set, cmDNA was derived from plasma samples of 61 LC patients
(22 R and 39 NR) (Table S13). All of the samples of this recur-
rence cohort were preoperative samples, acquired on the morn-
ing of patients’ surgeries.

Cell Reports Medicine

Next, we investigated the changes of cmDNA microbial taxa at
the genus and species levels that corresponded to distinct
groups. At the genus level, Acinetobacter, Comamonas, Cuti-
bacterium, and Escherichia were the top enriched genera in
the training set (Figure 5A). Specifically, Comamonas and Cuti-
bacterium were lower in the R group, whereas Acinetobacter
and Escherichia were significantly more abundant (Figure S5A).
Furthermore, at the species level, we identified the five most
abundant species, namely Acinetobacter bereziniae, Acineto-
bacter johnsonii, Acinetobacter Iwoffii, Comamonas testos-
terone, and Cutibacterium acnes, among the microbial composi-
tions between the R and NR groups (Figure 5B). We noted that
Acinetobacter johnsonii and Acinetobacter Iwoffii were more
prominent in the R group’s plasma specimens as compared to
the NR group. In contrast, Acinetobacter bereziniae, Comamo-
nas testosterone, and Cutibacterium acnes were significantly
more abundant in the NR group (Figure S5B).

cmDNA signatures as a novel biomarker for recurrence
of LC
We identified 23 taxa enriched in the R group and 39 taxa enriched
in the NR group, which may relate to postoperative recurrence
through LEfSe analysis (LDA >2, p < 0.05) (Figure 5C;
Table S14). Of note, the Candidatus Nanosynbacteraceae family,
the Staphylococcus genus, and the Candidatus Nanopelagicales
order were the most enriched taxa in the R group, whereas the
Propionibacteriales order, the Pseudomonasa zotoformans spe-
cies, and the Ralstonia mannitolilytica species were the most en-
riched taxa in the NR group (LDA >2, p < 0.05) (Figure 5C). We then
assessed whether these microbial features could discriminate be-
tween the R and NR groups. Based on taxa DNA relative abun-
dance of each sample, the principal-component analysis (PCA)
revealed that the R group could be distinguished from the NR
group in the training set (Figure S5C). In addition, we performed
PCA on the test set and found that the R group was still separated
from the NR group (Figure S5D). No statistically different taxa were
found in the possible contaminants list (Table S9).
Subsequently, we explored the feasibility of differentiating pa-
tients belonging to the R group from those in the NR group by us-
ing the significant microbial characteristics. A machine learning
model was implemented and 5-fold cross-validation was per-
formed in the training set. The 5-fold cross-validation yields a
high accuracy of 85.3%, with a mean AUC value of 87.3% (Fig-
ure S5E). This model, based on cmDNA markers, exhibited a
sensitivity of 72.7% and a specificity of 84.6% in the training
set, with an AUC of 88.1% (95% Cl, 79.7%-96.6%) (Figure 6A).
In addition, in the test set, the model achieved a sensitivity of
71.3% and specificity of 84.6%, with an AUC of 80.9% (Fig-
ure 6B). We observed that the predicted recurrence scores of
the R group were significantly higher than those of the NR group
in the training set (p < 0.001) and the test set (p = 0.002) (Fig-
ure 6C). Furthermore, patients were categorized into high- and

(C) LEfSe identified significantly differentially abundant species in the HC and LC groups (the top 30 according to LDA).
(D) The receiver operating characteristic curve showed an AUC value of 95.6% in the training cohort.
(E) The receiver operating characteristic curve of 5-fold cross-validation in predicting LC with different tumor size subgroups, the subgroup with smaller tumors

(<1 cm, red line), and the subgroup with larger tumors (>1 cm, green line).
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data of 5x. Error bars represent each group’s mean + SD.

low-risk groups according to the median of predicted recurrence
scores. The Kaplan-Meier survival curve revealed that the recur-
rence-free survival (RFS) in the high-risk group was significantly
shorter (p < 0.001) than that of the low-risk group (Figure 6D). In
addition, we displayed the top 20 crucial taxa resulting from
random forest analysis, such as the Methylophilaceae family, in
Figure 6E. Importantly, we found that Methylophilaceae, the
top-most significant feature, was significantly correlated with
RFS (p < 0.001; Figure 6F).

As expected, RFS in the high-risk group proved to be signifi-
cantly shorter in the test set (Figure S5F). Furthermore, Kaplan-
Meier survival curve analysis demonstrated a significant associ-
ation between Methylophilaceae and RFS between the R and NR
groups (Figure S5G). Remarkably, the test set had a larger num-
ber of patients with TNM stage Il or Il (p = 0.002; Table S13).
Therefore, we conducted univariable and multivariable analyses
(Table S15), which demonstrated that the model predicting score
remained an independent predictor of RFS in the multivariate
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(C) LEfSe identified significantly differentially abundant taxa in the R and NR groups (the top 30 according to LDA).

Cox regression model (hazard ratio = 27.8, 95%CI: 3.6-216.5,
p = 0.001) even after adjusting for TNM stage.

DISCUSSION

Previous researchers have highlighted the significance of the tu-
mor microbiome in both tumor development and diag-
nosis,”%"'®27 providing opportunities for biomarker identification
in many fields of cancer. Most studies of microbial markers, how-
ever, tend to focus either on cancer detection®”?® or treatment.'®
Specifically, early-stage cancer detection methods, as previ-
ously reported by Zheng et al.>” have limited diagnostic accu-
racy. In our study, we aimed to improve the diagnostic sensitivity
of early-stage LC and postoperative recurrence. Unlike conven-
tional microbial investigations derived from fecal samples,”” we
established a machine learning model based on cmDNA in the
LC detection study, which achieved high sensitivity in discrimi-
nating between early-stage LC and noncancer subjects (86.5%
sensitivity for stage | and 87.1% sensitivity for tumors <1 cm in
independent validation datasets). Furthermore, a random forest
classifier in the LC recurrence study exhibited high discrimina-
tory performance between patients with or without recurrence,
with AUC values of 88.1% in the training set and 80.9% in the
test set, respectively.

A recent study by Poore et al. has proposed a new cancer
diagnostic approach based on cmDNA through microbiome an-
alyses of blood, demonstrating high accuracy.'® Furthermore,
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cmDNA is a promising tool in the diagnosis and prognosis of
esophageal adenocarcinoma.'® In the present study, our results
demonstrated distinct cmDNA profiles between LC patients and
HCs. Consistent with previous studies, '®?'2%20 | C patients dis-
played lower microbiota diversity than did HCs. We additionally
identified that cmDNA levels of 315 taxa were significantly
altered in LC. Notably, some of these taxa, including Actino-
myces®"*? and Acinetobacter,*® have been previously identified
as being significantly correlated with LC development. In addi-
tion, the top significant feature, Gammaproteobacteria, enriched
in the LC group, is associated with poor response to checkpoint-
based immunotherapy in non-small cell lung cancer.?® Using 119
significant species, we developed a robust classifier model pre-
dicting early-stage LC. An important feature, Granulicatella adlia-
cens,”® is observed to be significantly more abundant in LC,
further substantiating our diagnostic approach. Importantly,
our model outperformed the previous models®’ of gut micro-
biome signature in distinguishing LC and noncancer subjects.
Fivefold cross-validation demonstrated high accuracy, with
mean AUC values of 91.5% for tumor sizes <1 cm and 94.0%
for tumor sizes >1 cm, respectively. Notably, our model sensi-
tively identified early pathological features in independent
datasets.

Several studies have suggested that lower airway microbiota
is associated with the recurrence of LC and could facilitate tumor
progression.®*> In this study, we performed a comprehensive
analysis of cmDNA signatures between the R group and the
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NR group. Using a classifier based on cmDNA microbial fea-
tures, we achieved high performance levels in discriminating be-
tween the R and NR groups. Moreover, the predictive scores of
the recurrence model were significantly associated with RFS,
further demonstrating its potential as a noninvasive biomarker.
Notably, our cnDNA-based model provides a convenient and
noninvasive detection method for LC. Although some liquid bi-
opsy approaches, such as cell-free DNA methylation, could
improve LC detection performance, their application is limited
due to their high cost.*° To ensure adequate performance while
reducing expenses, we used WGS data with a coverage depth of
5x for model construction. The use of the low-coverage WGS
method significantly reduces the cost of our model when
compared to other liquid biopsy techniques. Moreover, the per-
formance of the model remains robust even with shallow WGS
data of 1x coverage depth.

The origin of cmDNA is still a mystery, however. In this study, we
found that the distribution of order-level phylotypes was similar
between cmDNA and paired intratumor bacterial. Although
some studies have confirmed that tumors contain intracellular
bacteria,®” the relative contribution of intratumor microbes at non-
tumor sites is not clear, which needs to be further characterized. In
addition, the composition of the microbiome of a participant is
affected by factors including lifestyle and diet, as well as treat-
ments of antibiotics. In our study, we carefully matched patient
and control groups with respect to age, gender, and smoking sta-
tus, particularly using larger sample sizes from multicenters of the
south and the north of China to enable us to mitigate interindi-
vidual variation. Given the complexity of the microbiome, there
are likely further unknown biological confounders, which should
be considered in further study.

This study has some limitations that need to be addressed.
First, although our model based on cmDNA showed high accu-
racy in LC detection, the specificity of the predictive model in
validation cohorts was not sufficient for the large population
screening. To mitigate this LC detection challenge, multi-omics
approaches that combine multiple cfDNA signatures, including
microbiome, methylation, and fragment markers, may boost
sensitivity and specificity for early cancer detection. The multi-
omic liquid biopsy approaches need larger sample sizes and
more robust integrated analyses, which may be investigated in
the future. Second, we were unable to conduct independent val-
idations of our LC recurrence model due to our limited number of
samples. Thus, further follow-up validations using larger sample
sizes are necessary. Third, although our model demonstrated
stability and robustness with shallow WGS data, the additional
shallow-coverage dataset had a small sample size of late-stage
patients. Therefore, it is necessary to validate our model further
with a larger dataset that includes early-stage patients pro-
cessed in the shallow-coverage test.

Cell Reports Medicine

In summary, our study provides valuable insights into the sig-
nificant alterations in cmDNA profiles in LC and HC patients, as
well as the microbial signatures of patients with recurrence. We
developed a highly sensitive cmDNA-based model that effec-
tively distinguished early-stage LC patients from noncancer con-
trols. Our findings also suggest the potential use of cmDNA as a
promising biomarker for postoperative recurrence, which could
significantly improve patient outcomes.

Limitations of the study

First, our study has revealed the consistent composition of
cmDNA and intratumor microbiome using a small sample size.
Further research necessitates a larger sample size of tumor tis-
sues. Second, the recurrence cohort predominantly comprised
lung adenocarcinoma patients. It warrants additional investiga-
tion as to whether the findings could expand to different popula-
tions. Future researchers should be aware of this factor when
incorporating our data into their analyses.
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Critical commercial assays

Life-MAGMAX Cell-free DNA Kit Thermo Fisher Cat#A29319
Qubit dsDNA HS Assay Kit Thermo Fisher Q32851

Hieff NGS® Ultima Pro DNA Library Prep Kit Yeasen Cat#12201ES24

FastDNA™ Spin Kit

MP Biomedicals

Cat#6560-200

Deposited data

Raw data
Custom data processing scripts

This paper
This paper

BIG: HRA005896
https://zenodo.org/records/10605234

Software and algorithms

R version 4.2.0
Bowtie2 (v2.3.5.1)

SPSS Version 22

R Development Core Team

https://bowtie-bio.sourceforge.net/
bowtie2/index.shtml

IBM Corporation

https://www.r-project.org
N/A

N/A

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Mantang
Qiu (giumantang@163.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The raw sequence data reported in this paper have been deposited in the Genome Sequence Archive of the Beijing Institute of Ge-
nomics (BIG) Data Center, BIG, Chinese Academy of Sciences, under accession code HRA005896 and are publicly accessible at
http://bigd.big.ac.cn/gsa-human. The codes to process and analyze data are publicly available at https://zenodo.org/records/
10605234.

Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon
request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patients and sample information

A total of 416 participants took part in the study (Figure 1). For the LC Detection Model study, we recruited 166 participants in the
training cohort, which comprised healthy control (HC, n = 97) from Aerospace 731 Hospital and previously untreated LC patients
(n = 69) from Peking University People’s Hospital, China. The LC patients included adenocarcinoma (n = 51), squamous cell carci-
noma (n = 12), small cell carcinoma (n = 5), and large-cell neuroendocrine carcinoma (n = 1), as detailed in Tables S1, S2, and S3. After
constructing the model, we conducted two prospective independent validation cohorts using plasma samples of 149 participants.
Validation cohort | had 48 HC and 48 LC participants, whereas Validation cohort || had 20 healthy participants and 33 LC participants.
The healthy participants in the validation cohorts were from Jiangsu Province Geriatric Hospital, while LC patients in Validation cohort
| were from The Second People’s Hospital of Shenzhen, and LC patients in Validation cohort Il were from Jiangsu Province Geriatric
Hospital. The LC and HC cohorts were gender and age-matched as shown in Table S3. For the LC Recurrence Model study, we
enrolled 101 participants. Patients and related samples were selected from specimen repository in Peking University People’s Hos-
pital between 2013 and 2018 according to follow criteria: 1. Clinical stage T1 lung cancer; 2. Received radical surgery; 3. Recurrence
or death in 3 years. Thirty-six patients were included as recurrence group (R group) and after matching for various clinicopathologic
variables, The sixty-five patients without known recurrence was chosen to the non-recurrence group (NR group). This study was
approved by the ethics committee at Peking University People’s Hospital (Approval No. 2022PHB454). All participants provided writ-
ten informed consent.
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METHOD DETAILS

DNA extraction and library preparation
Whole blood samples were collected in EDTA tubes after skin surfaces were sterilized twice and processed immediately. The sep-
aration of plasma and cellular components was achieved through centrifugation at 1600g for 10 min at 4°C. Subsequently, plasma
was centrifuged again at 16,000 g at 4°C to eliminate any residual cellular debris and stored at —80°C until the point of DNA extrac-
tion. Cell-free DNA was extracted from plasma using Life-MAGMAX Cell-free DNA Kit. The NGS cfDNA libraries were established for
whole genome sequencing using 10 to 250 ng of cfDNA. In brief, the concentration of cfDNA was measured using the Qubit dsDNA
HS Assay Kit in compliance with the manufacturer’s recommendations. Then, genomic libraries were produced using the Hieff NGS
Ultima Pro DNA Library Prep Kit for lllumina. Whole genome libraries were sequenced using 100-bp paired-end runs on the DNBSEQ-
T7 (Geneplus-Beijing Institute, Beijing, China).

To avoid contamination, we conducted three negative controls, wherein the complete DNA extraction and sequencing procedure
were repeated with blank tubes instead of participants’ plasma samples.

Sequence data processing

FastQC was used for FASTQ file quality control. All reads from the samples were initially mapped to the hg19 reference sequence of
human genome using Bowtie2 software (v2.3.5.1) with default parameters.*® To get microbial data of all plasma samples and ensure
human-derived reads were removed, we applied three bioinformatic analysis steps to the aligned results. First of all, reads that
aligned to human genome were removed using Samtools software with SAM-flags of “-f 12” and “-F 256”. The SAM flag of “-f
12” could extract only alignments with both paired reads unmapped to human genome and the SAM flag of “-F 256" required primary
alignment to be exracted.®® Secondly, the filtered reads were then aligned to the microbial reference genome databases available in
the NCBI using a k-mer-based algorithm through Kraken2.“® We used the complete genomes from NCBI, including the standard
Kraken2 database of archaea, bacteria, human, Univec_Core and viral, and supplement genome database of fungi, to avoid potential
contamination from draft genomes. Kraken2 hits accumulating less than 10% of K-mers matching the reference sequence were dis-
carded and a hit was considered true positive only if at least 50 reads were aligned to the reference database. Thirdly, the taxonomy
labels assigned by Kraken2 were analyzed by Bracken with a parameter of 32 k-mer distribution to estimate the species-level read
abundance.”' Bracken re-estimated species abundances from the Kraken2 output results by probabilistically re-distributing reads in
the taxonomic tree.

To assess the reproducibility of this workflow, we compared circulating microbial DNA profiles both the day before and the day of
surgery. We processed sequencing data analysis of two patients and found that genus-level taxa were similar in the adjacent two
days (Figure S6). Specifically, compared to the samples of the first day, there were 15 identical taxa in the sample of the second
day in the patient LCO1 (15/20) and 14 identical taxa in the patient LC02 (14/20) (Tables S16), which confirmed the robustness of
our cmDNA analysis.

Differentially abundant taxa identification

For phylogenetic diversity between clinical groups, alpha diversity was computed using the R package vegan to evaluate the richness
and evenness of each sample, and then compared with the Wilcoxon test. Beta diversity based on Bray-Curtis metrics was applied to
compare the dissimilarities between different groups with non-metric multidimensional scaling (NMDS). In order to identify signifi-
cantly differential taxa between clinical groups, we used the Wilcoxon test based on their relative abundance. Linear discriminant
analysis effect size (LEfSe) was further applied to identify significantly differentially enriched taxa between clinical groups,* with
Linear Discriminant Analysis (LDA) threshold set at 2.0 and p < 0.05.

Quality filtering

To mitigate the potential contamination effect, we applied two filtering steps to the significant taxa obtained from LEfSe analysis.
Firstly, we utilized the negative control samples to identify contaminant species. Specifically, we identified microbial reads and
computed the relative abundance of three negative control (NC) samples. Then, we performed a threshold analysis, similar to a pre-
vious study,?” where any significant species detected in the NC samples, with a relative abundance higher than 5% in any NC sample,
was considered contamination and flagged. Secondly, we curated a list of genera and species that were reported as contaminants in
previous studies,'®*® especially in the circulating microbiome research on multiple cancers from Poore et al.’® We removed any sig-
nificant taxa detected in the curated list.

Machine learning model

The LEfSe results identified significant features, which were utilized as inputs for the random forest analysis. The caret package
(https://cran.r-project.org/web/packages/caret/) and the randomForest R package (https://cran.r-project.org/web/packages/
randomForest/index.html) were employed for this purpose. In the analysis, 1000 trees were constructed using the randomForest
R package (version 4.7-1.1) with 5-fold cross-validation, and the process was repeated 100 times. The pROC R package was
used to generate class predictions and the receiver operating characteristics (ROC) curve.
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DNA extraction and 16S rRNA gene sequencing

Microbial community genomic DNA was extracted from lung tissue samples using the FastDNA Spin Kit for Soil (MP Biomedicals,
Southern California, U.S.) according to manufacturer’s instructions. The DNA extraction was checked on 1% agarose gel, and
DNA concentration and purity were determined with NanoDrop 2000 UV-vis spectrophotometer (Thermo Scientific, Wilmington,
USA). The bacterial 16S rRNA genes were amplified using the universal bacterial primers 27F (5'-AGRGTTYGATYMTGGCTCAG-
3') and 1492R (5'-RGYTACCTTGTTACGACTT-3'). PCR reactions were performed in triplicate condition. After electrophoresis,
PCR products were purified using AMPure PB beads (Pacifc Biosciences, CA, USA) and quantified with Quantus Fluorometer (Prom-
ega, WI, USA). All purified products were pooled in equimolar and the DNA library was constructed using the SMRTbell prep kit 3.0
(Pacifc Biosciences, CA, USA) according to PacBio’s instructions. The purified SMRTbell libraries were sequenced on the Pacbio
Sequel lle System (Pacifc Biosciences, CA, USA) by Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China).

Analysis of 16S rRNA sequencing data

All PacBio raw reads were processed using the SMRTLink analysis software (version 11.0) to obtain high-quality Hifi reads with a
minimum of three full passes and 99% sequence accuracy. The Hifi reads were barcode-identified and length-filtered. The
sequencing reads with a length <1,000 or >1,800 bp were removed. The Hifi reads were denoised using DADA2** plugin in the
Qiime2,*® with recommended parameters. Taxonomic assignment of DADA2 denoised sequences, known as amplicon sequence
variants (ASVs) was performed using the Naive bayes consensus taxonomy classifier implemented in Qiime2 and the Nucleotide
Sequence Database.

QUANTIFICATION AND STATISTICAL ANALYSIS
The Wilcoxon test was employed to compare the relative abundance at different phylogenetic levels between different clinical
groups. The Kaplan-Meier method and log rank test within the R package, survminer, were used to perform univariate survival anal-

ysis of RFS between the groups. The two-sided P-values <0.05 were considered statistically significant. All statistical analyses were
executed in R (version 4.2.0) and SPSS software (version 22.0; IBM Corporation Armonk, NY, USA).
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