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Abstract

We aim to conduct a meta-analysis on studies that evaluated the diagnostic performance of artificial intelligence (Al) algo-
rithms in the detection of primary bone tumors, distinguishing them from other bone lesions, and comparing them with
clinician assessment. A systematic search was conducted using a combination of keywords related to bone tumors and Al.
After extracting contingency tables from all included studies, we performed a meta-analysis using random-effects model
to determine the pooled sensitivity and specificity, accompanied by their respective 95% confidence intervals (CI). Qual-
ity assessment was evaluated using a modified version of Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis (TRIPOD) and Prediction Model Study Risk of Bias Assessment Tool (PROBAST). The
pooled sensitivities for Al algorithms and clinicians on internal validation test sets for detecting bone neoplasms were 84%
(95% CI: 79.88) and 76% (95% CI: 64.85), and pooled specificities were 86% (95% CI: 81.90) and 64% (95% CI: 55.72),
respectively. At external validation, the pooled sensitivity and specificity for Al algorithms were 84% (95% CI: 75.90) and
91% (95% CI: 83.96), respectively. The same numbers for clinicians were 85% (95% CI: 73.92) and 94% (95% CI: 89.97),
respectively. The sensitivity and specificity for clinicians with Al assistance were 95% (95% CI: 86.98) and 57% (95% CI:
48.66). Caution is needed when interpreting findings due to potential limitations. Further research is needed to bridge this
gap in scientific understanding and promote effective implementation for medical practice advancement.
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Introduction

Although relatively uncommon, bone tumors are the third most
common cause of death for cancer patients under the age of 20
Mohammad Amin Salehi and Soheil Mohammadi contributed [1, 2]. It is essential to perform an accurate assessment of the
equally. presence and extent of bone tumors, both primary and meta-
static, in order to perform the proper staging and treatment
of these conditions. The accurate diagnosis of bone tumors
hinges upon a comprehensive evaluation of three essential fac-
tors: clinical presentation, imaging appearance, and detailed
histopathologic assessment [3]. Detecting bone abnormalities
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can be accomplished through a variety of imaging techniques,
such as magnetic resonance imaging (MRI), positron emis-
sion tomography (PET) scan, X-ray, scintigraphy, and com-
puted tomography (CT) scans [4]. However, MRI is consid-
ered the modality of choice for local staging of bone tumors
[5]. Traditional methods, while still a valuable tool for initial
bone tumor diagnosis, face challenges in accurately assessing
lesions within complex anatomical regions [5].
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It has been shown that artificial intelligence (Al) algorithms,
particularly deep learning, have made great strides in image rec-
ognition [6]. Radiological images are no exception to this role.
In the realm of machine learning, deep learning is a specialized
subset characterized by the integration of three or more neural
network, layers that mimic the functions of human neurons [7].

The application of Al in radiology dates back to 1992
when it was first utilized for the detection of microcalcifica-
tions in mammography. However, in recent times, there has
been a surge in interest and attention towards it [8].

The use of Al in radiology has been subject to considerable
discussion over the past few years, with a focus on its advantages
and disadvantages. Despite the potential benefits of incorporat-
ing Al into radiology practice, radiologists must take certain
barriers into consideration. These include ethical dilemmas, pri-
vacy concerns, regulatory compliance, and the need for proper
training of Al systems, and safe integration of Al technologies
into routine clinical workflows [9]. Additionally, the accuracy
and precision of implementing the system in clinical practice
needs to be carefully evaluated. This includes assessing its reli-
ability and potential limitations to ensure appropriate utilization
in real-world scenarios.

In the domain of Al applications for bone tumor detection,
there has been a growing interest in recent years. This surge
in interest is driven by the potential advantages Al offers in
improving the accuracy and efficiency of bone tumor diagnosis
[10]. However, to effectively harness the power of Al in this
specialized field, it is crucial to recognize the current state of
Al approaches, their associated results, and the existing gaps
and limitations. These aspects are pivotal in justifying the need
for a comprehensive meta-analysis.

In this study, we aim to conduct a meta-analysis on stud-
ies that evaluated the diagnostic performance of Al algo-
rithms in the detection of primary bone tumors, distinguish-
ing them from other bone lesions, and comparing them with
clinician assessment. Furthermore, we attempted to compare
the diagnostic precision of Al algorithms with that of expe-
rienced radiologists.

Materials and Methods

Protocol and Registration

The authors submitted this review to the International Pro-
spective Register of Systematic Reviews (PROSPERO) web-
site (CRD42022321526).

Search Strategy and Study Selection

To find articles related to Al algorithms in bone tumor diag-
nosis, we searched PubMed, Scopus, Web of Science core

collection, CINAHL, EBSCO, IEEE, Medline, and ACM digi-
tal library. The initial search was conducted in March 2022
and was updated in January 2023. We used a combination of
keywords related to bone tumors and Al (Table E3-E7). We
included original studies investigating the diagnostic perfor-
mance of artificial intelligence algorithms in detection of bone
tumors in comparison of a control group (consisting of healthy
controls, patients with benign bone lesions, or metastatic bone
lesions). Language, publication time, and age of group par-
ticipants are not limited. We excluded studies that met the
following criteria: non-original studies, studies on metastasis
outcome, and studies that were not written in English. Our
meta-analysis exclusively incorporated studies providing the
complete set of four numbers in a contingency table.

Data Extraction

We extracted the following variables in each study: author and
publication year; country of study; the number of participants
for each trait; imaging modality; utilized algorithm and archi-
tecture; imaging dimensions; evaluation metrics; level; training
size; type of validation and validation size; imaging view; the
number of TN, FP, TP, FN; sensitivity and specificity; positive
predictive value, the area under the curve (A.U.C.), and accu-
racy. We created a contingency table for each study from the
nominal data provided. To guarantee the precision of the data
for analysis, two reviewers independently assessed each table.

Quality Assessment

We employed the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis (TRI-
POD) checklist to assess adherence to reporting guidelines
in the studies under review. This checklist consists of 22 rec-
ommendations that aim to promote transparent reporting of
research that involves the development and/or validation of
prediction models [11]. However, since not all items on this
checklist were relevant for Al studies (e.g., reporting follow-
up time in diagnostic accuracy studies), we used a modified
version of TRIPOD (Table E6). To evaluate bias and appli-
cability, we utilized the Prediction Model Study Risk of Bias
Assessment Tool (PROBAST) checklist, which is designed
to assess papers based on four key areas: participants, predic-
tors, outcomes, and analysis (Table E7) [12]. We evaluated
the training and testing images for bias and applicability in
the first area.

Statistical Analysis

We performed a meta-analysis of studies to assess the diag-
nostic performance of Al algorithms and clinicians. If no
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less than three eligible studies were identified, we used a
random-effects model, in order to consider the heterogene-
ity between studies, to determine the combined sensitivity
and specificity, accompanied by their respective 95% confi-
dence intervals (CI). Additionally, summary receiver operat-
ing characteristic (ROC) curves were made to calculate the
pooled sensitivities and specificities.

Furthermore, we performed a meta-regression analysis to
investigate possible reasons for differences among the studies,
analyzing factors such as the utilization of data augmentation,
imaging view, imaging modality, usage of transfer learning
technique, localization of pathology in model output, and the
type of approach used in each study. Statistical significance
was determined using a significance level of P less than 0.05.
We performed all data analysis using Stata version 17 software
(Stata Corp, College Station, TX) [13, 14].

Publication Bias

To reduce the potential impact of publication bias, we
checked the reference lists of the studies included in our
analysis. Furthermore, we thoroughly assessed publication
bias by conducting a regression analysis involving diagnostic
log odds ratios and asymmetry testing [15].

Results
Study Selection and Characteristics

Based on a database search, we found 3406 articles, of
which 794 were retrieved from PubMed and 1406 from Sco-
pus. The same numbers for other databased can be observed
in Fig. 1. A total of 1280 were removed by automated and
manual deduplication before the screening. The title and
abstract screening process started with 2126 articles, 462 of
them not being original, nine of which were not written in
English, and 1583 were irrelevant to our topic.

The full-text screening was conducted on the remain-
ing 72 records, which resulted in 45 studies being excluded
based on the following criteria: full text not found (n=13),
not enough data to be extracted (n=17), and only performed
segmentation (n=15). To resolve any disagreements in each
phase, the research team engaged in thorough discussions
and deliberations among themselves (Fig. 1).

In accordance with Tables 1 and 2, 24 studies were
included in the qualitative and quantitative synthesis.
Twenty-three studies evaluated their algorithm through
internal validation [10, 16-37], nine through external vali-
dation [1, 10, 18, 21, 24, 25, 38—40] (five used both types of
validation [10, 18, 21, 24, 25]). Internal validation involves
setting aside a portion of the initial patient dataset to evalu-
ate the model’s performance, whereas external validation

@ Springer

employs an entirely distinct patient population to assess the
model’s performance [41]. Fourteen studies implemented
the algorithm on X-ray images [1, 10, 16, 19, 20, 24, 25,
29-33, 36], eleven utilized MRI [18, 21-23, 27, 28, 34, 35,
37, 38, 40], two used CT-scan, and one used panoramic
radiograph [26] (Arana et al. used both CT and X-ray[17]).
Gitto et al. also performed PET-CT scan along with a CT
scan [39]. In machine learning concept, a tuning set, often
referred to as a validation set or a development set, rep-
resents a subset of your dataset employed for the purpose
of fine-tuning the hyperparameters of a machine learning
algorithm. It also plays a crucial role in making decisions
concerning the model’s architecture and configuration [42].

In most of the included studies, tumors have been detected
in multiple body parts simultaneously. The standard refer-
ence for validation of the diagnosis of the lesion was also
histopathology (in 20 studies) [1, 10, 17-25, 27-30, 34, 37,
39, 40, 43] or expert radiologists and biopsy at the same time
in two studies [26, 31]. Five studies did not mention their
standard reference [16, 32, 33, 35, 36].

Study Participants and Algorithm Development

The total number of study participants or bone lesions could not
be determined since some articles provided insufficient data.
The mean age of the participants differed widely between stud-
ies (median, 33.1; IQR, 26-53), the same as the percentage of
disease-positive participants (median, 46.6; IQR, 30.6-75.8).
Across all experiments, a cumulative quantity of 37,501 images
was employed to train algorithms to detect lesions on 19,130
images as testing sets. A total of 43.2% contained primary bone
malignancies, while the remaining was considered as control
group. Eleven studies used data augmentation, and six used
transfer learning. (Tables E1-3).

Model Performance

Tables E2 and E3 supplementary presents the results of
various studies that evaluated model output using different
metrics. Specifically, 21 studies used sensitivity and speci-
ficity, all 24 used accuracies, 14 used the area under the
receiver operating characteristic curve, 19 used positive and
negative predictive values, and 18 used F1 as the metric for
assessment.

Quality Assessment

Figure 2 illustrates the compliance of each study to the modi-
fied version of the TRIPOD statement tool. None of the studies
included in the analysis comply with items 8 and 9 of the pro-
tocol, pertaining to sample size and description of the handling
of missing data, respectively. Furthermore, the adherence per-
centages were also notably low for some other key items, such
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as the description of participant flow through the study (24%),
explanation of the usage of the prediction model (24%), and
dates of image collection (30%). Of the 27 items evaluated, 17
received adherence ratings equal to or above 50%.

PROBAST was also evaluated on the included studies,
resulting in a total rating of 37 (55.22%) studies with a low
risk of bias and 31 (67.39%) studies with low concerns for
applicability, as depicted in Fig. 2. Notably, 23 (95.83%)
studies were classified as having a high risk of patient selec-
tion bias due to the predetermined inclusion and exclusion
criteria. However, five studies (20.83%) raised concerns
regarding the applicability of the results.

Meta-Analysis

A total of 27 studies containing adequate data were included in
our study, from which we extracted 86 contingency tables for

binary bone tumor detection. Of these, 42 contingency tables
from 21 studies were related to Al algorithms with internal vali-
dation, 11 contingency tables from eight studies were related to
Al algorithms with external validation, ten contingency tables
from two studies were related to clinicians’ performance with
internal validation, and 16 contingency Tables from three stud-
ies were related to clinicians’ performance with external vali-
dation. An additional seven contingency tables were extracted
from a single study investigating clinicians who used Al as an
assistant tool [34]. A meta-analysis was conducted for all five
groups of studies; however, due to insufficient data, the groups
of clinicians with Al assistance and clinicians with internal
validation had less than three studies each, necessitating fur-
ther research to validate the results in these groups. Figure 3 is
a forest plot displaying the effect estimates of four groups of our
study and their confidence intervals. Each row in the plot cor-
responds to an Al model, with some studies evaluating multiple
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Table 3 Pooled sensitivities, specificities, area under the curve, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio

Parameter Sensitivity (%) Specificity (%) AUC Positive Negative Diagnostic odds No. of
likelihood ratio  likelihood ratio ratio contingency
tables

Algorithms, 84 (79-88) 86 (81-90) 0.92 (0.89-0.94) 6.0(4.2-8.6) 0.18(0.13-0.25) 33 (17-61) 42
internal vali-
dation

Algorithms, 84 (75-90) 91 ( 83-96) 0.93(0.91-0.95) 9.6(4.9-19.0) 0.18 (0.11-0.28) 54 (25-117) 11
external vali-
dation

Clinicians, inter- 76 ( 64-85) 64 (55-72) 0.74 (0.70-0.78) 2.1 (1.7-2.6) 0.38 (0.26-0.54) 6 (4-9) 10
nal validation

Clinicians, 85 (73-92) 94 (89-97) 0.96 (0.94-0.97) 13.6 (7.2-25.7) 0.316 (0.09-0.3) 85 (29-250) 16
external vali-
dation

Clinicians with 95 ( 86-98) 57 (48-66) 0.66 (0.62-0.70) 2.2 (1.8-2.7) 0.09 (0.03-0.26) 24 (8-75) 7

Al assistance

Area under the curve (AUC), artificial intelligence (Al)

Al algorithms. Figure 4 demonstrates the hierarchical summary
receiver operating characteristic (HSROC) curves for internal
and external validation test sets, respectively.

The pooled sensitivities for Al algorithms and clinicians
on internal validation test sets were 84% (95% CI: 79,88)
and 76% (95% CI: 64,85), and pooled specificities were 86%
(95% CI: 81,90), and 64% (95% CI: 55,72), respectively. At
external validation, the pooled sensitivity and specificity for
Al algorithms were 84% (95% CI: 74,90) and 91% (95% CI:
83,96), and also for clinicians were 85% (95% CI: 73,92)
and 94% (95% CI: 89,97) respectively (Table 3). The pooled
sensitivity and specificity from seven contingency tables of
clinicians with AT assistance are 95% (95% CI: 86.98) and
57% (95% CI: 48,66). The positive and negative likelihood
ratio, AUC, and diagnostic odds ratio of each group is also
demonstrated in Table 3.

The findings from our analyses of studies using the inter-
nal validation demonstrate that the use of MRI was associated

PROBAST

Overall applicability domain 1,3 B
Overall risk of bias domain 1,3,4
Risk of bias domain 4
Applicability domain 3
Risk of bias domain 3
Applicability domain 1

Risk of bias domain 1 & Plot Area |

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%  100%

= Low concern High concern unclear

with lower sensitivity and specificity (75%, CI: 67, 83, and
74%, CI: 66, 83, respectively) compared to other imaging
modalities (90%, CI: 86, 94, P-value =0.00 and 92%, CI: 89,
95, P-value=0.00). It was also found that the use of data aug-
mentation resulted in a lower sensitivity (82%, C1:74-90 versus
86%, CI: 80-91, P-value:0.00) and higher specificity (90%,
CI: 85-96 versus 82%, CI: 75-89, P-value:0.10). Furthermore,
transfer learning had a positive impact on both sensitivity and
specificity (Sensitivity: 97%, CI: 94-100 versus 81%, CI:
76,86, P-value: 0.36) (specificity: 97%, CI: 93,100 versus 83%,
CI:78-89, P-value: 0.43). The study found that there was no
significant difference in sensitivity and specificity between stud-
ies that utilized patients without bone lesions as a control group
versus those that used patients with other types of tumors as a
control group (excluding the specific tumor under investigation).
The P-values for sensitivity and specificity were 0.26 and 0.77,
respectively. In Tables E9-12, other parameters and results from
meta-regression can be found for other groups as well.

TRIPOD
TRIPOD items
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20
196
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6

0% 10% 20% 30% 40% 50% 60% 70% 20% 20% 100%

Fig.2 Adherence to Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD), and Predic-
tion Model Study Risk of Bias Assessment Tool (PROBAST) reporting guidelines
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Publication Bias was —31.15 (95%CI: —48.92, - 13.38; P=0.00),—13.91

(95%CI: —31.17, 3.35; P=0.10), —3.26 (95%CI: — 27.74,
Publication bias assessment was performed individu-  21.22; P=0.77),—24.45 (95%CI: — 65.62, 16.72; P=0.22),
ally for all five groups, including studies with internally ~ and—985.26 (95%CI: —1311.26,—659.23; P=0.00) respec-
validated Al, externally validated Al, internally validated  tively, which indicates a weak association between sample
clinician, externally validated clinician, and clinicians  size and effect size for the first four groups, and low poten-
with Al assistance performance. The slope coefficient  tial for publication bias (Table ES).
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Discussion

To the best of our knowledge, there appears to be an absence
of meta-analytical investigations into the performance of arti-
ficial intelligence in detecting primary bone lesions via imag-
ing. There is, however, a growing body of original literature on
this subject. Zheng and colleagues conducted a meta-analysis,
examining the use of artificial intelligence in detecting metas-
tasis in various parts of the body, including lymph nodes, bone,
and other types, through imaging [44]. The authors reported a
diagnostic odds ratio of 22.14 (95% CI: 18.52, 26.46) for all
metastases, significantly less than the diagnostic odds ratios
derived from both our internal and external validation studies,
which are 33 (95% CI: 17,61) and 54 (95% CI: 25,117).

In certain cases, the machines outperformed human
experts, demonstrating robust performance. Based on these
findings, automated methods may offer an alternative to
traditional expert-driven approaches for the diagnosis of
certain medical conditions. Despite the promising results
of our study, caution must be exercised when interpreting
the findings due to the potential for underreporting of radi-
ologists’ performance. This may be attributed to a range of
factors, including the following:

1. The studies under review lack specification regarding
the level of experience exhibited by the radiologists.

2. The modalities used in different studies to detect bone tumor
may not be the modality of choice for this purpose.

3. The lack of sufficient number of studies that have simul-
taneously examined the quality of algorithms and the
accuracy of radiologists on a dataset.

In a meta-analysis of 21 studies performed in 2020, You-
nis et al. measured the pooled sensitivity and specificity of
18-fluorodeoxyglucose-positron emission tomography (18
F-FDG-PET) combined with CT, modalities used by expert
radiologists, for the detection of bone and soft tissue sar-
comas, 89.2 and 76.3%, respectively [45]. A meta-analysis
of 31 studies examined expert radiologists’ performance in
detecting Ewing sarcoma (ES) using 18 F-FDG PET as well
as PET/computed tomography (PET/CT). The pooled sen-
sitivity and specificity for total ES lesions were found to be
92.6% and 74.1%, respectively [46].

Furthermore, several secondary outcomes have been identi-
fied from the data in addition to the general findings. The meta-
regression findings in Table E9 illustrate that applying Al to the
identification of bone tumors using X-ray and CT pictures gave
much better results than MRI images, which was predictable
based on previous studies revealing that CT is a superior modal-
ity for visualizing bone structure and abnormalities [47]. Fur-
thermore, the application of transfer learning, a machine learn-
ing approach for enhancing learning in new tasks by leveraging

knowledge gained from a related task (48), has significantly
improved the performance of the automated method. It should
be noted, however, that data augmentation, a strategy for con-
structing incremental algorithms or sampling algorithms using
unobserved data or latent variables [48], adversely affects the
sensitivity of machine learning algorithms [43, 49].

For a proper evaluation of the results of this study, consid-
eration must be given to the limitations encountered during
the investigation. It is difficult to achieve the utmost precision
in the conclusions of this study due to a lack of data available
for analysis. As can be observed in Table E1, the assessment
of the accuracy of Al on external validation was predicated
solely on data derived from five studies [1, 10, 18, 38, 39].
One of the main challenges was analyzing the performance of
radiologists. Table E1 also demonstrates that just two studies
reported the data from radiologist on internal validation [34, 43]
and three on external validation [1, 10, 38]. Presently, a scar-
city of research on this topic creates a remarkable chance for
diligent researchers to conduct further investigations and bridge
the existing gap in scientific understanding. Such endeavors
would offer valuable insights into the viability of utilizing this
technology in real-world contexts and thus promote its effective
implementation for the advancement of medical practice. The
other limitations we encountered in this review article were
the absence of precise participant and image quantity details
in some studies, particularly regarding those with or without a
bone lesion. Additionally, the limited number of studies for each
specific body region hindered our ability to conduct meaningful
sub-group analyses based on different areas containing bone
malignancies. Consequently, future research endeavors in this
field hold the potential to provide valuable insights, enabling
researchers to more accurately assess Al performance in detect-
ing bone tumors within distinct body regions. We intended to
perform a sensitivity analysis to minimize the impact of publi-
cation bias measured by modified-PROBAST method. How-
ever, the results of quality assessment showed that the number
of studies in low risk of bias subgroup did not reach a suitable
number (four studies) to perform analysis.
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