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Abstract
In the field of medicine, rapidly and accurately segmenting organs in medical images is a crucial application of computer 
technology. This paper introduces a feature map module, Strength Attention Area Signed Distance Map (SAA-SDM), based 
on the principal component analysis (PCA) principle. The module is designed to accelerate neural networks’ convergence 
speed in rapidly achieving high precision. SAA-SDM provides the neural network with confidence information regarding 
the target and background, similar to the signed distance map (SDM), thereby enhancing the network’s understanding of 
semantic information related to the target. Furthermore, this paper presents a training scheme tailored for the module, aim-
ing to achieve finer segmentation and improved generalization performance. Validation of our approach is carried out using 
TRUS and chest X-ray datasets. Experimental results demonstrate that our method significantly enhances neural networks’ 
convergence speed and precision. For instance, the convergence speed of UNet and UNET +  + is improved by more than 
30%. Moreover, Segformer achieves an increase of over 6% and 3% in mIoU (mean Intersection over Union) on two test 
datasets without requiring pre-trained parameters. Our approach reduces the time and resource costs associated with training 
neural networks for organ segmentation tasks while effectively guiding the network to achieve meaningful learning even 
without pre-trained parameters. 

Keywords Medical image segmentation · Semantic segmentation · Neural network · Accelerating neural network learning

Introduction

In medical image segmentation, the current mainstream 
method uses a neural network (NN) for semantic segmenta-
tion [1, 2]. Compared with traditional segmentation meth-
ods, such as manually designed boundary operators [3, 4], 
NN can automatically learn features through a large amount 
of data to perform related tasks more accurately [5].

Secondly, compared with some level-set methods that need 
to embed prior information [6, 7] or high-level operations [8],  
NN can also deal with more complex and abstract features. 
It can learn more advanced feature representations and have 
strong generalization abilities [2]. In addition, neural net-
works can perform related tasks on different dimensions of  

features by using convolutional layers and other types of hier-
archical structures, enabling neural networks to capture  
the local and global features of images, thereby improving 
the accuracy of segmentation [9, 10].

The application of NN in medical image segmentation 
has many advantages. However, due to its width and depth 
scale, the amount of matrix calculation and numerical length 
required is tremendous. Hence, the training of NN usually 
requires large-scale computing power to support. In recent 
years, several works have proposed methods and techniques 
to speed up the training of, or predictions by, neural net-
works from various perspectives [11, 12].

Compared with the various photos in our daily lives, 
although the style of medical images is single and different 
from optical imaging, the imaging methods used in medi-
cal images often have significant anatomical noise, global 
noise, and fuzzy boundaries [2]. Although this property 
can slow down the neural network’s learning speed, the 
NN’s learning process can be simplified because human 
organs tend to have relatively fixed shapes and positions. 
Islam et al. [13] explored how neural networks contain 
positional and semantic information and found that many 
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irrelevant training neural networks would give seman-
tic feedback to a single color gradient image. That is an 
exciting experiment and conclusion, which shows the 
powerful learning ability of neural networks. Therefore, 
there should be a more straightforward way to speed up 
the learning of semantic information that neural networks 
spend a lot of time learning.

Unlike previous studies, this paper proposes a novel neu-
ral network convergence acceleration method for medical 
image segmentation. The main idea is to embed geomet-
ric representations into the network training, which can 
significantly reduce the amount of data so that the neural 
network can pay attention to the target as soon as possible 
to accelerate the training process. Specifically, we propose 
the Strength Attention Area Signed Distance Map (SAA-
SDM), which extracts semantic features from the data and 
adds them to the training of the neural network to assist the 
training. Our experiments show that this behavior changes 
the neural network’s original learning and prediction strat-
egy, which makes the network learn from the initial disor-
dered global search type to the general to individual learn-
ing. In addition, to maintain the generalization performance 
of the network and ensure the stability and efficiency of 
the network training process, we gradually weaken SAA-
SDM during the training process. Subsequently, the neural 
network learns features from the image and de-depends on 
this module gradually.

We apply this approach to several popular neural network 
frameworks and validate it using two medical image data-
sets, X-ray and ultrasound images. The medical imaging 
principles of these two datasets are widely used and rep-
resentative of the medical field. For instance, ultrasound  
images exhibit broader applicability and reproducibility  
but face higher noise levels and lower contrast chal-
lenges. Experiments show that our method produces 
good results in almost all tests. Moreover, our module 
has better guided the transformer architecture network 
to train without pre-training parameters and has higher 
convergence speed and pixel classification accuracy. 
Therefore, the main contributions of this paper can be  
summarized as follows:

• SAA-SDM module is proposed and added to the training, 
which can make the neural network converge to a high 
accuracy level faster.

• This type of training guides the network to learn a new 
policy. Experiments show that this learning method is 
more efficient.

• This method does not conflict with other current speedup 
schemes and does not incur more resource consumption, 
so more policies can be considered simultaneously to 
improve training efficiency.

Materials and Methods

Overview

Our training and inference process is shown in Fig. 1, which 
refines the semantic information of the mask to reduce the 
data scale. Then, multiple components of the point set were 
extracted and expanded to form SAA-SDM. Finally, it was 
introduced into the network training according to the train-
ing strategy. Although Liu et al. [14] found that using explicit 
sequential position encodings can improve regression perfor-
mance in neural networks, they did not propose more encod-
ings to aid other tasks. Previously, some work added auxiliary 
task heads at the end of the network to generate more sig-
nificant gradients that could be learned. For example, Li et al. 
[15] and Lui et al. [16] add SDM at the end of the network to 
strengthen supervision of the NN learning to achieve accu-
racy improvement. Therefore, this is a way that the NN can 
understand the encoding way. This approach provides encod-
ing feasibility for the segmentation task compared to the pure 
coordinate regression task.

In this section, the theory of SAA-SDM and its com-
position is introduced in “SAA-SDM Module”. “Training 
Process” introduces the training process of SAA-SDM after 
joining the network and its exit. “Metrics” will introduce 
multiple accuracy and training acceleration indicators for 
evaluating the model to measure network prediction accu-
racy from multiple perspectives.

SAA‑SDM Module

The main task of the proposed SAA-SDM module is to help 
the network build a faster and better initial cognition. First, 
contour extraction sampling from the masks of the training 
data is required. Let the sampling results of all images be 
�lm =

{
�1,�2,⋯ ,�s

}
 and s be the number of samples. For 

the i th sample, there is �i
lm

=
{
p1, p2,⋯ , pn

}
 , where n is the 

number of sampling points. Since the size and shape of the 
target in each image are different, in order to reduce the 
learning difficulty of the neural network caused by the 
numerical difference, it is necessary to perform the exact 
translation and normalization operation on all coordinates 
in Yi

lm
 by referring to the relative translation of its image 

center at the origin. As shown in the following equation, for 
any sample, we have the following:

(1)�i
c_lm

= �i
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−

[
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is given below to form a new data point set 
�n_lm =

{
�1

n_lm
,�2

n_lm
,⋯ ,�s

n_lm

}
 . In order to find the 

orthogonal feature with the most significant variance under 
each feature point, the covariance matrix � of all the given 
training samples needs to be calculated. The mean value of 
the corresponding points of each sample can be obtained 
from Eq. 3, and then the covariance matrix � of all samples 
can be obtained from Eq. 4. Its ordinal eigenvalue set � , and 
the corresponding eigenvector set � can be obtained.

The symbol T represents the transpose operation of the 
matrix. Since the reference value of the orthogonal fea-
ture with less influence is relatively small and the organ 
size usually follows a normal distribution, when generat-
ing SDM, the value of the orthogonal feature is usually 
normalized from 0 to 1, and the difference between adja-
cent pixel values is reduced to less than 0.005. The pixel 
value after 0–1 normalization is at least 0.004. The reason 
makes feature gaps outside the 90% interval challenging to 
detect. Therefore, the first eigenvalues are limited enough 

(3)�̃ =
1

s

∑s

i=1
�i

n_lm

(4)� =
1

s

s∑
i=1

(
�i

n_lm
− �̃

)(
�i

n_lm
− �̃

)T

to represent most of the data, that is, to satisfy the follow-
ing equation:

According to the principle of PCA, the coefficients 
on each feature vector used to describe the original sam-
ple can be found here. In other words, for m feature vec-
tors, m coefficients �i = [�i

1
, �i

2
,⋯ , �i

m
]T can be found so 

that the corresponding sample �i

n_lm
= �T

i
⋅ � can be 

restored as much as possible, where i  is the sequence 
number of the sample. All the coefficients can form a 
matrix � =

[
�1,�2,⋯ ,�s

]
 together, and then the approxi-

mate representation of the contour of all the samples can 
be obtained:

Through Eq. 6, two vectors, �max and �min , are formed 
by the largest and smallest absolute values of ������� 
according to row, respectively, which means that the maxi-
mum area of the target in all samples is no more than the 
area enclosed by the �max point set, and the minimum area 
is no less than the area enclosed by the �min point set; 
that is, the target to be predicted can be expected, and its 

(5)
argmin

m

∑m

j=1
�j∑n

i=1
�i

≥ 90%

(6)������� = �T
⋅

[
�1, �2,⋯ , �s

]

Fig. 1  Schematic of the framework for training and inference. During 
training, the strength attention area signed distance map (SAA-SDM) 
generated using the PCA method is input into the network alongside 

the original image. During the inference stage, the neural network 
remains in its original state
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boundary point set �� satisfies the conditions of Eqs. (7) 
and (8), and it is combined into a set S:

The formula means that the neural network can distin-
guish between the interior and exterior regions of the target 
simply by evaluating the signs of �(x) . Compared to the 
original training approach, including SAA-SDM signifi-
cantly reduces the difficulty for the neural network to learn 
the semantic information of the target. In the former case, 
semantic relationships between pixels could only be deter-
mined based on vague pixel relationships.

Nevertheless, adding the SAA-SDM module to the net-
work for training is more than just a one-and-done deal. 
Although convolutions dynamically assign weights to each 
element, stable networks always accept that SAA-SDM can 
have harmful effects. For example, the initial network is like 
a toddler, requiring support to walk upright; an adult using 
the toddler's tools would be a barrier. The SAA-SDM is not 
specific to the data input, so the network needs to realize that 
the segmentation must be based on the original information and 
nothing else. However, this is challenging to do during training.

For a more careful explanation, let us simplify the prob-
lem. As shown in Fig. 2, the blue block is the input, and the 
SAA-SDM is the purple block. The gray and white blocks 
represent the convolution parameters. By setting pad-
ding = 1, we can keep the input and output sizes the same. 
In the initial learning stage ①, SAA-SDM is the primary 
basis for network prediction because the first few rounds 
of network training are insufficient to form a good cogni-
tion of the original images compared with SAA-SDM. In 
the second stage of learning ②, the uncontroversial parts 
of the prediction will no longer have disagreements, so 
the neural network backpropagation will not produce large 
gradients. The controversial areas will make the neural net-
work more significantly impact the assigned weights. The 
weight parameters of the network will gradually be weighted 
towards the blue patches. We expect the network in stage ③ 
to realize that the loss reduction is focused on distinguish-
ing the values in the blue patches and ignoring the purple 
patches, which are not directly related to the input, where the 
problem arises. The blue patch represents all the pixel infor-
mation of the original image. However, in medical images, 
due to noise and artifacts, the neural network cannot entirely 
rely on the pixel information for prediction, leading to the 
neural network’s misjudgment of the relationship between 
the two. The purple patch still has usable information, which 
cannot be discarded entirely. It is precisely because of this 
misjudgment that leads to the situation that the network 
accuracy may be reduced after adding SAA-SDM. The solu-
tion is that our training process is designed to let SAA-SDM 
phase-like exit scheme.

Dynamically changing the input used for training may 
harm the stability of the network training. For example, if 
the original data is directly used after a certain time point, 
the neural network will collapse due to loss of reference. A 
smooth exit plan is, therefore, essential. The input X of the 

(7)ci
min

∈ �min ≤ bdi ≤ ci
max

∈ �max

Now, we define SAA-SDM module, which needs to 
define an extended level set function (LSF). � ∶ Ω → R can 
be defined as the signed distance map (SDM), but the dif-
ference is that we do not define an exact SDM, but rather an 
interval of interest:

where a is another pixel in the segmentation mask, �S repre-
sents for the area where an object’s boundary may exist, not its 
exact boundary. In the classic SDM, the zero SDM value of a 
point means that the point is on the surface of the target object. 
But we expand this part even larger, and almost the boundaries 
of what is possible are included in it. Sin and Sout denote the 
non-boundary inner and outer regions of the target object. Since 
input images have various fields of view and organ volumes, we 
further normalize the �(x) of each pixel to the range [− 1, 1].

Training Process

In theory, adding the SAA-SDM module to the input end 
of a neural network weakens the ratio of the original image 
throughout the input, requiring convolutional operations to 
consider information from both the SAA-SDM module and 
the original image pixels. Here, Xin represents the original 
input image, and the neural network F can be viewed as 
a collection of multiple nonlinear functions 

{
f1, f2,⋯ , fn

}
 . 

Typically, nonlinear functions are defined as a nesting of 
one or more linear functions l(g) , regularization functions 
norm (g) , and nonlinear units act (g) , as shown in Eq. 10:

Introducing SAA-SDM results in a change of sign in the 
target region of the input. Using the method introduced in 
“SAA-SDM Module”, it can be observed that this implicitly 
encodes positional information about the target. Equation 9 
illustrates this phenomenon, where the absolute value of |�(x)| 
indicates the probability of whether or not it is a particular 
target. Therefore, in the initial stages of network training, its 
output results can be approximated and expressed as Eq. 11:

(8)area
(
�min

)
≤ area(bd) ≤ area

(
�max

)

(9)�(x) =

⎧
⎪⎨⎪⎩

− inf
a∈�S

‖b − a‖2,
0,

inf
a∈�S

‖b − a‖2,

b ∈ Sin
b ∈ �S

b ∈ Sout

(10)f (x;�(x)) = act(norm(l(x;�(x))))

(11)F(�(x)) ∼ F(x;�(x))
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neural network consists of two parts, as shown in the fol-
lowing equation:

where � is the weight coefficient of XSAA , which is used 
to control the participation of XSAA in the total input X . 
When � = 0 , the input of the neural network is returned to 
the original input. The deterministic annealing process, by 
which decay_rate is slowly increased, is expected to help 
the optimization process to avoid poor local minima [17]. 
This scheme shows good results in pseudo-label participa-
tion training [18]. Nevertheless, its setting is a static phase 
of adjustment. In order to be closer to the actual situation 
of network training, we dynamically give a dynamic design 
according to the feedback of the network:

Among them, the value of � is initialized to 1. When the 
prediction accuracy gap on the test dataset exceeds 5% for 

(12)X = Xin ⊕ XSAA ⋅ 𝜀

(13)

� =

⎧
⎪⎨⎪⎩

� , if
�val_acct−1−val_acct�

val_acct
≥ 0.05

� − decay_rate , elseif decay_thresh ≥ decay_rate

0 , otherwise

two consecutive times, it is considered unstable. It must keep 
the original value to continue training until the network out-
put is stable. decay_thresh is a threshold. After the decay 
rate is reduced to the threshold, the neural network will no 
longer react to the SAA-SDM in the input. At this time, set-
ting SAA-SDM to 0 does not affect the discrimination of the 
network to obtain a good training process.

Metrics

We used commonly used evaluation metrics, and our own pro-
vided an evaluation metric to measure the method’s superiority. 
Commonly used evaluation metrics include mean dice similar-
ity coefficient (mDSC, also called mDice), mean Intersection 
over Union (mIoU), accuracy, precision, recall, and kappa.

The prediction of the neural network was compared with 
the True value to obtain four indicators: true positive (TP), true 
negative (TN), false positive (FP), false negative (FN), then.

1. Dice:

(14)mDice =
1

s + 1

∑s

i=0

2 × TP

2 × TP + FN + FP

Fig. 2  Schematic representation of the weights of the convolution parameters. The more colors a given color has, the more it is represented in 
the feature map
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2. IoU:

3. Accuracy:

4. Precision and recall:

5. Kappa:

Since the prediction accuracy of the neural network on 
the test set fluctuates, if the fluctuation range of the neural 
network is set to be less than 1% in a long training time, the  
neural network training is considered to have reached the 
convergence state. The round that enters this range for the 
first time is recorded as e1 , and the mIoU of the test set of 
this round is p1 . If e2 is recorded in another network training, 
which should meet the mIoU p1 − 1% ≤ p2 ≤ p1 + 1% for the 
first time, then the following can be calculated:

For example, if a neural network converges at 120 
rounds in state one and the mIoU is 0.9, then the mIoU 
should not exceed 0.91 on all test sets of the network. 
When the network is in state two, and the accuracy is 
greater than 89% for the first time at round 160, it is 
considered that the convergence round is 160; that is, 
e1 = 120 , e2 = 160 , then

(15)mIoU =
1

s + 1

∑s

i=0

TP

TP + FN + FP

(16)Accuracy =
TP + TN

TP + FP + FN + TN

(17)Precision =
TP

TP + FP
, Recall =

TP

TP + FN

(18)kappa =
Accuracy − Recall

1 − Recall

(19)Acceleration =

(
1 −

e1

e2

)
× 100%

Acceleration =

(
1 −

e1

e2

)
× 100% =

(
1 −

120

160

)
× 100% = 25%.

Statistical Testing Methods

The training process of neural networks typically involves 
random weight initialization, random selection of sample 
order, and regularization terms, among other stochastic fac-
tors. This results in neural networks producing outcomes 
and metrics that do not follow a precise data distribution. 
Furthermore, despite the ability to conduct independ-
ent repeated experiments, neural networks often require 
lengthy training, resulting in limited neural network sam-
ples available for statistical analysis. Approximating all 
data to a normal distribution through the law of large num-
bers becomes challenging.

To thoroughly investigate the role of the proposed module 
in the network, we chose to use the Brown-Forsythe Test and 
Mann–Whitney U test in combination to assess the mod-
ule’s effectiveness within the network. Compared to other 
hypothesis testing methods, the Brown-Forsythe test and 
Mann–Whitney U test are non-parametric statistical tests, 
making no assumptions about the data distribution. These 
test methods make them compelling even when the data 
does not adhere to assumptions like normality. The Mann– 
Whitney U test also imposes no particular restrictions on 
sample size, making it suitable for small sample testing. This 
approach aims to evaluate the extent to which experimental 
conclusions are acceptable.

We collected six samples for each experimental group, and 
all parameters except for the control module were set to fixed 
and identical values in each experiment. The hypotheses of 
the two test methods are shown in Table 1. Furthermore, the 
p-value < 0.05 was considered statistically significant.

The H hypothesis is shown in the table above. Because 
it is necessary to verify the growth rate ratio of the control 
samples, confirm that the fluctuation in convergence rounds 
between the two has a reasonable range of variance, and 
eliminate bias in conclusions due to variance, the Brown-
Forsythe Test needs to be conducted on both sets of data 
before performing the Mann–Whitney U test. The detailed 
process for the test is as follows:

Table 1  Meaning of null 
hypothesis in hypothesis testing

Test methods Means

Brown-Forsythe test H0 The sample variances are equal across different groups
H1 The sample variances are not equal across different groups

Mann–Whitney U test H0 Two independent sample groups come from the same  
distribution, and there is no significant difference 
between the two sets of data

H1 Two independent sample groups come from different  
distributions, and there is a significant difference 
between the two sets of data
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1. Obtain two sets of observed samples, X1 and X2 , from 
neural networks with and without SAA-SDM, respec-
tively;

2. Perform the Brown-Forsythe Test on the observed sam-
ples X1 and X2

(a) If the Brown-Forsythe Test results in p < 0.05, 
reject the null hypothesis, indicating that the sam-
ples do not yield valid conclusions;

(b) If the Brown-Forsythe Test results in p > 0.05, 
accept the null hypothesis and proceed to (c);

(c) Conduct the Mann–Whitney U test on the 
observed samples X1 and X2

 (i) If p > 0.05 is obtained, indicating no signifi-
cant difference between the samples, valid 
conclusions cannot be drawn;

 (ii) If p < 0.05 is obtained, indicating a signifi-
cant difference between the samples, pro-
ceed to step 3;

3. Calculate the two groups’ sample means, X1 and X2 , and 
compute the mean ratio r = X1

/
X2 . Then, align the 

mean of X2 to X1 , resulting in X�
2
= r × X2;

4. Conduct the Brown-Forsythe Test on samples X1 and X′
2

(a) If the Brown-Forsythe test yields p < 0.05, reject 
the null hypothesis, and valid conclusions cannot 
be drawn;

(b) If the Brown-Forsythe test results in p > 0.05, pro-
ceed to step (c);

(c) Perform the Mann–Whitney U test on samples X1 
and X′

2

 (i) If the Mann–Whitney U test results in 
p < 0.05, indicating a significant differ-
ence between the aligned data samples, 
valid conclusions cannot be drawn;

 (ii) If the Mann–Whitney U test results in 
p > 0.05, suggesting that it is impossi-
ble to determine a significant difference 
between the aligned data samples, pro-
ceed to determine the range of differences;

(d) Adjust the floating range of r found in step 3 to iden-
tify its maximum and minimum values that result in 
both the Brown-Forsythe test and Mann–Whitney U 
test yielding p > 0.05. This range of r ∈

[
rmin, rmax

]
 

determines the growth rate significance level.

Experiment

Datasets Description

In order to verify the accuracy of the proposed method, we 
apply it to two 2D medical image datasets for testing. The 
network can be extended to 3D images like the work reported 
in [19]. As mentioned in the previous section, our approach 
is not limited by the form of the network framework. Next, 
we detail the two datasets we used for our experiments, the 
TRUS and Pulmonary Chest X-Ray datasets.

TRUS Datasets

The TRUS dataset [20] contains TRUS images of 108 
patients, all with discernible information removed. All 
ultrasound images used in this dataset were acquired using 
the same setup using a Philips HDI 5000 SonoCT imag-
ing system, with different patients corresponding to their 
images separately. The size of each image is 768 × 576 pix-
els, and the size of the pixels is 0.137 mm × 0.137 mm. To 
generate the training data, the expert described each Truth 
of the prostate image, and the Ground Truth of all pictures 
was annotated in a landmark manner with the number of 
marked points in each landmark being 100. Before the 
experiments, we processed this into pixel-wise segmenta-
tion labels common to neural networks and object detec-
tion box data by interpolating the pixels between any two 
truth marker points until we had a fully closed pixel-wise 
contour, then performing padding on the interior.

Pulmonary Chest X‑Ray Datasets

The National Library of Medicine, Maryland, USA, cre-
ated the standard digital image database for tuberculosis 
in collaboration with Shenzhen No.3 People’s Hospital, 
Guangdong Medical College, Shenzhen, China. The chest 
X-rays are from outpatient clinics and were captured as 
part of the daily routine using Philips DR Digital Diag-
nose systems. China Set-The Shenzhen set-Chest X-ray 
Database [21] provides 326 normal lung images; the 
X-rays are provided in PNG format. Their size can vary 
but is approximately 3 K × 3 K pixels. The Montgomery 
County X-ray Set [22] provides 80 normal lung images; 
the X-rays were captured with a Eureka stationary X-ray 
machine (CR) and are provided in portable network graph-
ics (PNG) format as 12-bit gray level images. The size of 
the X-rays is either 4020 × 4892 or 4892 × 4020 pixels. All 
images are de-identified and available in DICOM format 
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and PNG format. One of the main tasks of releasing this 
public dataset is lung segmentation experiments.

Implementation Details

We used PaddlePaddle deep learning framework, NVIDIA 
Tesla V100 16G GPU; due to the limited hardware capac-
ity available and to ensure that our actions do not cause the 
image to lose recognizable, influential large-scale content, 
we scaled China set-the Shenzhen Set-Chest X-ray data-
base from 3 K × 3 K pixels to 512 × 512 pixels. In addition, 
we crop the irrelevant image edges to 4020 × 4020 pixels 
according to the Ground Truth in the Montgomery County 
X-ray Set dataset and then scale them to 512 × 512 pixels. 
During the training of the neural network, we applied ran-
dom data augmentation to the data, which included image 
brightness adjustment, contrast range adjustment, and satu-
ration adjustment at 40% of the time, all controlled within 
60% of the original image.

The relative treatment of the dataset is the same; we 
divide the data 9:1. That is, 90% of the data is used for 
training, and 10% is used for testing the training results. All 
networks used the same CrossEntropy Loss to ensure a fair 
comparison, with an initial learning rate of 0.01 and momen-
tum of 0.9. Stochastic gradient descent was used for network 
optimization, and the L2 norm of the network weights (W, w, 
h) with a decay coefficient 0.001. In the simulated annealing 
algorithm, we set the initial value of � to 1, and the initial 
value of decay_thresh is set to 0.6. The neural network was 
trained for at least 200 iterations (iters) in all experiments 
until accuracy convergence on the test set was observed.

Ablation Experiments and Results

In this section, we will compare the classical and mainstream 
segmentation convolutional neural networks UNET [23], 
UNet +  + [24], UNET3 + [25], U2NET [26], SegNet [27], and 
Attention UNet [28] with the current popular Transformer-
based segmentation networks SegFormer [29], Segmenter [30]. 
In all experiments, we embedded our proposed method into 
these mainstream segmentation networks and compared it with 
its original network framework. We must note that we do not 
compare network performance, as the networks determine this.

Qualitative Analysis

Due to the leadership of UNet in the industry, we first show 
in detail the network interrupt test prediction results on the 
test set every five rounds during the first 20 iters of train-
ing this networks. For easy observation, we output a heat-
map of the segmentation results to determine where the net-
work focuses on and find an intuitive inference strategy for 
the neural network.

The table shows the results of the predictions on the four 
test sets. The first column is the original image, the second 
column is the ground truth (GT), and the third to sixth col-
umns are the samples on different rounds.

It can be seen from Table 2 that after our method is used, 
the neural network quickly focuses on the relatively correct 
location, which is guided by SAA-SDM and protected from 
the influence of the surrounding irrelevant regions. Spe-
cifically, after adding SAA-SDM, when iter is 5, the strong 
confidence region of the neural network is only inside the 
target (the second row of data in each test map in Table 2), 
which is different from the prediction result of the original 
network (the first row of data in each test map in Table 2), 
which first focuses on the entire TRUS image region (the 
sector area with information). From the network prediction 
results, when iter is 10, the network with SAA-SDM has a 
strong confidence in the target’s interior. It starts to focus 
on the refined segmentation of the boundary region. On 
the contrary, the network trained originally does not show 
this behavior in the following multiple rounds of the out-
put. From the evolution process shown by multiple iters in 
Table 2, we find that the neural network changes the original 
strategy after joining ours. In the processing of data, the 
original strategy of the neural network is to gradually shrink 
the target from coarse to fine and remain “suspicious” of the 
surrounding noise because the short training process is chal-
lenging to make the network grasp the high-level semantic 
information so that it cannot believe the correctness of the 
actual target position with a high degree of confidence. Ours 
explicitly provides a range. Although this does not constitute 
a strong range constraint, the semantic information is given 
by SAA-SDM and embedded, which makes the training 
process of the neural network transform from commonal-
ity to individuality so that the initial loss of the network 
is relatively small, which significantly reduces the training 
difficulty and dramatically improves the accuracy.

Quantitative Analysis

The quantitative results of the TRUS dataset run in the indi-
vidual networks are shown in Table 3. In addition, from 
the perspective of the accuracy of the network trained to 
convergence, the accuracy of the network did not decrease 
significantly after joining our method. It also needs to reflect 
not the lack of generalization performance. However, the 
increase in accuracy during training was significant.

In the current prevalent framework of various U-shaped net-
works built based on CNN, the final accuracy of our network 
remained stable due to the introduction of the proposed module. 
On the contrary, the method proposed in this paper dramatically 
improves the convergence speed of the neural network under 
the premise of ensuring accuracy. In the observed results, using 
the UNet +  + neural network structure to introduce the proposed 
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Table 2  Sample survey form for interrupt testing in training
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method, the optimal mDice of the final result is increased by 
2.68%, and the optimal mIoU is increased by 4.61%. Compared 
with the optimal Recall, the optimal Precision is improved by 
more than 2%, and the optimal precision is improved by more 
than 3.27%. This phenomenon indicates that FP and FN metrics 
predicted by neural networks can be reduced using the proposed 
method, which conforms to the intuition exhibited during net-
work training shown in Table 3, that is, an inside-out, universal 
to exact search strategy. Under the guidance of the SAA-SDM 
method, the convergence speed of UNet +  + network accuracy 
is increased by 47.06%. The proposed method is introduced into 
the UNet network structure. Although the optimal mDice of 
the final result is decreased by 0.3% and the optimal Recall is 
increased by 0.3%, the convergence speed of the network accu-
racy is improved by 42.86%.

In the framework of the most popular transformer type, our 
method can overcome the problem of slow improvement of 
training accuracy for large models to some extent. Specifically, 
in our experiments, under the SegFormer framework without 
pre-training parameters, the optimal mDice is increased by 
3.75%, and the optimal mIoU is increased by 6% after adding 
the proposed method, which is close to the training results of the 
SegFormer framework loaded with pre-training parameters. In 
the framework of SegMenter without pre-trained parameters, the 
training speed of the network has been significantly improved 
after adding the method proposed in this paper. However, the 
accuracy can be further improved. Compared with the train-
ing results of the original SegMenter network framework, the 
optimal mDice is increased by 35.23%, and the optimal mIoU 
is increased by 42.81%. This result further demonstrates that 
the Transformer-type framework heavily depends on pre-
trained parameters. In terms of accuracy, although there is no 

further noticeable difference between the optimal mDice and 
the optimal mIoU of the SegFormer framework and the Seg-
Menter framework loaded with pre-training data after adding 
the method described in this paper, their accuracy gaps are all 
controlled within 0.1%. However, regarding training accuracy 
convergence speed, the SegFormer framework loaded with pre-
trained parameters shows a 25% speed improvement. Thus, the 
proposed method helps guide Transformer-type frameworks not 
loaded with pre-trained parameters to train in a favorable direc-
tion to achieve higher test accuracy.

Table 3  Test result data on 
TRUS Datasets. Each neural 
network has two rows of 
conclusion data. The first row of 
data corresponds to the original 
neural network framework 
proposed by the authors. In 
contrast, the second row of 
data represents the test results 
after incorporating our method 
SAA-SDM

Bolded characters indicate accuracy data where the method in this paper has significantly improved com-
pared to the original neural network

Name mDice mIoU Accuracy Precision Recall Kappa Acceleration

UNet 0.9523 0.9089 0.9751 0.9503 0.9543 0.9355 -
0.9493 0.9035 0.9734 0.9418 0.9573 0.9313 42.86%

SegNet 0.6499 0.4813 0.7981 0.592 0.7203 0.5099 -
0.9272 0.8643 0.9616 0.9154 0.9393 0.9012 ∞

Attention
UNet

0.9413 0.91372 0.9766 0.9677 0.9862 0.9391 -
0.9358 0.90581 0.9743 0.9681 0.9860 0.9332 23.81%

UNet +  + 0.9078 0.8312 0.9503 0.8762 0.9418 0.8738 -
0.9346 0.8773 0.9650 0.9089 0.9619 0.9108 47.06%

SegFormer 0.9127 0.8083 0.9431 0.8734 0.9159 0.8546 -
0.9456 0.8681 0.9632 0.9302 0.9562 0.9045 ∞

SegFormer
(pretrained)

0.9583 0.9200 0.9783 0.9583 0.9584 0.9436 -
0.9581 0.9195 0.9783 0.9622 0.9539 0.9434 25%

SegMenter 0.5289 0.3595 0.7386 0.4979 0.5641 0.3409 -
0.8812 0.7876 0.9377 0.8747 0.8878 0.8390 ∞

SegMenter
(pretrained)

0.9473 0.8999 0.9725 0.9431 0.9516 0.9287 -
0.9485 0.9021 0.9730 0.9418 0.9554 0.9303 0%

Table 4  Test result data on pulmonary chest X-ray datasets. Each 
neural network has two rows of conclusion data. The first row of 
data corresponds to the original neural network framework proposed 
by the authors. In contrast, the second row of data represents the test 
results after incorporating our method SAA-SDM

Name mIoU Accuracy Acceleration

Unet 0.9363 0.9699 -
0.9334 0.9685 57.14%

SegNet 0.9175 0.9606 -
0.9324 0.9679 86.67%

UNet +  + 0.8829 0.9693 -
0.8934 0.9683 33.33%

UNet3 + 0.8989 0.9577 -
0.9092 0.9629 0%

U2Net 0.8654 0.9339 -
0.8793 0.9412 11.11%

SegFormer 0.8415 0.9387 -
0.8883 0.9583 ∞

SegMenter 0.8251 0.9130 -
0.8372 0.9192 29.41%
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Table 4 shows our specific results on the pulmonary chest 
X-ray dataset. After adding the SAA-SDM method to the net-
work, the accuracy is improved by 1.49% based on the Seg-
Net neural network framework. Under the training of the other 
CNN-based U-network frameworks, the SAA-SDM method 
achieves more than 1% improvement in the optimal mIoU. It 
has a significant improvement in accuracy convergence speed. 
Similar to the training results on the TRUS dataset, in the 
Transformer-type framework, the boost after adding the SAA-
SDM method is very significant, and we will not repeat it here.

We provide detailed curves of the test results for the inter-
rupt test when trained in the pulmonary chest X-ray dataset, as 
shown in Fig. 3. Subgraphs (a),(b),(d),(f) all convey the same 
information to us, that is, with the addition of the proposed mod-
ule, the network has perfect confidence to determine the target 
from the beginning. After simple and fast learning, NN learning 
focuses on refining the object boundary, as shown in the last two 
examples of Fig. 3. Moreover, Fig. 3e reflects the good guidance 
of the proposed module for the Transformer-type framework. 
The accuracy curve of the initial SegFormer network rises very 
slowly and converges to lower accuracies. However, a steeper 
accuracy curve is observed when the SegFormer framework is 
added to the training of the module in this paper. In contrast, 
a sharp rise process quickly reaches the convergence interval. 
Unfortunately, although the proposed method does not degrade 
the final accuracy of UNet3 + and drag down the training pro-
cess, we do not observe a better response and boost in Fig. 3c.

Statistical Analysis

In order to obtain more robust conclusions, we conducted 
Brown-Forsythe tests and Mann–Whitney U tests on the 
acceleration performance of two convolutional neural net-
works, UNet and UNet +  + , and the mean Intersection over 
Union (mIoU) accuracy metric for the Segformer neural 
network without pre-trained parameters. These tests were 
conducted to compare the effectiveness of our method. First, 
we needed to verify whether adding SAA-SDM to the neural 
network’s training process had a substantial impact. Subse-
quently, we assessed the magnitude of this impact.

The data used for the statistics are reported in Table 5. 
Based on Table 5, we subjected the data to Brown-Forsythe  
tests and Mann–Whitney U tests, and the conclusions are 
summarized in Table 6. For the two sets of UNet data 
without mean alignment, the Brown-Forsythe Test yielded 
a p-value of 1, which is greater than 0.05, leading to the 
acceptance of the null hypothesis that the two data groups 
have homogeneity of variance. The Mann–Whitney U test 
resulted in a p-value of 0.0112, less than 0.05, confirm-
ing that the two data groups do not come from the same 
distribution. This result indicates that the SAA-SDM 
module significantly affects the convergence speed of  
UNet during training.

After mean alignment, the Brown-Forsythe Test yielded 
a p-value of 0.2596, more significant than 0.05, allowing 

(a)UNet (b) UNet++ (c) UNet3+

(d) SegNet (e) SegFormer (f) SegMenter
Fig. 3  Here are the test curves of different networks on the pul-
monary chest X-ray datasets dataset. In all the line plots depict-
ing images, the horizontal axis represents the training iteration, 
while the vertical axis represents the mean Intersection over Union 
(mIoU). In a, the green is SAA + UNet, and the blue is UNet; b 

the red is SAA + UNet +  + , the green is UNet +  + ; c the yellow is 
SAA + UNet3 + and the red is UNet3 + ; d the blue is SAA + SegNet, 
the green is SegNet; e the green is SAA + SegFormer, the purple is 
Segformer; f the blue is SAA + SegMenter, and the purple is Seg-
Menter
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us to accept the assumption of equal variances. Subse-
quently, the Mann–Whitney U test produced a p-value 
of 0.8325, more significant than 0.05, indicating that we 
cannot reject the null hypothesis that the two independent 
samples, UNet with speed enhancement and the original 
UNet, are from the same distribution.

Furthermore, we provide the boundary mean ratio val-
ues for p-values greater than 0.05, as shown in Table 7. 
This demonstrates the maximum acceptable error range 
and the boundary U statistics and p-values for rejecting 
the null hypothesis in the Mann–Whitney U test. There-
fore, the conclusion can be drawn that for the three tested 
sample groups; their speed enhancement is at least 41.7%, 
26.7%, and 22.2%, with corresponding average accept-
able speed enhancements of 45.3%, 35.1%, and 33.3%. 
The maximum acceptable speed enhancements are 50%, 
43.8%, and 44.4%.

To visually showcase the results generated by our 
approach, we present the segmentation results of UNet +   
+ on the chest X-ray dataset. We overlay the segmentation 

heatmap output onto the original images, as shown in 
Table 8.

Based on Table 8, the original UNet +  + model shows 
many false positives (FP) in the prediction results obtained 
during the 50th round of training. These FP regions, indi-
cated by red areas outside the green outlines, suggest that the 
network still needs to fully form the recognition of complete 
semantic information about the target object. This situation 
improves after the network undergoes training for 90 rounds, 
with a noticeable reduction in FP compared to previous data. 
In contrast, when testing with the neural network incorpo-
rating the SAA-SDM module, after just 50 rounds of train-
ing, there are hardly any distant FP errors in the predicted 
images. Similar conclusions can be drawn for other network 
architectures and test results, as explained and analyzed in 
“Ablation Experiments and Results”.

Next, we verify the accuracy improvement under the 
Segformer neural network framework. This experiment 
tests the image segmentation results obtained with the 
best test accuracy parameters after the same 200 training 

Table 5  Six experiments were 
conducted on networks with 
SAA-SDM additions and their 
original networks, recording 
the number of iters required to 
reach the convergence state. All 
data in the table were scaled 
down by a factor of 10 to ensure 
the continuity of integers

Datasets Methods Num of test Mean value MV rate

1 2 3 4 5 6

TRUS UNet (ours) 8 7 6 7 6 7 6.5 0.55
UNet 13 12 14 12 12 12 12.5

TRUS UNet +  + (ours) 13 11 10 10 9 10 10.5 0.65
UNet +  + 16 15 18 17 16 15 16

Chest X-ray UNet +  + (ours) 5 7 5 6 6 5 5.5 0.67
UNet +  + 8 9 9 8 9 8 8.5

Table 6  Data obtained 
from Table 5 underwent 
Brown-Forsythe tests and 
Mann–Whitney U tests, with 
corresponding statistics and 
p-values recorded

Group ID Methods Datasets Data state Brown-Forsythe 
test

Mann–Whitney 
U test

statis p statis p

I. UNet TRUS Before mean alignment 0 1 0 0.0040
After mean alignment 1.4286 0.2596 13 0.3889

II. UNet +  + TRUS Before mean alignment 0 1 0 0.0046
After mean alignment 0.3226 0.5826 16.5 0.8580

III. UNet +  + Chest X-ray Before mean alignment 1 0.3409 0 0.0041
After mean alignment 1 0.3409 19.5 0.8586

Table 7  By adjusting the 
scaling factor, we searched for 
the minimum and maximum 
scaling factors that the Mann–
Whitney U test could accept. 
The Brown-Forsythe test 
accepted all data in the table

Group ID Mean value rate Maximum 
acceptable 
rate

U-statistic p value Minimum 
acceptable 
rate

U-statistic p value

I. 0.547 0.500 21 0.681 0.417 17 0.934
II. 0.649 0.438 29 0.089 0.267 7 0.089
III. 0.67 0.444 27 0.164 0.222 6 0.059
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iters. Precision data is generated and statistically ana-
lyzed for mIoU accuracy following the same testing 
methodology as previous experiments.

Table 9 provides the mIoU test results for the loaded Seg-
former neural network framework with the SAA-SDM mod-
ule. Accuracy tests were conducted on both the TRUS dataset 
and the chest X-ray dataset. Table 10 presents the statistics 
and p-values obtained from the Brown-Forsythe test and 
Mann–Whitney U test using the data from Table 9. All test 
results were not rejected in the Brown-Forsythe test, indicating 

that they do not reject the assumption of homoscedasticity 
(equal variances). When comparing the mIoU metrics between 
the original Segformer framework and the Segformer frame-
work with the added SAA-SDM module, the U test p-values 
were 0.0022 for both TRUS and chest X-ray datasets, which 
are smaller than 0.05. These results confirm a significant dif-
ference in mIoU accuracy after adding the SAA-SDM module 
to the Segformer framework following 200 rounds of train-
ing. Additionally, we performed mean alignment and searched 
for the rejection range, which revealed that after adding the 

Table 8  This table displays the segmentation results of UNet +  + on 
the chest X-ray dataset. “_ours” represents the output results of the 
neural network with the SAA-SDM module added. At the same time, 
“_num” indicates the segmentation results of the neural network at 

the num-th round on the test dataset. In all images, the red portions 
represent the segmentation results provided by the neural network, 
while the green outlines correspond to the Ground Truth.

Table 9  Six experiments were conducted on the network with the 
addition of the SAA-SDM module and its original counterpart. After 
training completion, the experiments recorded the best mIoU on the 

test set and calculated the mean mIoU of the six experiments, along 
with the ratio between the two means

Datasets Methods Num of test Mean value MV rate

1 2 3 4 5 6

TRUS Segformer 0.81024 0.79920 0.80826 0.81552 0.81103 0.80494 0.8082 0.934
_our 0.86922 0.86627 0.86805 0.86245 0.86168 0.86344 0.8652

Chest X-ray Segformer 0.85092 0.84949 0.85345 0.85585 0.84149 0.84889 0.8500 0.963
_our 0.87493 0.88834 0.88948 0.88261 0.87617 0.88574 0.8829

Table 10  Statistical analysis 
was performed on the data 
obtained in Table 9 using the 
Brown-Forsythe test and the 
Mann–Whitney U test. The 
table records the statistics and 
their corresponding p-values

Group ID Datasets Data state Brown-Forsythe test Mann–Whitney 
U test

statis p statis p

IV. TRUS Before mean alignment 0.8263 0.3847 0 0.0022
After mean alignment 1.0575 0.3280 19 0.9372

V. Chest X-ray Before mean alignment 0.7266 0.4140 0 0.0022
After mean alignment 0.5863 0.4615 16 0.8182
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SAA-SDM module, the Segformer framework achieved a 
minimum accuracy improvement of at least 5.97% and 2.89% 
on the TRUS dataset, with an average improvement accepted 
by the U test of 6.6% and 3.7%, and a maximum improvement 
accepted by the U test of 7.33% and 4.59% (Table 11). We also 
provide some batch_cost and train_cost indicators during the 

training process, showing almost complete overlap, indicating 
that our method added minimal burden to the network.

Figure 4 presents a detailed overview of resource con-
sumption during the training process. It is essential to 
note that the primary purpose of this test was to assess 
the overall impact of loading SAA-SDM on the network’s 

Table 11  By adjusting the scaling factor, we searched for the minimum and maximum scaling factors that the Mann–Whitney U test could 
accept. The data recorded in this table were all accepted by the Brown-Forsythe test

Group ID Mean value rate Maximum 
acceptable rate

U-statistic p value Minimum 
acceptable rate

U-statistic p value

IV. 0.934 0.0733 7 0.0931 0.0597 30 0.0649
V. 0.963 0.0459 6 0.0649 0.0289 30 0.0649

Fig. 4  The figure displays the time consumption for reading data and 
training a single network through multiple training sessions. The ver-
tical axis represents time in minutes, and the horizontal axis repre-

sents the iteration rounds. a–c depict line graphs showing the time 
consumption for data reading, while d–f show line graphs for training 
time per batch

(b)

Fig. 5   a Represents experiments conducted by Islam et al. [13]. b With the data used in this paper. In b, the first column represents the input, 
the second column shows the Ground Truth, and columns three to six display the neural network’s prediction results



561Journal of Imaging Informatics in Medicine (2024) 37:547–562 

1 3

workload, independent of image size. Therefore, we 
adjusted the image scale to 64 × 64 in the experiments for 
quick testing. Any subgraph within Fig. 4 encompasses 
multiple sets of monitoring data for both loaded and 
unloaded SAA-SDM modules, and these data points are 
nearly superimposed in the schematic, indicating that our 
method added minimal burden to the network.

Conclusions

This paper proposes a data processing method that can 
accelerate the accuracy convergence of neural networks. 
Reasonable use of this method can make neural networks 
reach the accuracy convergence interval after less training 
and significantly shorten the training time. By verifying two 
2D datasets, the proposed method has apparent effects under 
the U-shaped neural network based on CNN architecture 
and the neural network based on transformer architecture. 
In addition, experiments show that neural networks based on 
transformer architectures have much room for improvement 
without pre-trained parameters. The method proposed in 
this paper can guide this network training well and improve 
accuracy. In addition, in our study, the proposed method at 
least did not find the situation of impairing training; that is, 
it did not slow down the training process of the network, 
increasing the batch cost of the network and the weakening 
difference of the optimal mIoU accuracy of more than 0.5% 
compared with the initial network.

Moreover, our method can be easily extended to studying 
3D images, as reported in the V-Net and 3D-Unet papers. 
Our research applies to solids with strong rigidity; the most 
typical example is the 2D section of the human organ and 
the 3D overall shape of the organ. At the same time, the 
proposed method is easy to combine with any current main-
stream neural network and does not cause additional burdens 
on the network.

Discussion

Much of the research currently focuses on refining the effec-
tive parameter count within neural networks to accelerate 
their operation speed and reduce the time required for neural 
network predictions. Standard techniques include low-rank 
decomposition of network parameters, structural pruning 
of neural network architectures, and knowledge distillation. 
Reducing the space occupied by neural networks facilitates 
their efficient deployment on less powerful devices, mak-
ing it easier to popularize neural network-assisted medical 
diagnostics. However, these methods primarily concentrate 
on optimizing parameters of neural networks that have 
been trained thousands of times. The training process of 

neural networks often relies on high-performance comput-
ing devices. Since resolving the gradient vanishing problem 
by architectures like ResNet, neural network structures and 
hierarchies have become increasingly complex, leading to 
longer training times and greater computational demands. 
Unlike datasets for vehicle recognition and license plate 
detection tasks, medical image datasets are more challeng-
ing to collect and annotate. This case poses obstacles to the 
practical training of neural networks in the medical field.

In the study by [13], a phenomenon was introduced: even 
when there is no direct correlation between the Ground 
Truth and the image, neural networks are still capable of 
extracting elements from the image to a certain extent, as 
illustrated in Fig. 5. This suggests that the original informa-
tion in the image has the potential to be retained and is not 
entirely influenced by the Ground Truth. Biological organs 
often exhibit relatively fixed sizes, shapes, and positions, 
which are prerequisites for traditional organ segmentation 
methods to achieve high-precision segmentation. Using 
unaltered medical organ images to train neural networks is 
akin to relinquishing some advantages of the target, which 
is unwise. We conducted similar experiments by extending 
the dataset used in this study. We made predictions with a 
neural network trained on the TRUS dataset but loaded with 
an SAA-SDM module created using the chest X-ray dataset, 
as shown in Fig. 5b. This finding is consistent with the con-
clusions drawn in [13] in the abovementioned experiments. 
Therefore, providing semantic information to the network is 
feasible for faster learning. The proposal offers a rapid model 
training approach for researchers in medical diagnostics and 
treatment, helping them avoid inefficient and lengthy training 
processes that consume valuable resources and time.

However, this research still has some limitations. The 
SAA-SDM module assumes that the target objects have 
similar sizes, shapes, and positions. Although this study 
improved the module’s generalization performance through 
data transformation and augmentation after removing 
the SAA-SDM module, the proposed method may not be 
suitable for tasks involving targets with significant shape 
variations, such as thyroid nodule segmentation in ultra-
sound images and glioma segmentation in brain MRI 
images. Therefore, further research is needed to enhance 
the module’s robustness under these three conditions, such 
as endowing the SAA-SDM module with deformability 
through learnable affine matrices to broaden its applicabil-
ity and strengthen its versatility.

Author Contribution Conceptualization, Y.S. and C.G.; methodology, 
C.G.; software, S.Y and C.G..; validation, C.G., R.Z, S.Y. and B.L.; 
formal analysis, C.G.; investigation, S.Y. and C.G.; data curation, Y.S.; 
writing—original draft preparation, S.Y. and C.G..; writing—review 
and editing, C.G.; visualization, S.Y. and C.G.; supervision, Y.S. and 
B.L.; project administration, Y.S. and B.L. All authors have read and 
agreed to the published version of the manuscript.



562 Journal of Imaging Informatics in Medicine (2024) 37:547–562

1 3

Data Availability Published public datasets were used for our 
experiments.

Declarations 

Informed Consent Not applicable.

Conflict of Interest The authors declare no competing interests.

References

 1. Hao, S.; Zhou, Y.; Guo, Y. A Brief Survey on Semantic Segmenta-
tion with Deep Learning. Neurocomputing 2020, 406, 302–321.

 2. Asgari Taghanaki, S.; Abhishek, K.; Cohen, J.P.; Cohen-Adad, 
J.; Hamarneh, G. Deep Semantic Segmentation of Natural and 
Medical Images: A Review. Artificial Intelligence Review 2021, 
54, 137–178.

 3. Hodge, A.C.; Fenster, A.; Downey, D.B.; Ladak, H.M. Prostate 
Boundary Segmentation from Ultrasound Images Using 2D 
Active Shape Models: Optimisation and Extension to 3D. Com-
puter Methods and Programs in Biomedicine 2006, 84, 99–113, 
https:// doi. org/ 10. 1016/j. cmpb. 2006. 07. 001.

 4. Wang, X.-F.; Min, H.; Zou, L.; Zhang, Y.-G.; Tang, Y.-Y.; Chen, 
C.-L.P. An Efficient Level Set Method Based on Multi-Scale 
Image Segmentation and Hermite Differential Operator. Neuro-
computing 2016, 188, 90–101.

 5. Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convo-
lutional Neural Networks: Analysis, Applications, and Prospects. 
IEEE transactions on neural networks and learning systems 2021.

 6. Gunel, B. Leveraging Prior Knowledge and Structure for Data-
Efficient Machine Learning; Stanford University, 2022;

 7. Li, J.; Nebelung, S.; Schock, J.; Rath, B.; Tingart, M.; Liu, Y.; 
Siroros, N.; Eschweiler, J. A Novel Combined Level Set Model 
for Carpus Segmentation from Magnetic Resonance Images with 
Prior Knowledge Aligned in Polar Coordinate System. Computer 
Methods and Programs in Biomedicine 2021, 208, 106245.

 8. Peng, T.; Wu, Y.; Qin, J.; Wu, Q.J.; Cai, J. H-ProSeg: Hybrid 
Ultrasound Prostate Segmentation Based on Explainability-
Guided Mathematical Model. Computer Methods and Programs 
in Biomedicine 2022, 219, 106752.

 9. Zhang, Z.; Gao, S.; Huang, Z. An Automatic Glioma Segmenta-
tion System Using a Multilevel Attention Pyramid Scene Pars-
ing Network. Current Medical Imaging 2021, 17, 751–761.

 10. Long, X.; Zhang, W.; Zhao, B. PSPNet-SLAM: A Semantic 
SLAM Detect Dynamic Object by Pyramid Scene Parsing Net-
work. IEEE Access 2020, 8, 214685–214695.

 11. Cheng, Y.; Wang, D.; Zhou, P.; Zhang, T. Model Compression 
and Acceleration for Deep Neural Networks: The Principles, 
Progress, and Challenges. IEEE Signal Processing Magazine 
2018, 35, 126–136, https:// doi. org/ 10. 1109/ MSP. 2017. 27656 95.

 12. Lebedev, V.; Lempitsky, V. Speeding-up Convolutional Neural 
Networks: A Survey. Bulletin of the Polish Academy of Sci-
ences: Technical Sciences 2018, 66, 799–810, https:// doi. org/ 
10. 24425/ bpas. 2018. 125927.

 13. Islam*, M.A.; Jia*, S.; Bruce, N.D.B. How Much Position Infor-
mation Do Convolutional Neural Networks Encode?; September 
25 2019.

 14. Liu, R.; Lehman, J.; Molino, P.; Petroski Such, F.; Frank, E.; 
Sergeev, A.; Yosinski, J. An Intriguing Failing of Convolutional 
Neural Networks and the CoordConv Solution. Advances in 
Neural Information Processing Systems 2018, 31.

 15. Li, S.; Zhang, C.; He, X. Shape-Aware Semi-Supervised 3D Seman-
tic Segmentation for Medical Images. In Proceedings of the Medical 

Image Computing and Computer Assisted Intervention–MICCAI 
2020: 23rd International Conference, Lima, Peru, October 4–8, 
2020, Proceedings, Part I 23; Springer, 2020; pp. 552–561.

 16. Liu, S.; Li, Y.; Li, X.; Cao, G. Shape-Aware Multi-Task Learning 
for Semi-Supervised 3D Medical Image Segmentation. In Proceed-
ings of the 2021 IEEE International Conference on Bioinformatics 
and Biomedicine (BIBM); December 2021; pp. 1418–1423.

 17. Grandvalet, Y.; Bengio, Y.; Chapelle, O.; Schölkopf, B.; Zien, 
A. Entropy Regularization. Springer 2006.

 18. Lee, D.-H. Pseudo-Label: The Simple and Efficient Semi-
Supervised Learning Method for Deep Neural Networks. In 
Proceedings of the Workshop on challenges in representation 
learning, ICML; 2013; Vol. 3, p. 896.

 19. Milletari, F.; Navab, N.; Ahmadi, S.A. V-Net: Fully Convolu-
tional Neural Networks for Volumetric Medical Image Segmen-
tation. IEEE 2016, https:// doi. org/ 10. 1109/ 3DV. 2016. 79.

 20. Wu, P.; Liu, Y.; Li, Y.; Shi, Y. TRUS Image Segmentation with 
Non-Parametric Kernel Density Estimation Shape Prior. Bio-
medical Signal Processing & Control 2013, 8, 764–771, https:// 
doi. org/ 10. 1016/j. bspc. 2013. 07. 002.

 21. Jaeger, S.; Karargyris, A.; Candemir, S.; Folio, L.; Siegelman, 
J.; Callaghan, F.; Xue, Z.; Palaniappan, K.; Singh, R.K.; Antani, 
S. Automatic Tuberculosis Screening Using Chest Radiographs. 
IEEE Transactions on Medical Imaging 2014, 33, 233–245, 
https:// doi. org/ 10. 1109/ TMI. 2013. 22840 99.

 22. Hooda, R.; Mittal, A.; Sofat, S. Lung Segmentation in Chest 
Radiographs Using Fully Convolutional Networks. Turkish 
Journal of Electrical Engineering and Computer Sciences 2019, 
710–722, https:// doi. org/ 10. 3906/ elk- 1710- 157.

 23. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional 
Networks for Biomedical Image Segmentation. In Proceed-
ings of the Medical Image Computing and Computer-Assisted 
Intervention–MICCAI 2015: 18th International Conference, 
Munich, Germany, October 5–9, 2015, Proceedings, Part III 
18; Springer, 2015; pp. 234–241.

 24. Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: 
A Nested U-Net Architecture for Medical Image Segmentation. 
2018, https:// doi. org/ 10. 1007/ 978-3- 030- 00889-5_1.

 25. Huang, H.; Lin, L.; Tong, R.; Hu, H.; Wu, J. UNet 3+: A Full-
Scale Connected UNet for Medical Image Segmentation. arXiv 
2020, https:// doi. org/ 10. 1109/ ICASS P40776. 2020. 90534 05.

 26. Qin, X.; Zhang, Z.; Huang, C.; Dehghan, M.; Jagersand, M. 
U2-Net: Going Deeper with Nested U-Structure for Salient Object 
Detection. Pattern Recognition 2020, 106, 107404, https:// doi. org/ 
10. 1016/j. patcog. 2020. 107404.

 27. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Con-
volutional Encoder-Decoder Architecture for Image Segmenta-
tion. 2017:https:// doi. org/ 10. 17863/ CAM. 17966.

 28. Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; 
Misawa, K.; Mori, K.; Mcdonagh, S.; Hammerla, N.Y.; Kainz, B. 
Attention U-Net: Learning Where to Look for the Pancreas. 2018, 
https:// doi. org/ 10. 48550/ arXiv. 1804. 03999.

 29. Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. 
SegFormer: Simple and Efficient Design for Semantic Segmentation 
with Transformers. 2021, https:// doi. org/ 10. 48550/ arXiv. 2105. 15203.

 30. Strudel, R.; Garcia, R.; Laptev, I.; Schmid, C. Segmenter: Trans-
former for Semantic Segmentation.; 2021; pp. 7262–7272.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1016/j.cmpb.2006.07.001
https://doi.org/10.1109/MSP.2017.2765695
https://doi.org/10.24425/bpas.2018.125927
https://doi.org/10.24425/bpas.2018.125927
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1016/j.bspc.2013.07.002
https://doi.org/10.1016/j.bspc.2013.07.002
https://doi.org/10.1109/TMI.2013.2284099
https://doi.org/10.3906/elk-1710-157
https://doi.org/10.1007/978-3-030-00889-5_1
https://doi.org/10.1109/ICASSP40776.2020.9053405
https://doi.org/10.1016/j.patcog.2020.107404
https://doi.org/10.1016/j.patcog.2020.107404
https://doi.org/10.17863/CAM.17966
https://doi.org/10.48550/arXiv.1804.03999
https://doi.org/10.48550/arXiv.2105.15203

	SAA-SDM: Neural Networks Faster Learned to Segment Organ Images
	Abstract
	Introduction
	Materials and Methods
	Overview
	SAA-SDM Module
	Training Process
	Metrics

	Statistical Testing Methods
	Experiment
	Datasets Description
	TRUS Datasets
	Pulmonary Chest X-Ray Datasets
	Implementation Details
	Ablation Experiments and Results
	Qualitative Analysis
	Quantitative Analysis
	Statistical Analysis

	Conclusions
	Discussion
	References


