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Abstract
Monkeypox (MPox) is an infectious disease caused by the monkeypox virus, presenting challenges in accurate identification 
due to its resemblance to other diseases. This study introduces a deep learning-based method to distinguish visually similar 
diseases, specifically MPox, chickenpox, and measles, addressing the 2022 global MPox outbreak. A two-stage optimiza-
tion approach was presented in the study. By analyzing pre-trained deep neural networks including 71 models, this study 
optimizes accuracy through transfer learning, fine-tuning, and ensemble learning techniques. ConvNeXtBase, Large, and 
XLarge models were identified achieving 97.5% accuracy in the first stage. Afterwards, some selection criteria were fol-
lowed for the models identified in the first stage for use in ensemble learning technique within the optimization approach. 
The top-performing ensemble model, EM3 (composed of RegNetX160, ResNetRS101, and ResNet101), attains an AUC of 
0.9971 in the second stage. Evaluation on unseen data ensures model robustness and enhances the study’s overall validity 
and reliability. The design and implementation of the study have been optimized to address the limitations identified in the 
literature. This approach offers a rapid and highly accurate decision support system for timely MPox diagnosis, reducing 
human error, manual processes, and enhancing clinic efficiency. It aids in early MPox detection, addresses diverse disease 
challenges, and informs imaging device software development. The study’s broad implications support global health efforts 
and showcase artificial intelligence potential in medical informatics for disease identification and diagnosis.
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Introduction

Monkeypox (MPox) is an infectious disease caused by 
the monkeypox virus, which manifests as a painful rash, 
enlarged lymph nodes, and fever. Human transmission of 
MPox can occur through physical contact with an infected 
individual, contact with contaminated materials, or expo-
sure to infected animals [1]. Historically, MPox outbreaks 
have occurred in 1970 (Central Africa, East Africa, and West 
Africa), 2003 (USA), and 2017 (Nigeria). However, in May 
2022, a sudden outbreak of MPox emerged, rapidly spread-
ing across Europe, the Americas, and all six World Health 
Organization (WHO) regions. A total of 110 countries 

reported approximately 87,000 cases and 112 deaths. The 
global MPox outbreak was subsequently declared a public 
health emergency of international concern, Public Health 
Emergency of International Concern (PHEIC), on July 23, 
2022. In response, the WHO published a strategic prepar-
edness and response plan for MPox along with a suite of 
technical guidance documents [1].

Accurate identification of MPox can be challenging due 
to its resemblance to other infections and conditions. It is 
crucial to differentiate MPox from conditions such as chick-
enpox (CPox), measles, bacterial skin infections, scabies, 
herpes, syphilis, and medication-associated allergies. It is 
also possible for individuals with MPox to have concur-
rent herpes infections, while children suspected of having 
MPox may actually have CPox. Therefore, timely testing 
is essential to ensure prompt treatment and prevent further 
transmission [1, 2]. Chickenpox, caused by the varicella-
zoster virus, is a highly contagious disease characterized by 
an itchy, blister-like rash and other associated symptoms. 
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The rash typically starts on the chest, back, and face before 
spreading to the entire body. Chickenpox can pose serious 
risks, particularly during pregnancy, in infants, adolescents, 
adults, and individuals with weakened immune systems [3]. 
Measles is an easily transmissible infection that can cause 
severe complications in certain individuals. It typically 
begins with cold-like symptoms and is followed by a rash 
a few days later. Some individuals may also develop small 
spots in their mouth. Initial symptoms of measles include 
high fever, runny or blocked nose, sneezing, cough, and red, 
sore, watery eyes [4].

Distinguishing MPox from other diseases, such as mea-
sles and CPox, poses challenges as their primary differen-
tiating factor lies in the inflammation and rash on the body. 
These symptoms are difficult to detect visually, except 
through the polymerase chain reaction (PCR) test. Prompt 
and accurate diagnosis of MPox is challenging for healthcare 
professionals, further complicated by the scarcity of avail-
able PCR tests to detect the MPox virus [2]. PCR analysis 
involves a series of steps for deoxyribonucleic acid (DNA) 
synthesis. Initially, the template DNA is denatured, resulting 
in the separation of the double-stranded DNA into single 
strands. Subsequently, primers are annealed to each original 
strand, facilitating the synthesis of new DNA strands. These 
reactions can be performed with any DNA polymerase and 
lead to the production of specific segments of the original 
DNA sequence. However, to achieve multiple rounds of syn-
thesis, the templates need to undergo denaturation again, 
necessitating high temperatures that can deactivate most 
enzymes. To overcome this challenge, initial attempts at 
cyclic DNA synthesis involved the addition of fresh poly-
merase after each denaturation step (first and second) [5]. 
Nonetheless, this process is time-consuming and susceptible 
to factors that can compromise the reliability of the analy-
sis. Therefore, the investigation of false negative rates and 
sensitivity rates of PCR tests is crucial, and repeat testing is 
recommended for follow-up clinical evaluation [6, 7]. Addi-
tionally, the complexity of the target species and the simi-
larity between different illnesses, along with the expertise 
of the performing clinics, can influence the results of clini-
cal analysis. Furthermore, human factors such as fatigue or 
monotony resulting from repetitive tasks can also impact the 
quality of the analyses. Consequently, there is a strong desire 
to automate the analysis process to overcome these qual-
ity limitations associated with human factors and optimize 
the overall efficiency of the procedure. By automating the 
analysis task, it would be possible to mitigate these quality 
disadvantages while also streamlining the entire process in 
terms of time optimization.

Given this situation, how can we differentiate these 
visually similar diseases more easily using state-of-the-
art techniques? In recent years, machine learning (ML) 
and deep learning (DL), disciplines that have successfully 

provided solutions to various problems, emerge as promis-
ing approaches. Solutions to these problems can vary from 
segmentation and region of interest studies for smart city 
applications [8] to biomedical acoustic analysis to remove 
communication barriers [9], and various machine learning 
studies. Medical image processing has been widely utilized 
for the past decade, particularly due to the success of deep 
neural networks (DNNs) in this field. Examples of DL usage 
in medical informatics include skin lesion detection [10], 
pneumonia detection [11], Covid-19 diagnosis [12, 13], skin 
cancer identification [14], automatic diagnosis of malaria 
parasites detection [15], and stroke classification [16]. 
Detailed information regarding the DL techniques employed 
in this research is provided in the methodology section (see 
“Material and Method”). The subsequent sections of the 
research are structured as follows: The second section pro-
vides a summary of the related literature. The third section 
describes the materials and methodology employed in the 
study. The fourth section presents the experimental results. 
The fifth section includes a comparison and discussion of 
the study’s findings with previous works. Finally, the sixth 
section concludes the study.

In this context, although the identification of this health 
problem was first reported in 1958, it has become more prev-
alent over the past 20 years and evolved into a global epi-
demic in 2022. This study proposes a promising approach to 
address this health issue. The contributions of the proposed 
approach are as follows:

•	 Comprehensive analysis of pre-trained DNNs on monk-
eypox, chickenpox, and measles dataset

•	 An innovative solution proposal to a globally threaten-
ing disease

•	 A fast and highly accurate decision support solution to 
assist clinics

•	 A two-stage optimization methodology using deep trans-
fer learning and ensemble learning

•	 Prevention of overfitting through data augmentation 
techniques

In addition to these contributions of the study, there are 
some other indirect contributions that can be specified. By 
automating the analysis task using DL techniques, the study 
mitigates the limitations associated with human factors and 
optimizes the overall efficiency of the procedure. The find-
ings contribute to early diagnosis and prevention of MPox 
transmission, while also addressing the challenges posed 
by disease diversity, manual processes, human errors, and 
increased workload. Moreover, the study serves as a basis 
for future research on MPox and related diseases, offer-
ing valuable insights for software developers of imaging 
devices used in clinical processes. The comprehensive 
tests conducted in this study have significant implications 
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for global health efforts, particularly during outbreaks and 
epidemics. The accurate differentiation of visually similar 
diseases can aid healthcare professionals in making timely 
and informed decisions, ultimately improving patient out-
comes. The proposed DL approach showcases the poten-
tial of artificial intelligence (AI) in medical informatics, 
providing a foundation for further advancements in disease 
identification and diagnosis.

Literature Review

The new outbreak (MPox) once again highlights the prox-
imity of global health threats and reinforces the impor-
tance of developing mechanisms to address these threats. 
AI technologies, along with the contributions of ML and 
DL studies over the past 20 years, have been success-
ful in various disciplines, with health being one of the 
prominent areas.

There are numerous opportunities for AI in clinical appli-
cations, which have the potential to significantly improve 
patient care, streamline healthcare processes, and advance 
medical research. Diagnostic assistance and early disease 
detection within clinical decision support systems, clinical 
trials optimization, healthcare workflow optimization, per-
sonalized treatment plans, quality assurance and compliance, 
telemedicine and remote monitoring, genomic medicine, 
population health management, resource allocation, and 
data analytics and research can be listed in key opportuni-
ties. AI can enhance diagnostic accuracy by analyzing medi-
cal images such as X-rays, MRIs, and CT scans, as well as 
pathology slides and diagnostic data. AI algorithms excel 
in detecting subtle abnormalities and complex patterns that 
may challenge human interpretation. Moreover, AI-powered 
predictive models leverage patient data to identify early dis-
ease indicators, enabling timely interventions and improved 
patient outcomes. Additionally, AI systems provide health-
care professionals with evidence-based recommendations, 
supporting informed decisions regarding treatment options, 
drug interactions, and patient care plans [17]. AI’s impact 
extends to clinical trial management, where it efficiently 
identifies suitable trial participants, predicts trial outcomes, 
and optimizes recruitment processes. This contributes to 
accelerated drug development and more efficient health-
care resource allocation, including staffing, appointment 
scheduling, and insurance claims processing. Furthermore, 
AI facilitates personalized medicine by analyzing patients’ 
medical histories, genetic information, and real-time data to 
tailor treatment plans and minimize side effects. AI’s data 
analysis prowess assists in identifying population health 
trends, risk factors, and opportunities for preventive care, 
thereby improving public health interventions. Quality 
control systems driven by AI ensure healthcare standards 

and regulations are upheld, reducing errors, and enhancing 
patient safety [18].

These opportunities showcase the transformative poten-
tial of AI in clinical applications, from improving patient 
outcomes to driving healthcare innovation and efficiency. 
Realizing these benefits requires collaboration among 
healthcare providers, AI developers, regulators, and other 
stakeholders to ensure responsible and ethical implemen-
tation. However, there are several challenges, concerns, or 
issues related to the integration of AI in clinical settings 
and healthcare. These challenges, concerns, or issues include 
data quality and availability, scalability, clinical integration, 
interoperability, privacy and security, ethical dilemmas, 
bias and fairness, regulatory compliance, clinical valida-
tion, human-AI collaboration, cost and resource constraints, 
patient acceptance and trust, education and training, and 
long-term maintenance and updates.

Specifically for the classification problem of MPox, CPox, 
and measles, there are issues such as data availability and 
quality, scalability, clinical integration and validation, and 
interoperability. Rapid and early diagnosis of diseases such 
as MPox and other similar skin lesions is crucial. There-
fore, studies focusing specifically on MPox have begun in 
response to the outbreak. Different studies in the literature 
which use AI techniques for this task are summarized in 
Table 1, including the models used, datasets, objectives, and 
their results. The limitations of the studies are also noted in 
the table.

Within the studies presented in Table 1, there are stud-
ies [19, 21, 30] that specifically perform classification and 
detection processes for MPox. These studies generally yield 
high accuracy rates. However, when other diseases with 
similar skin symptoms (CPox, measles, etc.) are included, 
the performance rates are negatively affected. When only 
MPox positive–negative studies are conducted on the data-
sets found in the literature, results reaching up to 100% 
accuracy can be achieved. However, this rate remains more 
of a classification study in the literature rather than being 
beneficial in clinical diagnosis processes. This is because the 
most significant problem in this disease group is the rapid 
and early diagnosis of which group the skin lesions belong 
to. In some of the studies presented in Table 1, despite the 
comparison of different numbers of pre-trained models [20, 
22, 24, 27], lower performance results were obtained com-
pared to the results obtained in this study. Similarly, there 
are studies that apply ensemble techniques but achieve lower 
performance [29] or do not include a stage for selecting pre-
trained transfer models [26] in the literature. Other studies 
have been conducted that only present training and valida-
tion rates [23] or focus on mobile applications [28].

When considering recent studies on MPox, it can 
be generally observed that despite the findings of this 
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research, there are several limitations that can be general-
ized as follows:

•	 Some studies only address the classification and detection 
processes specifically for MPox. These studies may yield 
high accuracy rates; however, when similar skin symp-
toms of other diseases (CPox, measles, etc.) are included, 
the performance rates may be negatively affected.

•	 Several studies employ different numbers of pre-trained 
models, resulting in lower accuracy rates. Some stud-
ies solely rely on pre-trained models determined by 
the authors’ preference. Without applying any selec-
tion criteria in these approaches, the correctness of the 
chosen models cannot be determined.

•	 In some studies, the reported results may appear high 
as they only reflect the performance during the training 
process. While the models may exhibit high performance 
in this context, they may not perform equally well on 
unseen data. Therefore, it is more reliable to evaluate the 
results using test data that was not used during training.

The design and implementation of this study have been 
optimized to address these limitations identified in the 
literature. Therefore, the following objectives were set in 
the study.

•	 To detect diseases with similar skin symptoms with high 
accuracy

•	 To reduce human error in diagnosis and diagnostic pro-
cedures and at the same time contribute to the reduction 
of workload

•	 Using multiple state-of-the-art (SOTA) techniques (transfer 
learning, fine-tuning, ensemble learning) in combination and 
optimization to ensure reliability and validity of the results

•	 Using SOTA techniques (data augmentation) to over-
come data limitations

•	 Performing tests on unseen data to ensure the reliability 
of the results

Thus, studies have been carried out in this direction. To this 
end, the classification of different diseases with similar skin 
symptoms has been conducted. A stage has been planned to 
determine the preferred models, and through performed tests, 
the best models have been identified. An optimization process 
has been applied by combining these models as an ensemble. 
Additionally, test results have been evaluated using unseen 
data that was not utilized during training to prevent overfitting 
of the model. The evaluations of the studies are presented in 
the discussion section (see “Discussion”).

Material and Method

This section provides information about the dataset and tech-
niques used in the study. The block diagram of the research 
is given in Fig. 1.

The tests conducted in the study were performed on hard-
ware consisting of a MacBook M2 Pro with 16 GB RAM, 
a 16-core GPU, and a 10-core CPU, with a 512 SSD. The 
experiments were carried out using the Anaconda platform 
and the JupyterLab environment. Python programming lan-
guage version 3.8.16 was used in the study. In addition, ver-
sion 2.12.0 of the TensorFlow library was included in the 
program. Version 3.7.1 of the Matplotlib library and version 
1.2.2 of the Sklearn library were included and used. The 
deepstack module for ensemble learning was also used in 
the study, and version 0.0.9 of this library was included in 
the program.

Dataset

One of the major limitations for MPox disease is the dataset. 
Recent studies have been conducted on a limited number of 
specific datasets. One of these datasets is the Monkeypox 
Skin Images Dataset (MSID), which is openly available on 
Mendeley. This dataset consists of four classes: monkeypox, 
chickenpox, measles, and normal. All image classes are col-
lected from internet-based health websites. The dataset was 
developed by two students, Diponkor Bala and Md. Shamim 
Hossain, from the Department of Computer Science and 
Engineering, Islamic University, Kushtia, Bangladesh, and 
the School of Computer Science and Technology, University 
of Science and Technology of China (USTC), Hefei, Anhui, 
China, respectively [31].

The dataset [31] contains 279 monkeypox images, 107 
chickenpox images, 91 measles images, and 293 normal 
images. In the study, various operations were performed 
on these images. The first operation involved separating 30 
images from each class for testing purposes (unseen data) 
to address one of the limitations mentioned in the literature 
review section (see “Literature Review”) regarding the pres-
entation of test data results. Since DL models require a large 
number of images for training, data augmentation techniques 
were applied to this dataset. Examples of images from the 
dataset are presented in Fig. 2.

Data Augmentation

Data augmentation is a vital technique in ML and DL mod-
els, enhancing performance by generating new samples 
through transformations applied to existing datasets. It aids 
generalization and combats overfitting by expanding dataset 
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size. For image classification, it includes rotation, flipping, 
cropping, zooming, etc. This technique is especially effec-
tive with limited data and imbalanced classifications, where 
small datasets hinder generalization. Thus, data augmenta-
tion is a critical tool in ML and DL for improving perfor-
mance, generalization, and handling limited data or imbal-
anced datasets [32, 33].

In this study, data augmentation technique was also used 
to overcome the limitation of limited data. The images in 
the dataset were augmented by applying rotation. To reduce 
the imbalance in the dataset, the images in classes such 
as MPox and normal which have higher counts were only 
rotated by 45°. The images in classes such as CPox and 
measles which have lower counts were not only rotated by 

Fig. 1   Block diagram of the study

Fig. 2   Sample images from 
dataset a MPox, b CPox, c 
measles, and d normal

(a) (b) (c) (d)
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45° but were further rotated by an additional 15°, resulting 
in a new augmented dataset. Examples of the augmented 
images after the data augmentation process are presented 
in Fig. 3. The resulting table after these operations is as 
follows (Table 2).

Transfer Learning

Transfer learning, widely used in DL research, involves 
leveraging knowledge and representations from one task to 
enhance performance on another. This method efficiently 
transfers data and computational resources, proving inval-
uable in data-limited or resource-constrained scenarios. 
Typically, it involves fine-tuning pre-trained DL models 
on a large-scale dataset for a new task, improving per-
formance, generalization, and reducing training time and 
resources. Transfer learning finds success in domains like 
image processing, natural language processing, and speech 
recognition, effectively applying pre-trained models to new 
tasks and enabling rapid learning by starting with general 
representations that can be fine-tuned for task-specific fea-
tures [34, 35].

Considering the contributions of transfer learning, the 
study also employed the approach of transfer learning with 
fine-tuning. Instead of selecting a single or a specific number 
of pre-trained models, as indicated in the literature review 
section (see “Literature Review”), a total of 71 different pre-
trained models (which had successful results in ImageNet 
competition and also applied many different areas with 

transfer learning and fine-tuning techniques) available in 
the TensorFlow Keras library [36, 37] were initially tested. 
The list of models and their modules given in a table in the 
supplementary file. The most successful models were then 
used in an ensemble learning technique to further optimize 
the performance. As seen in the table in the supplementary 
file, a comprehensive training and testing process was car-
ried out with all the pre-trained models used in different 
studies in the literature. Thus, it is aimed to form a basis 
for further research. In the conclusion part of the study, this 
issue related to the recommendations was also stated (see 
“Conclusion”).

Ensemble Learning

Ensemble learning, commonly used in both ML and DL, 
combines multiple models to enhance predictive perfor-
mance and robustness. It capitalizes on the idea that diverse 
models can yield better predictions than a single one. In 
DL, ensemble methods improve performance by combining 
predictions from multiple neural networks. Model averaging 
averages predictions from independently trained networks, 
while model stacking uses network outputs as input features 
for a meta-learner. Ensemble learning boosts model gen-
eralization, mitigates overfitting, and improves accuracy in 
domains like computer vision, natural language processing, 
and speech recognition. It excels when individual models 
exhibit diverse strengths and weaknesses, capturing a wider 
range of patterns and enhancing resilience to data noise or 

(a) (b) (c) (d)

Fig. 3   Sample images from augmented dataset a MPox, b CPox, c measles, and d normal

Table 2   Dataset information Class Number of origi-
nal data

Number of aug-
mented data

Number of train 
data

Number of valida-
tion data

Number 
of test 
data

MPox 279 2202 1982 220 30
CPox 107 1575 1418 157 30
Measles 91 1335 1202 133 30
Normal 293 2216 1995 221 30
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outliers. However, it may require additional computational 
resources, necessitating careful method selection based on 
task, dataset, and available resources [38–40].

In this study, to overcome the aforementioned limitations 
mentioned in the literature review section, and to optimize 
the performance of the models, the ensemble learning tech-
nique was employed. The DeepStack module was utilized 
for implementation which is a Python module designed for 
constructing deep learning ensembles, initially built on the 
Keras framework, and distributed under the MIT license. 
Within this module, the Dirichlet Ensemble technique was 
applied. This technique involves weighting the ensemble 
members to optimize a specific metric or score based on a 
validation dataset. The optimization of ensemble weights is 
performed using a randomized search method based on the 
dirichlet distribution. The Dirichlet distribution, a significant 
multivariate continuous distribution in probability and sta-
tistics, serves as a natural extension of the Beta distribution. 
It plays a crucial role in modeling compositional data and 
proportion measurements [41]. The Dirichlet distribution of 
order k has k parameters � = (�1,… , �k) , with 𝛼i > 0 . It is 
denoted by Dir(�) and is given as Eq. (1):

where for i = 1, 2, ..., k, xi ≥ 0 and 
∑k

i=1
xi = 1 . Here, the 

normalizing constant B(�) is the multivariate beta function, 
which can be written in terms of the gamma function as 
Eq. (2):

The support or domain of the Dirichlet distribution is the 
set of k-dimensional vectors x whose components are real 
numbers in the interval [0, 1] such that 

∑k

i=1
xi = 1.

During the fitting process of the dirichlet ensemble 
model, the module calculates the ensemble weights by opti-
mizing the AUC Binary Classification Metric. This optimi-
zation is achieved through randomized search utilizing the 
properties of the dirichlet distribution [42].

Optimization Approach

Fine-tuning in DL involves adapting a pre-trained model, 
usually trained on a large dataset, to a specific task using 
a smaller labeled dataset. This process capitalizes on the 
pre-trained model’s knowledge and learned representa-
tions, enhancing them for the target task. It entails freezing 
lower layers that capture generic features and retraining 
upper layers with task-specific data through backpropa-
gation. Fine-tuning is valuable when labeled data for 

(1)f (x) ≡ f (x|�) = 1

B(�)

∏k

i=1
x
�i−1

i

(2)B(�) = �

∏k

i=1
Γ(�i)

Γ(
∑k

i=1
�i)

the target task is limited, allowing the model to transfer 
knowledge from pre-training to improve performance with 
fewer samples. It is widely used in domains like computer 
vision, natural language processing, and speech recogni-
tion, enabling adaptation of powerful pre-trained models 
to specific applications with reduced data requirements 
[43, 44].

In this study, to take advantage of the benefits of fine-
tuning, a test-and-retest method was initially employed to 
determine the standard parameters for the models while also 
identifying the most suitable parameters for the task at hand. 
Several considerations played a role in determining these 
parameters, including insights from the literature review, the 
researcher’s past experiences, the selection of appropriate 
parameters for the models, the results obtained from test-
ing, and innovative strategies. Taking these components into 
account, in the initial stage of the study, pre-trained mod-
els were used, and the following adjustments were made to 
the fully connected layers (classification) after the feature 
extraction layers in the CNN structure.

In this structure, the neural network architecture 
employed three dense layers, namely, with 1000, 512, and 
256 neurons, respectively. The rectified linear unit (ReLU) 
activation function was utilized in these layers to introduce 
non-linearity. The ReLU function is calculated as Eq. (3):

To mitigate overfitting, three dropout layers with a rate 
of 0.5 were inserted between these dense layers. The drop-
out technique is a versatile approach that has demonstrated 
improved performance in neural networks across various 
application domains. Feed-forward NN with dropout is 
described as Eq. (4) [45]:

where l ∈ (1, ..., L − 1) index the hidden layers of the net-
work, i hidden unit, z(l) denotes the vector of inputs into 
layer l , y(l) denotes the vector of outputs from layer, W (l) and 
b(l) are the weights and biases at layer l , and f is any activa-
tion function; ∗ denotes an element-wise product, r(l) is a 
vector of independent Bernoulli random variables each of 
which has probability p.

(3)f (x) =

{
0forx < 0

xforx ≥ 0

r
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j
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The final layer, consisting of four neurons, employed the 
Softmax activation function, enabling the classification of 
multiple classes. The Softmax function: � ∶ ℝ

K
→ [0, 1]K is 

calculated as Eq. (5) [46]:

During model compilation, the Adam optimizer was uti-
lized, and a learning rate of 1 × 10

−4 was specified. The Adam 
optimizer converges much faster for multi-layer NNs or 
CNNs, than any other optimizer and is nowadays one of the 
most popular step size methods in the studies. It combines the 
benefits of two other optimization algorithms (Momentum 
and RMSProp). For optimization process, nt ∶=

n√
t
 as step 

size �1, �2 ∈ (0, 1) as decay rates for the moment estimates, 
�1,t ∶= �1�

t−1 with 𝜆 ∈ (0, 1), 𝜖 > 0, e(w(t)) as a convex dif-
ferentiable error function, and w(0) as the initial weight vector. 
During the process, set m0 = 0 as initial first moment vector, 
set m0 = 0 as initial second moment vector, and set t = 0 as 
initial time stamp. Here, while w(t) not converged, optimizer 
calculates as Eq. (6) and returns w(t) [47, 48]:

The loss value is a measure that quantifies the discrep-
ancy between the predicted outputs of a model and the true 
or expected outputs. It serves as a guide for the model to 
adjust its internal parameters during the training process 
to minimize the error and improve the overall performance 
[49]. By optimizing the loss function during the training 
process, the model can learn to make more accurate predic-
tions and improve its overall performance on the given task. 
The choice of loss function in this study was categorical_
crossentropy, which is suitable for multi-class classification 

(5)

�(z)i =
ezi
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j=1
ezj
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√
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tasks. Mathematically, the categorical cross-entropy loss for 
a single data point is defined as Eq. (7) [50]:

where L
(
y, ŷ

)
 is the loss for a single data point, yi is the 

ground truth probability that the data point belongs to class 
i , ŷi is the predicted probability that the data point belongs 
to class i , and C is the total number of classes. In practice, 
y is a one-hot encoded vector, where only one element is 
1 (indicating the true class), and all other elements are 0 . 
The predicted probability distribution ̂y is typically obtained 
from the softmax function applied to the raw scores or logits 
produced by the model. The softmax function ensures that 
ŷ sums to 1 , turning the raw scores into class probabilities 
[50].

The batch size, defined as 8, was employed during the 
training process, and each test was conducted for a total of 30 
epochs to optimize the model’s performance and convergence.

Training process in first stage demonstrated that some 
models have achieved significantly lower performance 
compared to other pre-trained models. Therefore, a process 
of elimination was applied by setting certain threshold val-
ues. The steps followed for elimination are as follows:

1.	 Models with a test accuracy below 80% were removed.
2.	 Models with a validation loss above 2 were removed.
3.	 Models with a validation accuracy of 75% or below 

were removed.

One important limitation identified during the literature 
review is the evaluation of the performance of pre-trained 
models directly (see “Literature Review”). However, the 
optimization studies that bring together successful results 
have been conducted in a limited number. In these studies, 
only a specific number of models were combined. To over-
come all these limitations, an ensemble learning study con-
sisting of combinations of different models was conducted 
in this research. For this process, a two-step approach was 
applied. In the first step, the performances of all pre-trained 
models were compared. In the second step, successful mod-
els were combined with different combinations, and an 
optimization approach was applied. The following selection 
criteria (SC) were followed for the models identified for use 
in ensemble learning technique in the optimization approach. 
To increase model diversity during the selection process, a 
subsequent model that meets the criteria was chosen instead 
of the models selected in previous criteria.

•	 SC1: Three models with the highest test accuracy from 
different module groups were selected (in case of a tie, 
the lowest loss value was considered).

(7)L
(
y, ŷ

)
= −

∑C

i=1
yi ⋅ log(̂yi)
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•	 SC2: For each category based on test accuracy, three 
models with the lowest validation loss rate from differ-
ent module groups were included.

•	 SC3: Three models with the highest F1-Score for the 
MPox class were selected from different module groups 
(in case of a tie, higher test accuracy was considered).

•	 SC4: Three models with the highest F1-Score based on 
the F1-Score ratio for the CPox class were selected from 
different module groups (in case of a tie, higher test accu-
racy was considered).

•	 SC5: Three models with the highest F1-Score for the 
measles class were selected from different module groups 
(in case of a tie, higher test accuracy was considered).

•	 SC6: Three models with the highest F1-Score for the 
normal class were selected from different module groups 
(in case of a tie, higher test accuracy was considered).

The algorithm for the elimination steps is presented in 
algorithm 1, and the selection criteria and the algorithm 
applied for the selected models are shown in algorithm 2. 
Algorithms are provided in supplementary file.

Evaluation Metrics

The proper selection and use of evaluation metrics play 
a vital role in assessing the performance of a study. One 
of the limitations identified during the literature review 
(see “Literature Review”) is the use of only accuracy as 
the evaluation metric in some studies. However, espe-
cially in healthcare research, in addition to accuracy, met-
rics such as precision, recall (sensitivity), and f1-score 
are of great importance. In addition, AUC values were 
obtained in this study, and the performance of the study 
was evaluated based on these metrics. The AUC is a sca-
lar metric derived from the ROC curve. It quantifies the 
overall performance of a model. During the performance 
evaluation of the models, true positive (TP), true negative 
(TN), false positive (FP), and false negative (FN) values 
for each class were used by calculating their ratios to 
each other.

The accuracy rate represents the ratio of correct pre-
dictions to all examples, and it is calculated as shown in 
Eq. (8). Precision is used to measure the accuracy of posi-
tive predictions and quantifies the proportion of correctly 
predicted positive instances out of all instances predicted 
as positive (Eq. 9). Recall represents the model’s ability 
to avoid false negatives and capture all positive instances 
(Eq. 10). The F1-score combines precision and recall into a 
single value and is calculated by Eq. (11):

Results

In this section, the comprehensive analysis results obtained 
in the study are presented, and the classification outcomes 
achieved through the optimization approach are described.

Results of the Initial Evaluation

To mitigate the potential misleading nature of training 
accuracy values, as noted in the literature, the validation 
accuracy, validation loss, and test accuracy values of the 71 
models used in the study were recorded. The obtained results 
are presented in Table 3. The models are listed in the follow-
ing order: first, based on the highest test accuracy; second, 
based on the highest validation accuracy; and finally, based 
on the lowest loss value.

As mentioned in the “Material and Method” section, it is 
not sufficient to rely solely on accuracy rates to evaluate the 
performance of the models. Therefore, various metrics and 
categorizations have been utilized to assess the performance 
of these models. In the initial training stage, Table 3 shows that 
certain models exhibited significantly inferior performance rel-
ative to others. Consequently, a process of elimination ensued, 
guided by the establishment of specific threshold criteria. The 
elimination process resulted in 40 pre-trained models suc-
cessfully passing the threshold criteria (see Algorithm 1 in 
supplementary file). Following the elimination, the accuracy 
graph of the remaining models is presented in Fig. 4a, while 
the distribution of the loss values is shown in Fig. 4b.

Figure 4 demonstrates that specific groups of models 
exhibit notable accuracy performance on the disease images 
used in the study. Among these model groups, the “con-
vnext,” “regnet_rs,” and “efficientnet_v2” groups are the 
most represented. Pre-trained models consist of hundreds 
of layers. After performing feature extraction within these 
layers, the models have been fine-tuned for the classifica-
tion problem used in the study (see “Material and Method”). 

(8)Accuracy =
TP + TN

TP + TN + FP + FN

(9)Precision =
TP

TP + FP

(10)Recall (Sensitivity) =
TP

TP + FN

(11)F1 − score = 2x
Precision × Recall

Precision + Recall



788	 Journal of Imaging Informatics in Medicine (2024) 37:778–800

Figure 5 showcases the output images at different layers of 
a selected pre-trained model during the feature extraction 
process for each class of images in the study.

As depicted in Fig. 5, as the input image progresses 
through the hundreds of layers of the pre-trained mod-
els, different features are extracted from different chan-
nels (0, 1, 2: RGB). These features amount to millions of 
parameters in the models. Following these processes, the 
models were categorized to facilitate the application of 
the optimization approach employed in the study. These 
categories were established based on the model groups 
and were subsequently utilized in the second stage of the 
optimization approach, namely ensemble learning.

In addition to the categorization process, for a more in-
depth analysis, the confusion matrix results of the models 
shown in Table 3 were also obtained. The obtained results 
are presented in Table 4.

Table 4 presents the test accuracy (test acc), precision 
(pre), recall (rec), F1-score (f1), and support (sup) values. 
The table demonstrates the successful results obtained by 
10 different modules in the categorization process. Among 
these modules, the convnext model stands out as the most 
successful. Figure 6 provides graphical representations of 
precision, recall, and F1-score values for each class, based 
on the models listed in Table 4.

Figure 6 depicts the precision, recall, and F1-score values 
for the MPox, CPox, measles, and normal classes. These 

Table 3   Accuracy rates of pre-trained models

Model Module Train acc. Val. acc. Test acc. Model Module Train acc. Val. acc. Test acc.

ConvNeXtXLarge convnext 99.12 85.77 97.50 RegNetY064 regnet 98.54 76.61 86.67
ConvNeXtLarge convnext 99.24 84.68 97.50 MobileNet mobilenet 99.24 76.33 86.67
ConvNeXtBase convnext 99.18 83.86 97.50 RegNetY008 regnet 98.92 75.37 86.67
EfficientNetV2S efficientnet_v2 98.85 84.54 95.83 EfficientNetB5 efficientnet 97.14 72.09 86.67
ResNet152 resnet 98.76 80.57 95.83 ResNet50 resnet 98.45 77.02 85.83
ResNetRS200 resnet_rs 99.18 84.95 95.00 InceptionV3 inception_v3 95.48 76.61 85.83
ResNetRS420 resnet_rs 98.76 83.58 95.00 NASNetLarge nasnet 98.45 71.55 85.83
ResNetRS101 resnet_rs 99.39 83.31 95.00 DenseNet169 densenet 98.66 75.38 85.00
RegNetY160 regnet 98.61 82.63 95.00 MobileNetV2 mobilenet_v2 98.92 68.40 85.00
ResNetRS270 resnet_rs 99.20 87.27 94.17 EfficientNetB0 efficientnet 98.91 77.56 84.17
EfficientNetV2M efficientnet_v2 98.76 86.18 94.17 EfficientNetV2B3 efficientnet_v2 98.58 73.60 84.17
RegNetX160 regnet 98.92 80.57 94.17 RegNetY006 regnet 98.03 72.78 84.17
RegNetX120 regnet 98.67 78.93 94.17 EfficientNetV2B0 efficientnet_v2 98.80 70.45 84.17
EfficientNetV2L efficientnet_v2 98.60 85.77 93.33 ResNet50V2 resnet_v2 99.01 69.08 84.17
ResNetRS50 resnet_rs 99.44 80.85 93.33 RegNetX032 regnet 97.86 76.61 83.33
RegNetX064 regnet 98.64 81.40 92.50 EfficientNetV2B2 efficientnet_v2 98.77 75.51 83.33
RegNetX040 regnet 98.59 81.26 92.50 EfficientNetB6 efficientnet 97.21 75.10 83.33
ResNetRS350 resnet_rs 98.83 87.82 91.67 RegNetX006 regnet 97.62 73.46 83.33
ResNetRS152 resnet_rs 98.58 83.72 91.67 Xception xception 97.82 72.50 83.33
RegNetX016 regnet 98.80 80.98 91.67 DenseNet121 densenet 98.44 72.23 83.33
RegNetY320 regnet 98.73 82.76 90.83 EfficientNetV2B1 efficientnet_v2 99.08 72.23 83.33
DenseNet201 densenet 98.33 82.22 90.83 RegNetY032 regnet 98.51 69.77 83.33
ResNet101 resnet 98.89 81.67 90.00 VGG19 vgg19 98.68 75.78 82.50
RegNetY080 regnet 98.67 78.52 90.00 RegNetX002 regnet 97.33 74.69 82.50
EfficientNetB3 efficientnet 98.53 77.98 89.17 ConvNeXtSmall convnext 99.26 74.97 81.67
EfficientNetB2 efficientnet 98.64 74.69 89.17 VGG16 vgg16 98.67 74.56 81.67
RegNetX320 regnet 98.56 79.34 88.33 RegNetY004 regnet 99.50 73.73 81.67
RegNetY040 regnet 98.42 78.11 88.33 RegNetX004 regnet 97.41 67.17 81.67
EfficientNetB1 efficientnet 98.86 79.62 88.00 RegNetY120 regnet 98.92 74.56 80.83
RegNetY016 regnet 98.36 79.07 87.50 InceptionResNetV2 inception_resnet_

v2
96.56 70.86 79.17

ResNet152V2 resnet_v2 99.14 78.11 87.50 RegNetY002 regnet 99.24 67.58 79.17
RegNetX080 regnet 98.80 81.53 86.67 ConvNeXtTiny convnext 99.35 67.85 76.67
EfficientNetB7 efficientnet 98.56 81.12 86.67 NASNetMobile nasnet 97.51 69.63 75.00
EfficientNetB4 efficientnet 98.15 79.07 86.67 MobileNetV3Large mobilenet_v3 81.28 19.84 45.00
RegNetX008 regnet 98.15 78.39 86.67 MobileNetV3Small mobilenet_v3 62.45 19.70 36.67
ResNet101V2 resnet_v2 98.97 78.25 86.67
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metrics provide insights into the performance of the models 
for each specific class. Figure 6 clearly demonstrates that 
the models exhibit higher precision values for the MPox and 
normal classes, while the recall values are higher for the 
chickenpox and measles classes.

The categories established in Table 4 were ranked based 
on F1-score values for each group. In the ranking process, 
priority was given to the MPox F1-score, which is the 
focus of the study, followed by CPox, measles, and normal 
F1-scores, respectively. F1-score, being the harmonic mean 
of precision and recall values, provides a more reliable 
evaluation of the classifier’s performance by considering 
both false positives and false negatives. A higher F1-score 
indicates a better trade-off between precision and recall, 
suggesting that the model has achieved a good balance in 
correctly predicting positive instances while minimizing 
false positives and false negatives. The comparative graph 
of F1-scores based on the models’ confusion matrix results 
is presented in Fig. 7.

The F1-score values obtained from the tests conducted 
in the first step of the optimization approach allow for the 
exploration of different model combinations in the second 
step. Comparative graphs of precision and recall (sensitiv-
ity) values for each disease group and the normal class are 
presented in Fig. 8.

In the second step of the study, informed by the out-
comes of the initial step, the selection of ensemble learning 

participants was undertaken. A set of predetermined criteria 
were adhered to for the selection of models to be incor-
porated into the ensemble learning technique within the 
optimization approach (see Sect. 3). The foremost criterion 
involved the exclusion of models from the convnext module 
group that had exhibited remarkably high accuracy surpass-
ing 97.5%. This was done to prevent overfitting. These mod-
els in the module group have also achieved high accuracy 
rates when used individually. After excluding the models 
from the convnext module group, ensemble learning tech-
nique was applied with the remaining models.

After following the steps in Algorithm 2 (see supple-
mentary file), a total of 18 different models were identi-
fied under six separate SC. The confusion matrices of the 
selected models, represented as a heatmap, are presented in 
Fig. 9 in sequential order.

When Fig. 9 is analyzed, the EfficientNetV2S model, one 
of the models determined with SC1, incorrectly predicted 
four of the images belonging to the MPox class (three CPox, 
one measles). While two images belonging to the normal 
class were incorrectly predicted as MPox, one image each 
from the measles and CPox classes were incorrectly pre-
dicted. When the ResNet152 model is analyzed, it is seen 
that five images belonging to the MPox class were misclas-
sified (two CPox, two normal, 1 measles), two images from 
the CPox class were predicted as normal, and one image 
from the normal class was predicted as CPox. The entire 

(a) (b)

Fig. 4   After the elimination process, a accuracy rates and b loss rates
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Fig. 5   Feature extraction in different layers
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measles class was correctly predicted. The last model in 
this group, ResNetRS420, incorrectly predicted four images 
from the MPox class (two CPox, two measles). It incorrectly 
predicted two images from the CPox class (as MPox) and 
one image each from the measles and normal classes. ResN-
etRS200, one of the models determined with SC2, correctly 
predicted the entire measles class. It predicted three images 

of the MPox class and one image of the normal class as 
CPox. It also incorrectly predicted two images of the CPox 
class as measles. EfficientNetV2M model incorrectly pre-
dicted five images of MPox class as CPox. It incorrectly 
predicted two images of the CPox class as MPox and one 
image each as measles and normal. It incorrectly predicted 
three images each from measles and normal classes. While 

Table 4   Categorization and confusion matrix results

Test Acc MonkeyPox Chickenpox Measles Normal

Module Model Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Sup

convnext ConvNeXtLarge 97.50 1.00 0.97 0.98 0.97 1.00 0.98 0.94 1.00 0.97 1.00 0.93 0.97 120
ConvNeXtBase 97.50 1.00 0.93 0.97 0.94 1.00 0.97 0.97 1.00 0.98 1.00 0.97 0.98 120
ConvNeXtXLarge 97.50 1.00 0.90 0.95 0.94 1.00 0.97 0.97 1.00 0.98 1.00 1.00 1.00 120

densenet DenseNet201 90.83 1.00 0.90 0.95 0.83 1.00 0.91 0.86 1.00 0.92 1.00 0.73 0.85 120
efficientnet EfficientNetB3 89.17 1.00 0.77 0.87 0.83 1.00 0.91 0.86 1.00 0.92 0.92 0.80 0.86 120

EfficientNetB1 88.00 1.00 0.73 0.85 0.83 0.97 0.89 0.81 1.00 0.90 0.96 0.83 0.89 120
EfficientNetB4 86.67 1.00 0.70 0.82 0.75 0.90 0.82 0.81 1.00 0.90 1.00 0.87 0.93 120
EfficientNetB7 86.67 0.92 0.73 0.81 0.76 0.87 0.81 0.86 1.00 0.92 0.96 0.87 0.91 120
EfficientNetB0 84.17 1.00 0.63 0.78 0.72 0.93 0.81 0.85 0.97 0.91 0.89 0.83 0.86 120

efficientnet_v2 EfficientNetV2S 95.83 1.00 0.90 0.95 0.94 0.97 0.95 0.94 1.00 0.97 0.97 0.97 0.97 120
EfficientNetV2M 94.17 0.96 0.90 0.93 0.93 0.87 0.90 0.91 1.00 0.95 0.97 1.00 0.98 120
EfficientNetV2L 93.33 0.96 0.87 0.91 0.88 0.93 0.90 0.91 1.00 0.95 1.00 0.93 0.97 120

inception_v3 InceptionV3 85.83 0.96 0.77 0.85 0.87 0.87 0.87 0.74 0.93 0.82 0.93 0.87 0.90 120
mobilenet MobileNet 86.67 0.96 0.77 0.85 0.86 1.00 0.92 0.79 1.00 0.88 0.91 0.70 0.79 120
regnet RegNetX160 94.17 1.00 0.93 0.97 0.94 1.00 0.97 0.88 1.00 0.97 0.96 0.83 0.89 120

RegNetY160 95.00 1.00 0.90 0.95 0.97 1.00 0.98 0.86 1.00 0.92 1.00 0.90 0.95 120
RegNetX016 91.67 0.97 0.93 0.95 0.88 0.97 0.92 0.86 1.00 0.92 1.00 0.77 0.87 120
RegNetX120 94.17 1.00 0.90 0.95 0.83 1.00 0.91 0.97 1.00 0.98 1.00 0.87 0.93 120
RegNetX040 92.50 1.00 0.87 0.93 0.86 1.00 0.92 0.88 1.00 0.94 1.00 0.83 0.91 120
RegNetX064 92.50 0.93 0.93 0.93 0.83 0.97 0.89 0.97 1.00 0.98 1.00 0.80 0.89 120
RegNetX008 86.67 1.00 0.87 0.93 0.79 0.90 0.84 0.77 1.00 0.87 1.00 0.70 0.82 120
RegNetX320 88.33 1.00 0.83 0.91 0.87 0.90 0.89 0.77 1.00 0.87 0.96 0.80 0.87 120
RegNetY080 90.00 0.96 0.87 0.91 0.79 1.00 0.88 0.91 1.00 0.95 1.00 0.73 0.85 120
RegNetY016 87.50 1.00 0.80 0.89 0.77 1.00 0.87 0.83 1.00 0.91 1.00 0.70 0.82 120
RegNetY040 88.33 1.00 0.73 0.85 0.77 1.00 0.87 0.86 1.00 0.92 1.00 0.80 0.89 120
RegNetY064 86.67 1.00 0.73 0.85 0.75 1.00 0.86 0.83 1.00 0.91 1.00 0.73 0.85 120
RegNetY320 90.83 1.00 0.70 0.82 0.88 1.00 0.94 0.83 1.00 0.91 0.97 0.93 0.95 120
RegNetX080 86.67 1.00 0.67 0.80 0.78 0.97 0.87 0.86 1.00 0.92 0.89 0.83 0.86 120
RegNetX032 83.33 1.00 0.53 0.70 0.71 0.97 0.82 0.79 1.00 0.88 1.00 0.83 0.91 120

resnet ResNet152 95.83 0.94 1.00 0.97 0.97 0.93 0.95 0.97 1.00 0.98 0.96 0.90 0.93 120
ResNet101 90.00 1.00 0.90 0.95 0.75 1.00 0.86 0.93 0.90 0.92 1.00 0.80 0.89 120

resnet_rs ResNetRS50 93.33 1.00 0.90 0.95 1.00 1.00 1.00 0.79 1.00 0.88 1.00 0.83 0.91 120
ResNetRS101 95.00 1.00 0.90 0.95 0.90 0.93 0.92 0.91 1.00 0.95 1.00 0.97 0.98 120
ResNetRS200 95.00 1.00 0.90 0.95 0.88 0.93 0.90 0.94 1.00 0.97 1.00 0.97 0.98 120
ResNetRS270 94.17 0.97 0.93 0.95 0.90 0.87 0.88 0.91 1.00 0.95 1.00 0.97 0.98 120
ResNetRS152 91.67 1.00 0.87 0.93 0.88 0.97 0.92 0.97 1.00 0.98 1.00 1.00 1.00 120
ResNetRS350 91.67 0.93 0.90 0.92 0.87 0.90 0.89 0.88 1.00 0.94 1.00 0.87 0.93 120
ResNetRS420 95.00 1.00 0.83 0.91 0.88 0.97 0.92 0.94 1.00 0.97 1.00 1.00 1.00 120

resnet_v2 ResNet152V2 87.50 0.96 0.80 0.87 0.87 0.90 0.89 0.77 1.00 0.87 0.96 0.80 0.87 120
ResNet101V2 86.67 0.95 0.67 0.78 0.84 0.90 0.87 0.81 1.00 0.90 0.90 0.90 0.90 120
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the RegNetX040 model correctly predicted the images 
belonging to the CPox and measles classes, it incorrectly 
predicted four images from the MPox class (three CPox, 
one measles) and five images from the normal class (three 
measles, two CPox). RegNetX160 model, one of the models 
determined with SC3, correctly predicted all of the CPox 
and measles classes. It incorrectly predicted two images of 
the MPox class (one CPox, one normal) and five images 
of the normal class (four measles, one CPox). The ResN-
etRS101 model correctly predicted all images belonging to 
the measles class. Two images belonging to the CPox class 

were classified as measles, three images belonging to the 
MPox class, and one image belonging to the normal class 
were incorrectly predicted. The ResNet101 model correctly 
predicted the entire CPox class. It incorrectly predicted three 
images of the measles class as CPox. It incorrectly predicted 
two images of the MPox class as CPox and 1 as measles. In 
the normal class, six images were incorrectly predicted (five 
CPox, one measles).

Among the models determined with SC4, the ResNe-
tRS50 model correctly predicted all of the CPox and measles 
classes. three images from the MPox class and five images 

(a) (b)

(c) (d)

Fig. 6   Precision, recall, and f1-score values of a MPox, b CPox, c measles, and d normal classes
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from the normal class were incorrectly predicted as mea-
sles. The RegNetY320 model also correctly predicted all 
CPox and measles classes. Nine images from the MPox class 
were incorrectly predicted. Two images were incorrectly pre-
dicted from the normal class. The MobileNet model also 
correctly predicted all of the CPox and measles classes. It 
incorrectly predicted seven images from the MPox class and 
nine images from the normal class. Among the models deter-
mined with SC5, ResNetRS152 model correctly predicted 
all measles and normal classes, but incorrectly predicted one 
image in CPox and four images in MPox. The RegNetX120 
model correctly predicted the CPox and measles classes, 
but incorrectly predicted three images in MPox and four 
images in normal. The EfficientNetV2L model correctly pre-
dicted measles, incorrectly predicted two images in CPox 
and normal classes and four images in MPox. Finally, the 
ResNetRS270 model, one of the models determined with 
SC6, correctly predicted the entire measles class, while 
predicting two images from the MPox class as CPox. It 
also predicted one image from the normal class as CPox. 
It incorrectly predicted four images from the CPox class. 
The RegNetY160 model correctly predicted all of the CPox 
and measles classes, but incorrectly predicted three images 
each from the MPox and normal classes. The EfficientNetB4 
model correctly predicted the measles class, but incorrectly 
predicted three, four, and nine images from the CPox, nor-
mal, and MPox classes, respectively.

Second‑step Ensemble Learning Results

The ensemble learning models determined based on the 
comprehensive analyses conducted in the first step of the 
study, and the results of the created models are presented 
in Table 5.

Among the six different ensemble learning models pre-
sented in Table 5, the most successful ROC AUC score 
was achieved by the EM3 model (0.9971). The models 
included in this ensemble model are RegNetX160, ResN-
etRS101, and ResNet101. These models, created according 
to SC3 criterion, were identified as the most successful 
model among all ensemble models. A very close result 
to this success was obtained by the EM1 model (0.9948). 
The models used in this model are EfficientNetV2S, 
ResNet152, and ResNetRS420. Based on these results, the 
results that produce higher performance than the highest 
performance ranking were achieved with the models deter-
mined according to the MPox selection criterion.

After conducting the tests in the study, the DNN mod-
els that achieved the most successful results among indi-
vidual models and ensemble models were determined. 
The ConvNeXtBase, ConvNeXtLarge, and ConvNeX-
tXLarge models belonging to the convnext module were 
found to successfully classify MPox, CPox, measles, and 
normal images. All of these models achieved high accu-
racy rates (97.5%). Among the models, the ConvNeXt-
Large model has the lowest loss rate (0.82). The evalu-
ation of the ensemble learning models was conducted 
based on the ROC AUC score. Among these models, the 
EM3 model consisting of RegNetX160, ResNetRS101, 
and ResNet101 was identified as the model with the most 
successful score.

Discussion

In this section, the results obtained in this study are dis-
cussed and evaluated in comparison with the results of simi-
lar studies found in the literature review. The limitations of 

Fig. 7   Comparison of models’ F1-Score values
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the studies in the literature and the advantages of the results 
of this study over other studies are discussed.

One of the significant studies contributing to the field 
of MPox disease is conducted by Ahsan et al. [19]. They 
proposed a modified VGG16 model with an accuracy of 
97 ± 1.8% on the study dataset. The main limitation of 
this study is that it only differentiates MPox disease from 
normal images. Since there are other visually similar dis-
eases, one of the key challenges in clinical diagnoses is 
distinguishing these diseases from each other. Another 

important study in this field is conducted by Bala et al. 
[20]. They proposed a modified DenseNet-201 model, 
achieving accuracies of 93.19% and 98.91% on the origi-
nal and augmented datasets, respectively. The limitation 
of this study is that it focuses on a single model instead of 
testing different pre-training models.

Akın et al. [21] proposed a decision support system using 
a dataset consisting of 572 images in two classes, monkey-
pox and normal. They evaluated 12 different CNN models, 
and MobileNetV2 achieved the best performance with an 

(a) (b)

Fig. 8   Comparison of models’ a precision, b recall values
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accuracy of 98.25%, sensitivity of 96.55%, specificity of 
100.00%, and F1-Score of 98.25%. The main limitation of 
this study is that it only differentiates MPox disease from 
normal images and does not include other similar diseases in 
the dataset. Another study that classifies different diseases, 
including monkeypox and measles, using transfer learning 
with nine different DNN models, was conducted by Yaşar 
[22]. DarkNet-53, DenseNet-201, InceptionV3, and Xcep-
tion stood out as the most successful CNN architectures in 
the study. The study achieved high performance rates (93.6 
to 96.4%) when comparing monkeypox and normal, but 
when other diseases were included, the performance rates 
ranged from 69 to 72%. Low performance rates were identi-
fied as the main limitation of this study.

In the study conducted by Haque et  al. [23] on the 
MPox Skin Lesion Dataset (MSLD), VGG19, Xception, 
DenseNet121, EfficientNetB3, and MobileNetV2, along with 
integrated channel and spatial attention mechanisms, were 
used. The study classified monkeypox and other diseases 
with a validation accuracy of 83.89%. The major limitations 
of this study are the reliance on validation accuracy and 

the observed low accuracy rate. In another study, ResNet50, 
EfficientNetB3, and EfficientNetB7 were trained on the Kag-
gle Monkeypox dataset, and EfficientNetB3 outperformed 
with an 87% accuracy in the early detection of monkey-
pox skin lesions [24]. The main limitations of this study 
are the selection of only three models for comparison from 
numerous pre-trained models and the performance rate. 
Another study that distinguishes between MPox and CPox 
skin lesions was conducted by Uzun Ozsahin et al., [25]. 
They proposed a nine-layer CNN model for this classifica-
tion problem, which outperformed all DL models with a test 
accuracy of 99.60%. The main limitation of this study is that 
it focuses only on two classes.

A study utilizing ensemble learning on MPox skin lesions 
was conducted by Pramanik et al. [26]. The researchers first 
considered three pre-trained base learners (InceptionV3, 
Xception, and DenseNet169) on the Kaggle Monkeypox 
dataset. They then extracted probabilities from these deep 
models to feed into the ensemble framework. Their model 
achieved average accuracy, precision, recall, and F1 scores 
of 93.39%, 88.91%, 96.78%, and 92.35%, respectively. The 
identified limitation of this study is that the models selected 
in the initial stage were not subjected to further refine-
ment. The models were chosen by the researchers. Another 
ensemble learning method was proposed by [29]. In the 
study, 13 different pre-trained models were initially com-
pared, and then the top two models were combined using the 
ensemble method. This technique, created using Xception 

Fig. 9   Confusion matrices of the models selected for Ensemble learn-
ing: a EfficientNetV2S, b ResNet152, c ResNetRS420, d ResNe-
tRS200, e EfficientNetV2M, f RegNetX040, g RegNetX160, h ResN-
etRS101, i ResNet101, j ResNetRS50, k RegNetY320, l MobileNet, 
m ResNetRS152, n RegNetX120, o EfficientNetV2L, p ResNe-
tRS270, r RegNetY160, sEfficientNetB4

◂

Table 5   Ensemble learning 
results

Criteria Models Ensemble 
model name

Result

SC1 EfficientNetV2S
ResNet152
ResNetRS420

EM1 model1—weight: 0.2170—roc_auc_score: 0.7579
model2—weight: 0.6306—roc_auc_score: 0.9941
model3—weight: 0.1524—roc_auc_score: 0.8919
DirichletEnsemble roc_auc_score: 0.9948

SC2 ResNetRS200
EfficientNetV2M
RegNetX040

EM2 model1—weight: 0.3427—roc_auc_score: 0.9165
model2—weight: 0.2276—roc_auc_score: 0.8933
model3—weight: 0.4297—roc_auc_score: 0.9493
DirichletEnsemble roc_auc_score: 0.9794

SC3 RegNetX160
ResNetRS101
ResNet101

EM3 model1—weight: 0.0292—roc_auc_score: 0.9509
model2—weight: 0.4344—roc_auc_score: 0.9377
model3—weight: 0.5363—roc_auc_score: 0.9880
DirichletEnsemble roc_auc_score: 0.9971

SC4 ResNetRS50
RegNetY320
MobileNet

EM4 model1—weight: 0.4475—roc_auc_score: 0.9319
model2—weight: 0.5395—roc_auc_score: 0.9294
model3—weight: 0.0129—roc_auc_score: 0.6650
DirichletEnsemble roc_auc_score: 0.9556

SC5 ResNetRS152
RegNetX120
EfficientNetV2L

EM5 model1—weight: 0.3382—roc_auc_score: 0.9622
model2—weight: 0.2596—roc_auc_score: 0.9081
model3—weight: 0.4022—roc_auc_score: 0.9572
DirichletEnsemble roc_auc_score: 0.9806

SC6 ResNetRS270
RegNetY160
EfficientNetB4

EM6 model1—weight: 0.1712—roc_auc_score: 0.9001
model2—weight: 0.8237—roc_auc_score: 0.9637
model3—weight: 0.0050—roc_auc_score: 0.7662
DirichletEnsemble roc_auc_score: 0.9746
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and DenseNet169, yielded precision, recall, F1-score, and 
accuracy values of 85.44%, 85.47%, 85.40%, and 87.13%, 
respectively. Although the method applied in the study is 
innovative, the achieved performance rate stands out as a 
limitation. Singular models in different studies have also 
reached similar rates.

A transfer learning methodology was applied by Irmak 
et  al. [27]. In their study, MobileNetV2, VGG16, and 
VGG19 models were employed on the MSID dataset. The 
highest performance scores were achieved by the Mobile-
NetV2 model, with an accuracy of 91.38%, precision of 
90.5%, recall of 86.75%, and an F1-score of 88.25%. The 
VGG16 model attained an accuracy of 83.62%, while the 
VGG19 model achieved 78.45% accuracy. One notable lim-
itation of the study is its reliance solely on transfer learn-
ing methods. In the study by Altun et al. [30], the custom 
model MobileNetV3-s, EfficientNetV2, ResNet50, VGG19, 
DenseNet121, and Xception models were implemented. 
The optimized hybrid MobileNetV3-s model obtained the 
highest score, with an average F1-score of 0.98, AUC of 
0.99, accuracy of 0.96, and recall of 0.97. Transfer learn-
ing and optimization techniques were applied in the study. 
However, a limitation of the study is that it only focused 
on the binary classification of MPox, without considering 
other diseases.

State-of-the-art (SOTA) methods for medical image pro-
cessing include transfer learning, ensemble learning, fine-
tuning, data augmentation, attention mechanism, generative 
adversarial networks (GANs), recurrent neural networks 
(RNNs), and long short-term memory (LSTM) networks 
and graph neural networks (GNNs). These methods are 
increasing day by day with scientific advances. Techniques 
such as transfer learning, ensemble learning, fine-tuning, and 
data augmentation are discussed in detail in “Material and 
Method” as they are used in this study. Attention mecha-
nisms, like those used in Transformer models, were applied 
to focus on relevant regions within images, making the mod-
els more interpretable and effective. GNNs were used to 
analyze medical data with inherent graph structures, such 
as brain connectivity networks or molecular graphs in drug 
discovery. RNNs and LSTMs were used for tasks involving 
sequential medical data, like time series analysis of vital 
signs or ECG data. Considering all these aspects, the most 
suitable SOTA methods that can be used in this study have 
been brought together. Thus, robustness and generalization 
for addressing issues of model robustness, generalization to 
diverse patient populations, and data bias to ensure that AI 
models perform reliably across different clinical scenarios 
were provided. It is possible to apply different network appli-
cations such as RNN, LSTM, and GNN to different types of 
data. However, the algorithm suitable for the data set used 
in this study is the CNN algorithm. Attention mechanisms 
are among the studies that have been increasing especially 

in recent years. In future studies, vision transformers can be 
used for this disease group, and the results can be compared 
with this study.

The superior aspects of the results obtained in this study 
compared to the other studies in the literature can be sum-
marized as follows:

•	 Improved performance: The results of this study demon-
strate higher performance compared to the other studies 
in terms of accuracy, precision, recall, specificity, and 
F1-score. The fine-tuned transfer learning models (con-
vnext module group) and the developed ensemble learning 
models in this study show better capabilities in classifying 
and detecting MPox and other similar diseases accurately.

•	 Ensemble learning approach: Unlike some studies 
in Table 1 that focus on individual models, this study 
employs an ensemble learning approach by combining 
different models. The ensemble technique used in this 
study enhances the overall performance by leveraging the 
strengths of multiple models and reducing the negative 
impact of other diseases with similar symptoms.

•	 Evaluation metrics: In addition to accuracy, this study 
evaluates the performance using metrics such as preci-
sion, recall, F1-score, and AUC. This comprehensive 
evaluation provides a more comprehensive understand-
ing of the model’s performance in different aspects.

•	 Dataset considerations: This study considers datasets that 
include MPox, CPox, and measles cases, allowing for a 
more realistic evaluation of the model’s performance in 
real-world scenarios. By including a broader range of 
cases and considering potential confounding diseases, the 
developed models in this study demonstrate robustness 
and generalizability.

Overall, the results obtained in this study surpass the 
mentioned studies in the literature by achieving higher per-
formance, following an optimization approach, utilizing an 
ensemble learning technique, considering comprehensive 
evaluation metrics, and using appropriate datasets for a more 
realistic assessment.

Conclusion

After the long-lasting effects of the Covid-19 pandemic 
worldwide, another outbreak was announced by the WHO 
in 2022. The Director-General of WHO, Tedros Adhanom 
Ghebreyesus, Ph.D., declared the current MPox outbreak as 
a PHEIC [51]. This decision was justified due to the increas-
ing number of cases in over 70 countries, most of which are 
non-endemic, and the presence of milder nonspecific clinical 
symptoms without clear epidemiological links [52].
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In this study, a methodology has been developed that 
successfully classifies three different types of diseases with 
similar skin symptoms, as well as normal skin types, using 
SOTA AI techniques such as optimization approaches, trans-
fer learning, fine-tuning, and ensemble learning. Based on 
this, extensive tests on 71 different models from existing 
pre-trained model libraries have been conducted in this 
study, and the test results have been evaluated using dif-
ferent metrics. Through elimination and filtering methods, 
models that fell below the threshold value were eliminated, 
and a selection process was applied to the remaining models 
based on different criteria. Among the individual models, 
the ConvNeXtBase, large, and XLarge models in the con-
vnext module group were the most successful models with 
an accuracy of 97.5%. Among the ensemble models created 
based on different criteria from the remaining models, the 
best result was achieved by the EM3 model, created based 
on the F1-Score performances for the MPox class (0.9971). 
This model includes the RegNetX160, ResNetRS101, and 
ResNet101 models.

The comprehensive tests conducted in the study are 
expected to contribute to the early diagnosis of these signifi-
cant diseases that threaten global health during and before 
epidemics. It is also expected to serve as a basis for future 
research on this group of diseases. Additionally, this study 
has contributions to software-developing organizations for 
imaging devices used in clinical processes. Software devel-
opers can make decisions regarding the models they will use 
based on the results of this study. Researchers can save time 
by experimenting with the results of these models on different 
datasets of similar disease groups in the future. In addition, as 
a result of the increase in data sets of these disease groups in 
the coming years, different data sets can be tested using the 
hold-out technique in both stages applied in this study, and the 
results of the study can be explained comparatively.
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