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Abstract
We aim to conduct a meta-analysis on studies that evaluated the diagnostic performance of artificial intelligence (AI) algo-
rithms in the detection of primary bone tumors, distinguishing them from other bone lesions, and comparing them with 
clinician assessment. A systematic search was conducted using a combination of keywords related to bone tumors and AI. 
After extracting contingency tables from all included studies, we performed a meta-analysis using random-effects model 
to determine the pooled sensitivity and specificity, accompanied by their respective 95% confidence intervals (CI). Qual-
ity assessment was evaluated using a modified version of Transparent Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis (TRIPOD) and Prediction Model Study Risk of Bias Assessment Tool (PROBAST). The 
pooled sensitivities for AI algorithms and clinicians on internal validation test sets for detecting bone neoplasms were 84% 
(95% CI: 79.88) and 76% (95% CI: 64.85), and pooled specificities were 86% (95% CI: 81.90) and 64% (95% CI: 55.72), 
respectively. At external validation, the pooled sensitivity and specificity for AI algorithms were 84% (95% CI: 75.90) and 
91% (95% CI: 83.96), respectively. The same numbers for clinicians were 85% (95% CI: 73.92) and 94% (95% CI: 89.97), 
respectively. The sensitivity and specificity for clinicians with AI assistance were 95% (95% CI: 86.98) and 57% (95% CI: 
48.66). Caution is needed when interpreting findings due to potential limitations. Further research is needed to bridge this 
gap in scientific understanding and promote effective implementation for medical practice advancement.
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Introduction

Although relatively uncommon, bone tumors are the third most 
common cause of death for cancer patients under the age of 20 
[1, 2]. It is essential to perform an accurate assessment of the 
presence and extent of bone tumors, both primary and meta-
static, in order to perform the proper staging and treatment 
of these conditions. The accurate diagnosis of bone tumors 
hinges upon a comprehensive evaluation of three essential fac-
tors: clinical presentation, imaging appearance, and detailed 
histopathologic assessment [3]. Detecting bone abnormalities 
can be accomplished through a variety of imaging techniques, 
such as magnetic resonance imaging (MRI), positron emis-
sion tomography (PET) scan, X-ray, scintigraphy, and com-
puted tomography (CT) scans [4]. However, MRI is consid-
ered the modality of choice for local staging of bone tumors 
[5]. Traditional methods, while still a valuable tool for initial 
bone tumor diagnosis, face challenges in accurately assessing 
lesions within complex anatomical regions [5].
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It has been shown that artificial intelligence (AI) algorithms, 
particularly deep learning, have made great strides in image rec-
ognition [6]. Radiological images are no exception to this role. 
In the realm of machine learning, deep learning is a specialized 
subset characterized by the integration of three or more neural 
network, layers that mimic the functions of human neurons [7].

The application of AI in radiology dates back to 1992 
when it was first utilized for the detection of microcalcifica-
tions in mammography. However, in recent times, there has 
been a surge in interest and attention towards it [8].

The use of AI in radiology has been subject to considerable 
discussion over the past few years, with a focus on its advantages 
and disadvantages. Despite the potential benefits of incorporat-
ing AI into radiology practice, radiologists must take certain 
barriers into consideration. These include ethical dilemmas, pri-
vacy concerns, regulatory compliance, and the need for proper 
training of AI systems, and safe integration of AI technologies 
into routine clinical workflows [9]. Additionally, the accuracy 
and precision of implementing the system in clinical practice 
needs to be carefully evaluated. This includes assessing its reli-
ability and potential limitations to ensure appropriate utilization 
in real-world scenarios.

In the domain of AI applications for bone tumor detection, 
there has been a growing interest in recent years. This surge 
in interest is driven by the potential advantages AI offers in 
improving the accuracy and efficiency of bone tumor diagnosis 
[10]. However, to effectively harness the power of AI in this 
specialized field, it is crucial to recognize the current state of 
AI approaches, their associated results, and the existing gaps 
and limitations. These aspects are pivotal in justifying the need 
for a comprehensive meta-analysis.

In this study, we aim to conduct a meta-analysis on stud-
ies that evaluated the diagnostic performance of AI algo-
rithms in the detection of primary bone tumors, distinguish-
ing them from other bone lesions, and comparing them with 
clinician assessment. Furthermore, we attempted to compare 
the diagnostic precision of AI algorithms with that of expe-
rienced radiologists.

Materials and Methods

Protocol and Registration

The authors submitted this review to the International Pro-
spective Register of Systematic Reviews (PROSPERO) web-
site (CRD42022321526).

Search Strategy and Study Selection

To find articles related to AI algorithms in bone tumor diag-
nosis, we searched PubMed, Scopus, Web of Science core 

collection, CINAHL, EBSCO, IEEE, Medline, and ACM digi-
tal library. The initial search was conducted in March 2022 
and was updated in January 2023. We used a combination of 
keywords related to bone tumors and AI (Table E3-E7). We 
included original studies investigating the diagnostic perfor-
mance of artificial intelligence algorithms in detection of bone 
tumors in comparison of a control group (consisting of healthy 
controls, patients with benign bone lesions, or metastatic bone 
lesions). Language, publication time, and age of group par-
ticipants are not limited. We excluded studies that met the 
following criteria: non-original studies, studies on metastasis 
outcome, and studies that were not written in English. Our 
meta-analysis exclusively incorporated studies providing the 
complete set of four numbers in a contingency table.

Data Extraction

We extracted the following variables in each study: author and 
publication year; country of study; the number of participants 
for each trait; imaging modality; utilized algorithm and archi-
tecture; imaging dimensions; evaluation metrics; level; training 
size; type of validation and validation size; imaging view; the 
number of TN, FP, TP, FN; sensitivity and specificity; positive 
predictive value, the area under the curve (A.U.C.), and accu-
racy. We created a contingency table for each study from the 
nominal data provided. To guarantee the precision of the data 
for analysis, two reviewers independently assessed each table.

Quality Assessment

We employed the Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagnosis (TRI-
POD) checklist to assess adherence to reporting guidelines 
in the studies under review. This checklist consists of 22 rec-
ommendations that aim to promote transparent reporting of 
research that involves the development and/or validation of 
prediction models [11]. However, since not all items on this 
checklist were relevant for AI studies (e.g., reporting follow-
up time in diagnostic accuracy studies), we used a modified 
version of TRIPOD (Table E6). To evaluate bias and appli-
cability, we utilized the Prediction Model Study Risk of Bias 
Assessment Tool (PROBAST) checklist, which is designed 
to assess papers based on four key areas: participants, predic-
tors, outcomes, and analysis (Table E7) [12]. We evaluated 
the training and testing images for bias and applicability in 
the first area.

Statistical Analysis

We performed a meta-analysis of studies to assess the diag-
nostic performance of AI algorithms and clinicians. If no 
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less than three eligible studies were identified, we used a 
random-effects model, in order to consider the heterogene-
ity between studies, to determine the combined sensitivity 
and specificity, accompanied by their respective 95% confi-
dence intervals (CI). Additionally, summary receiver operat-
ing characteristic (ROC) curves were made to calculate the 
pooled sensitivities and specificities.

Furthermore, we performed a meta-regression analysis to 
investigate possible reasons for differences among the studies, 
analyzing factors such as the utilization of data augmentation, 
imaging view, imaging modality, usage of transfer learning 
technique, localization of pathology in model output, and the 
type of approach used in each study. Statistical significance 
was determined using a significance level of P less than 0.05. 
We performed all data analysis using Stata version 17 software 
(Stata Corp, College Station, TX) [13, 14].

Publication Bias

To reduce the potential impact of publication bias, we 
checked the reference lists of the studies included in our 
analysis. Furthermore, we thoroughly assessed publication 
bias by conducting a regression analysis involving diagnostic 
log odds ratios and asymmetry testing [15].

Results

Study Selection and Characteristics

Based on a database search, we found 3406 articles, of 
which 794 were retrieved from PubMed and 1406 from Sco-
pus. The same numbers for other databased can be observed 
in Fig. 1. A total of 1280 were removed by automated and 
manual deduplication before the screening. The title and 
abstract screening process started with 2126 articles, 462 of 
them not being original, nine of which were not written in 
English, and 1583 were irrelevant to our topic.

The full-text screening was conducted on the remain-
ing 72 records, which resulted in 45 studies being excluded 
based on the following criteria: full text not found (n = 13), 
not enough data to be extracted (n = 17), and only performed 
segmentation (n = 15). To resolve any disagreements in each 
phase, the research team engaged in thorough discussions 
and deliberations among themselves (Fig. 1).

In accordance with Tables  1 and 2, 24 studies were 
included in the qualitative and quantitative synthesis. 
Twenty-three studies evaluated their algorithm through 
internal validation [10, 16–37], nine through external vali-
dation [1, 10, 18, 21, 24, 25, 38–40] (five used both types of 
validation [10, 18, 21, 24, 25]). Internal validation involves 
setting aside a portion of the initial patient dataset to evalu-
ate the model’s performance, whereas external validation 

employs an entirely distinct patient population to assess the 
model’s performance [41]. Fourteen studies implemented 
the algorithm on X-ray images [1, 10, 16, 19, 20, 24, 25, 
29–33, 36], eleven utilized MRI [18, 21–23, 27, 28, 34, 35, 
37, 38, 40], two used CT-scan, and one used panoramic 
radiograph [26] (Arana et al. used both CT and X-ray[17]). 
Gitto et al. also performed PET-CT scan along with a CT 
scan [39]. In machine learning concept, a tuning set, often 
referred to as a validation set or a development set, rep-
resents a subset of your dataset employed for the purpose 
of fine-tuning the hyperparameters of a machine learning 
algorithm. It also plays a crucial role in making decisions 
concerning the model’s architecture and configuration [42].

In most of the included studies, tumors have been detected 
in multiple body parts simultaneously. The standard refer-
ence for validation of the diagnosis of the lesion was also 
histopathology (in 20 studies) [1, 10, 17–25, 27–30, 34, 37, 
39, 40, 43] or expert radiologists and biopsy at the same time 
in two studies [26, 31]. Five studies did not mention their 
standard reference [16, 32, 33, 35, 36].

Study Participants and Algorithm Development

The total number of study participants or bone lesions could not 
be determined since some articles provided insufficient data. 
The mean age of the participants differed widely between stud-
ies (median, 33.1; IQR, 26–53), the same as the percentage of 
disease-positive participants (median, 46.6; IQR, 30.6–75.8). 
Across all experiments, a cumulative quantity of 37,501 images 
was employed to train algorithms to detect lesions on 19,130 
images as testing sets. A total of 43.2% contained primary bone 
malignancies, while the remaining was considered as control 
group. Eleven studies used data augmentation, and six used 
transfer learning. (Tables E1-3).

Model Performance

Tables E2 and E3 supplementary presents the results of 
various studies that evaluated model output using different 
metrics. Specifically, 21 studies used sensitivity and speci-
ficity, all 24 used accuracies, 14 used the area under the 
receiver operating characteristic curve, 19 used positive and 
negative predictive values, and 18 used F1 as the metric for 
assessment.

Quality Assessment

Figure 2 illustrates the compliance of each study to the modi-
fied version of the TRIPOD statement tool. None of the studies 
included in the analysis comply with items 8 and 9 of the pro-
tocol, pertaining to sample size and description of the handling 
of missing data, respectively. Furthermore, the adherence per-
centages were also notably low for some other key items, such 
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as the description of participant flow through the study (24%), 
explanation of the usage of the prediction model (24%), and 
dates of image collection (30%). Of the 27 items evaluated, 17 
received adherence ratings equal to or above 50%.

PROBAST was also evaluated on the included studies, 
resulting in a total rating of 37 (55.22%) studies with a low 
risk of bias and 31 (67.39%) studies with low concerns for 
applicability, as depicted in Fig. 2. Notably, 23 (95.83%) 
studies were classified as having a high risk of patient selec-
tion bias due to the predetermined inclusion and exclusion 
criteria. However, five studies (20.83%) raised concerns 
regarding the applicability of the results.

Meta‑Analysis

A total of 27 studies containing adequate data were included in 
our study, from which we extracted 86 contingency tables for 

binary bone tumor detection. Of these, 42 contingency tables 
from 21 studies were related to AI algorithms with internal vali-
dation, 11 contingency tables from eight studies were related to 
AI algorithms with external validation, ten contingency tables 
from two studies were related to clinicians’ performance with 
internal validation, and 16 contingency Tables from three stud-
ies were related to clinicians’ performance with external vali-
dation. An additional seven contingency tables were extracted 
from a single study investigating clinicians who used AI as an 
assistant tool [34]. A meta-analysis was conducted for all five 
groups of studies; however, due to insufficient data, the groups 
of clinicians with AI assistance and clinicians with internal 
validation had less than three studies each, necessitating fur-
ther research to validate the results in these groups. Figure 3 is 
a forest plot displaying the effect estimates of four groups of our 
study and their confidence intervals. Each row in the plot cor-
responds to an AI model, with some studies evaluating multiple 

Fig. 1  Flowchart of study 
selection
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AI algorithms. Figure 4 demonstrates the hierarchical summary 
receiver operating characteristic (HSROC) curves for internal 
and external validation test sets, respectively.

The pooled sensitivities for AI algorithms and clinicians 
on internal validation test sets were 84% (95% CI: 79,88) 
and 76% (95% CI: 64,85), and pooled specificities were 86% 
(95% CI: 81,90), and 64% (95% CI: 55,72), respectively. At 
external validation, the pooled sensitivity and specificity for 
AI algorithms were 84% (95% CI: 74,90) and 91% (95% CI: 
83,96), and also for clinicians were 85% (95% CI: 73,92) 
and 94% (95% CI: 89,97) respectively (Table 3). The pooled 
sensitivity and specificity from seven contingency tables of 
clinicians with AI assistance are 95% (95% CI: 86.98) and 
57% (95% CI: 48,66). The positive and negative likelihood 
ratio, AUC, and diagnostic odds ratio of each group is also 
demonstrated in Table 3.

The findings from our analyses of studies using the inter-
nal validation demonstrate that the use of MRI was associated 

with lower sensitivity and specificity (75%, CI: 67, 83, and 
74%, CI: 66, 83, respectively) compared to other imaging 
modalities (90%, CI: 86, 94, P-value = 0.00 and 92%, CI: 89, 
95, P-value = 0.00). It was also found that the use of data aug-
mentation resulted in a lower sensitivity (82%, CI:74–90 versus 
86%, CI: 80–91, P-value:0.00) and higher specificity (90%, 
CI: 85–96 versus 82%, CI: 75–89, P-value:0.10). Furthermore, 
transfer learning had a positive impact on both sensitivity and 
specificity (Sensitivity: 97%, CI: 94–100 versus 81%, CI: 
76,86, P-value: 0.36) (specificity: 97%, CI: 93,100 versus 83%, 
CI:78–89, P-value: 0.43). The study found that there was no 
significant difference in sensitivity and specificity between stud-
ies that utilized patients without bone lesions as a control group 
versus those that used patients with other types of tumors as a 
control group (excluding the specific tumor under investigation). 
The P-values for sensitivity and specificity were 0.26 and 0.77, 
respectively. In Tables E9-12, other parameters and results from 
meta-regression can be found for other groups as well.

Table 3  Pooled sensitivities, specificities, area under the curve, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio

Area under the curve (AUC), artificial intelligence (AI)

Parameter Sensitivity (%) Specificity (%) AUC Positive  
likelihood ratio

Negative  
likelihood ratio

Diagnostic odds 
ratio

No. of 
contingency 
tables

Algorithms, 
internal vali-
dation

84 (79–88) 86 (81–90) 0.92 (0.89–0.94) 6.0 (4.2–8.6) 0.18 (0.13–0.25) 33 ( 17–61) 42

Algorithms, 
external vali-
dation

84 ( 75–90) 91 ( 83–96) 0.93 ( 0.91–0.95) 9.6 ( 4.9–19.0) 0.18 ( 0.11–0.28) 54 ( 25–117) 11

Clinicians, inter-
nal validation

76 ( 64–85) 64 ( 55–72) 0.74 ( 0.70–0.78) 2.1 ( 1.7–2.6) 0.38 ( 0.26–0.54) 6 ( 4–9) 10

Clinicians, 
external vali-
dation

85 ( 73–92) 94 ( 89–97) 0.96 ( 0.94–0.97) 13.6 ( 7.2–25.7) 0.316 ( 0.09–0.3) 85 ( 29–250) 16

Clinicians with 
AI assistance

95 ( 86–98) 57 ( 48–66) 0.66 ( 0.62–0.70) 2.2 ( 1.8–2.7) 0.09 ( 0.03–0.26) 24 ( 8–75) 7

Fig. 2  Adherence to Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD), and Predic-
tion Model Study Risk of Bias Assessment Tool (PROBAST) reporting guidelines
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Publication Bias

Publication bias assessment was performed individu-
ally for all five groups, including studies with internally 
validated AI, externally validated AI, internally validated 
clinician, externally validated clinician, and clinicians 
with AI assistance performance. The slope coefficient 

was − 31.15 (95%CI: − 48.92, − 13.38; P = 0.00), − 13.91 
(95%CI: − 31.17, 3.35; P = 0.10), − 3.26 (95%CI: − 27.74, 
21.22; P = 0.77), − 24.45 (95%CI: − 65.62, 16.72; P = 0.22), 
and − 985.26 (95%CI: − 1311.26, − 659.23; P = 0.00) respec-
tively, which indicates a weak association between sample 
size and effect size for the first four groups, and low poten-
tial for publication bias (Table E8).

Fig. 3  Forest plots of algorithms and clinicians’ performance. The plot shows the effect size estimate (diamond symbol), confidence interval 
(horizontal line), and the individual study effect sizes (square symbols) with their corresponding weights

Fig. 4  Hierarchical summary receiver operating characteristic (HSROC) curves for A algorithms on internal validation, B algorithms on external 
validation, C clinicians on internal validation, D clinicians on external validation
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Discussion

To the best of our knowledge, there appears to be an absence 
of meta-analytical investigations into the performance of arti-
ficial intelligence in detecting primary bone lesions via imag-
ing. There is, however, a growing body of original literature on 
this subject. Zheng and colleagues conducted a meta-analysis, 
examining the use of artificial intelligence in detecting metas-
tasis in various parts of the body, including lymph nodes, bone, 
and other types, through imaging [44]. The authors reported a 
diagnostic odds ratio of 22.14 (95% CI: 18.52, 26.46) for all 
metastases, significantly less than the diagnostic odds ratios 
derived from both our internal and external validation studies, 
which are 33 (95% CI: 17,61) and 54 (95% CI: 25,117).

In certain cases, the machines outperformed human 
experts, demonstrating robust performance. Based on these 
findings, automated methods may offer an alternative to 
traditional expert-driven approaches for the diagnosis of 
certain medical conditions. Despite the promising results 
of our study, caution must be exercised when interpreting 
the findings due to the potential for underreporting of radi-
ologists’ performance. This may be attributed to a range of 
factors, including the following:

1. The studies under review lack specification regarding 
the level of experience exhibited by the radiologists.

2. The modalities used in different studies to detect bone tumor 
may not be the modality of choice for this purpose.

3. The lack of sufficient number of studies that have simul-
taneously examined the quality of algorithms and the 
accuracy of radiologists on a dataset.

In a meta-analysis of 21 studies performed in 2020, You-
nis et al. measured the pooled sensitivity and specificity of 
18-fluorodeoxyglucose-positron emission tomography (18 
F-FDG-PET) combined with CT, modalities used by expert 
radiologists, for the detection of bone and soft tissue sar-
comas, 89.2 and 76.3%, respectively [45]. A meta-analysis 
of 31 studies examined expert radiologists’ performance in 
detecting Ewing sarcoma (ES) using 18 F-FDG PET as well 
as PET/computed tomography (PET/CT). The pooled sen-
sitivity and specificity for total ES lesions were found to be 
92.6% and 74.1%, respectively [46].

Furthermore, several secondary outcomes have been identi-
fied from the data in addition to the general findings. The meta-
regression findings in Table E9 illustrate that applying AI to the 
identification of bone tumors using X-ray and CT pictures gave 
much better results than MRI images, which was predictable 
based on previous studies revealing that CT is a superior modal-
ity for visualizing bone structure and abnormalities [47]. Fur-
thermore, the application of transfer learning, a machine learn-
ing approach for enhancing learning in new tasks by leveraging 

knowledge gained from a related task (48), has significantly 
improved the performance of the automated method. It should 
be noted, however, that data augmentation, a strategy for con-
structing incremental algorithms or sampling algorithms using 
unobserved data or latent variables [48], adversely affects the 
sensitivity of machine learning algorithms [43, 49].

For a proper evaluation of the results of this study, consid-
eration must be given to the limitations encountered during 
the investigation. It is difficult to achieve the utmost precision 
in the conclusions of this study due to a lack of data available 
for analysis. As can be observed in Table E1, the assessment 
of the accuracy of AI on external validation was predicated 
solely on data derived from five studies [1, 10, 18, 38, 39]. 
One of the main challenges was analyzing the performance of 
radiologists. Table E1 also demonstrates that just two studies 
reported the data from radiologist on internal validation [34, 43] 
and three on external validation [1, 10, 38]. Presently, a scar-
city of research on this topic creates a remarkable chance for 
diligent researchers to conduct further investigations and bridge 
the existing gap in scientific understanding. Such endeavors 
would offer valuable insights into the viability of utilizing this 
technology in real-world contexts and thus promote its effective 
implementation for the advancement of medical practice. The 
other limitations we encountered in this review article were 
the absence of precise participant and image quantity details 
in some studies, particularly regarding those with or without a 
bone lesion. Additionally, the limited number of studies for each 
specific body region hindered our ability to conduct meaningful 
sub-group analyses based on different areas containing bone 
malignancies. Consequently, future research endeavors in this 
field hold the potential to provide valuable insights, enabling 
researchers to more accurately assess AI performance in detect-
ing bone tumors within distinct body regions. We intended to 
perform a sensitivity analysis to minimize the impact of publi-
cation bias measured by modified-PROBAST method. How-
ever, the results of quality assessment showed that the number 
of studies in low risk of bias subgroup did not reach a suitable 
number (four studies) to perform analysis.
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