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Deep learning prediction of renal 
anomalies for prenatal ultrasound 
diagnosis
Olivier X. Miguel 1, Emily Kaczmarek 2, Inok Lee 1, Robin Ducharme 1, 
Alysha L. J. Dingwall‑Harvey 1,2, Ruth Rennicks White 1,7, Brigitte Bonin 10,7, 
Richard I. Aviv 11,12,13, Steven Hawken 1,2,3,4, Christine M. Armour 2,5,6, Kevin Dick 2 & 
Mark C. Walker 1,10,2,3,5,7,8,9*

Deep learning algorithms have demonstrated remarkable potential in clinical diagnostics, particularly 
in the field of medical imaging. In this study, we investigated the application of deep learning models 
in early detection of fetal kidney anomalies. To provide an enhanced interpretation of those models’ 
predictions, we proposed an adapted two-class representation and developed a multi-class model 
interpretation approach for problems with more than two labels and variable hierarchical grouping 
of labels. Additionally, we employed the explainable AI (XAI) visualization tools Grad-CAM and 
HiResCAM, to gain insights into model predictions and identify reasons for misclassifications. The 
study dataset consisted of 969 ultrasound images from unique patients; 646 control images and 
323 cases of kidney anomalies, including 259 cases of unilateral urinary tract dilation and 64 cases 
of unilateral multicystic dysplastic kidney. The best performing model achieved a cross-validated 
area under the ROC curve of 91.28% ± 0.52%, with an overall accuracy of 84.03% ± 0.76%, sensitivity 
of 77.39% ± 1.99%, and specificity of 87.35% ± 1.28%. Our findings emphasize the potential of deep 
learning models in predicting kidney anomalies from limited prenatal ultrasound imagery. The 
proposed adaptations in model representation and interpretation represent a novel solution to multi-
class prediction problems.
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Deep learning (DL) is a machine learning methodology that has gained momentum in clinical diagnostics, 
particularly in medical imaging1. It utilizes artificial neural networks to process extensive datasets and identify 
important features that predict outcomes of interest2. Through the analysis of large clinical datasets, DL has 
demonstrated its ability to analyze vast amounts of data to provide invaluable prediction tools and clinical 
insights with the potential to enhance, and in some cases transform, healthcare delivery. This approach brings 
significant advantages, as DL model performance can be continuously improved as more data accrues. Notably, 
those models excel at pattern recognition, making them ideal for analyzing medical images. Convolutional 
neural networks (CNN), a specific DL architecture, has been identified as the method of choice for analyzing 
and interpreting medical images3,4.

Ultrasonography, more so than other imaging modalities such as X-ray, computed tomography (CT), and 
magnetic resonance imaging (MRI), is heavily performer- and interpreter-dependent, presenting a challenge 
to the DL models in clinical practice5,6. Since ultrasound (US) technology is a vital tool for assessing fetal 
anatomy, many researchers have found DL useful in prenatal US processes6. To date, most of the DL research on 
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antenatal US has focused on fetal biometry and confirming normal structures, including the heart and brain7 . 
There have been only limited applications of DL in identifying structural anomalies thus far6,7.

Congenital anomalies of the kidneys and urinary tract (CAKUT) are relatively common, affecting 1 in 500 
live births and comprising 20–30% of congenital fetal anomalies8,9. The kidney and urinary tract are vital organ 
systems that produce amniotic fluid and facilitate lung development10. Although various CAKUT can be detected 
during prenatal US exams, the false-positive rate is relatively high11. Therefore, more accurate diagnosis of 
CAKUT by prenatal US screening could improve fetal outcomes and reduce avoidable anxiety for expecting 
parents.

Previously, our research team successfully applied DL algorithms to the detection of cystic hygroma from 
fetal ultrasound images12. To further investigate the role of DL algorithms in medical imaging, we consider fetal 
kidney anomalies given their high incidence in the general population and the significant clinical impact of early 
detection. Conversely, the incidence of specific CAKUT subtypes such as multicystic dysplastic kidney (MCDK) 
and urinary tract dilation (UTD) is relatively low. The objective of this study was to determine the accuracy of a 
DL model in identifying CAKUT and establish the achievable class-specific discrimination of specific subtypes 
of CAKUT. We used several XAI explainability tools, including Gradient-weighted Class Activation Mapping 
(Grad-CAM) and High-Resolution Class Activation Mapping (HiResCAM)12 to facilitate the interpretation of our 
final model. This study makes key contributions: (1) the application of explainable deep learning for multi-class 
prediction of kidney anomalies and (2) an adapted two-class representation for a multi-class dataset through 
variable hierarchical grouping of labels to facilitate performance comparison with a binary classifier. We believe 
this work represents the first large-scale investigation of congenital kidney disorders in ultrasound images using 
deep learning with explainable AI.

Data and methods
Study setting and data acquisition
In this retrospective study, we included US images of singleton and twin pregnancies taken at a multi-site 
tertiary-care facility in Ontario, Canada between March 2014 and November 2021. This study was approved 
by the Ottawa Health Sciences Network Research Ethics Board (OHSN-REB). All study procedures were per-
formed in accordance with the relevant guidelines and regulations. All images were captured using either a GE 
voluson™ V830 (916 images) or V730 (53 images) ultrasound system, by fully trained sonographers in obstetrics, 
and interpreted by maternal–fetal specialists. Images for both ‘normal’ instances and those reporting CAKUT 
were obtained between 18 and 24 weeks of gestational age (GA). This window was selected because, following 
full differentiation of the renal corticomedullary system, fetal renal structures are typically well developed at 
the 18th week of GA, and early detection (before 24 GA) of fetal urinary tract anomalies could independently 
predict poor postnatal renal outcome11. Further information on patient age and image dimensions is provided 
in Supplementary Table S1.

Images from two-dimensional (2D) transverse planes of fetal abdomens, measuring the renal pelvis anter-
oposterior diameter, were extracted from the institutional Picture Archiving and Communication System (PACS) 
and saved in Digital Imaging and Communications in Medicine (DICOM) format. Since we only analyzed 2D 
US images, only images of MCDK and UTD were included as part of the CAKUT ‘abnormal’ class classification. 
For clarity, we denote this class as ‘abnormal’ and not ‘CAKUT’ to make explicit that only a subset of CAKUT 
conditions are considered in this work. We considered 4 mm as the cut off value of UTD as per the 2014 UTD 
classification11. We collected multiple images from patients who underwent several US exams within the des-
ignated GA range. We excluded images that either did not have a 2D transverse kidney section for diagnosis or 
were not captured in the standard gray scale of US imagery.

Data preprocessing
Figure 1 depicts the conceptual overview of this study. The DICOM images used in the study required variable 
degrees of preprocessing prior to their use within the DL framework. A subset of images contained various col-
oured annotations such as calipers, text, icons, and profile traces. Another subset of images contained patient 
personal health information (PHI) that was visually present. Following the de-annotation and de-markup frame-
work presented by our team previously12, we removed both coloured markup elements and all PHI to limit the 
introduction of bias and/or the leakage of class labels (Fig. 2). All images were verified following de-annotation 
and de-markup to ensure the quality of the images within the DL modelling dataset.

The resulting dataset of images spanned three classes: the ‘normal’ (i.e., control group) class and two ‘abnor-
mal’ classes comprised of the MCDK and UTD images. The set of normal class images were randomly sampled 
from the full collection of available control imagery, conditioned on matching the years from which the abnormal 
images were captured. We performed this stratified downsampling of all available normal images to achieve a 
relative class ratio of ~ 2:1 for normal:abnormal instances. This control group of instances were normal axial 
kidney images extracted from pregnancies without CAKUT.

Model training framework and performance metrics
Following the methodology used in our previous study focused on cystic hygroma12, we leveraged the Densely 
Connected Convolutional Networks (DenseNet) CNN model architecture to categorize images13. Specifically, we 
utilized the DenseNet169 PyTorch model, modifying the input layer to accommodate a variety of input image 
sizes (e.g., 128× 128× 1 or 256× 256× 1 pixels). Depending on the specific experiment, the output layer was 
also adjusted to generate either two (binary) or three (multi-class) output values (Fig. 3). We used a weighted 
cross-entropy loss function with weights calculated using the inverse of the class frequency.
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Figure 1.   Conceptual overview of the model training and evaluation pipeline. From left to right, an original 
dataset of ultrasound images is preprocessed based on study inclusion criteria and transformed into a format for 
deep learning model trainings. A stratified sample of images is heldout exclusively for final model evaluation. 
The remaining training data is used to generate numerous DenseNet169 models with varying hyperparameters 
and modelling configurations. Through fourfold cross-validation and 5 independent repetitions, the best 
DenseNet169 model is selected based on validation performance and is evaluated on the heldout dataset. We 
additionally generate various visual explanation plots to investigate the image features leveraged by the model to 
inform its final prediction.

Figure 2.   Image preprocessing for annotation removal. (A) depicts the valid grayscale HSV space applying the 
thresholds (0–27, 0–150, 0–255) for HSV respectively. (B,C) demonstrate the application of the preprocessing 
algorithm to an example ultrasound image; replicated from Walker et al.12.
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Throughout all experiments, the DenseNet169 models were trained from scratch over a variable number of 
epochs using fourfold cross-validation. Experiments were also repeated k = 5 times to compute accurate confi-
dence intervals (CIs) of the reported performance and in plotting the Receiver Operating Characteristic (ROCs) 
and Precision-Recall (PR) curves. We use the normal approximation interval to compute 95% CIs on reported 
metrics from the independent folds and repetitions given the computationally expensive training of DL models. 
The performance metrics reported in this work include the area under the ROC curve (AUC), Accuracy, Sensitiv-
ity, Specificity, F1 Score and Precision; the latter five defined by the following equations:

where TP, TN, FP, FN denote the number of instances correctly predicted to be positive (true positive), the 
number of instances correctly predicted to be negative (true negative), the number of instances incorrectly 
predicted to be positive (false positive), and the number of instances incorrectly predicted to be negative (false 
negative), respectively.

Hyperparameter tuning
To optimize the performance of our DenseNet169 models, we conducted hyperparameter tuning by varying three 
key parameters. Firstly, we resized the input images to three different dimensions: 128× 128× 1 , 256× 256× 1 , 
and 512× 512× 1 . This allowed us to investigate the influence of image resolution on both model performance 
and inference times. Secondly, we explored the impact of epoch number on performance by setting it to three 
different values: 100, 300, and 600. This enabled us to establish a baseline performance and determine whether 
longer training durations would lead to improved model accuracy. Lastly, we experimented with three different 
batch sizes: 32, 64, and 128. By varying the batch size, we aimed to evaluate the effect on model performance and 
the computational resources required for training. The adaptive setting of the positive weighting for abnormal 
classes was dependent on the prediction paradigm being considered, whether it was a two-class or three-class 
scenario. Through these systematic variations, we sought to identify the optimal combination of hyperparameters 
that would yield the best possible performance for our DenseNet169 models.

Across all experiments, the learning rate was set according to a specific learning rate decay and schedule. 
This technique allows for the gradual reduction in the learning rate as training progresses to help the network 
converge more rapidly. We set the initial learning rate to 0.1 with a step size of 55 and a gamma of 0.3. In Fig. 4 
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Figure 3.   DenseNet model architecture.
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we depict the varying learning rate step-wise decrease as a function of epoch number expressed with a log-scale 
for the maximal 600 epochs.

Visual explanation of model predictions
To enhance the interpretability of our trained DenseNet models and provide visual context to the important 
features contributing to model predictions, we employed two methods from the emergent field of Explainable AI 
(XAI). The first, denoted the Grad-CAM method, is a widely recognized technique in the field of DL for visually 
explaining the behavior of algorithms14. Grad-CAM considers the gradients of the classification score relative to 
the final convolutional feature map, allowing for the attribution of influence to specific areas of an input image, 
highlighting those regions that exert the most influence on the classification score14. Notably, locations where 
the gradient is substantial correspond to regions where the final score heavily relies on the underlying data.

While the Grad-CAM method has been popularized within vision-based DL applications, recent investiga-
tions have brought to light a critical issue associated with its reliability15. It has been observed that Grad-CAM 
occasionally highlights regions within an image that were not utilized by the model for making predictions15. 
This study raises concerns regarding the trustworthiness of Grad-CAM as a model explanation method and an 
alternative proposed method, denoted HiResCAM, offers a promising solution by guaranteeing that it exclusively 
highlights locations that were genuinely utilized by the model. Conveniently, HiResCAM draws inspiration from 
Grad-CAM, simplifying model interpretability for those previously familiar with Grad-CAM.

In this work, we consider both Grad-CAM and HiResCAM as visual explanation methods to interpret the 
trained DenseNet169 model predictions. The complementary use of the two methods enables the intuitive and 
accurate interpretation of model predictions for end users. To generate the class activation maps (CAMs), we 
specify the class_layer.relu as the target layer; this layer represents the terminal rectified linear unit (ReLU) layer 
in the model. Given that the dimensions of the CAM are directly influenced by the size of the input image, we 
adaptively parameterize the CAM grid size to ensure that the resulting grid cells of the CAM are consistently 
32× 32× 1 pixels in size for a fair comparison across experiments. For example, an input image measuring 
256× 256× 1 uses a CAM grid size of 8× 8× 1 . Similarly, when the input image measures 128× 128× 1 , the 
resulting CAM grid is reduced to 4× 4× 1 . Here, we leverage the methods to confirm that the trained models 
indeed base their predicted outputs on regions of the image that clinicians would consider for the basis of their 
own classification and diagnosis.

Adapted class representation due to limited dataset size
In this work, we addressed the challenge of limited dataset size in the context of class representation for image 
data. Specifically, we aimed to investigate the classification of images into three distinct classes: normal, UTD, 
and MCDK. However, due to the limited number of available images in the CAKUT classes (UTD and MCDK 
with a total of only n = 259 and n = 64 images, respectively) we faced a significant imbalance in class distribution. 
To overcome this limitation, we adopted a pragmatic approach by grouping these images into a single "abnormal" 
metagroup, thereby mitigating the issue of data sparsity, and enabling a more balanced representation across 
the classes. By employing this adapted class representation strategy, we aimed to explore the impact of limited 
dataset size on classification performance, while also considering the practical constraints associated with acquir-
ing a larger dataset for the UTD and MCDK classes (Fig. 5). To investigate the impact on model performance 
when formulating this as a 2-class problem (normal vs. abnormal) versus a 3-class problem (normal vs. UTD 
vs. MCDK), we trained an equivalent 3-class DenseNet model using the hyperparameters from the top-ranking 
2-class models for a fair comparison.

This adapted 2-class representation also enabled the definition of an adapted multi-class model interpretation 
of the performance from binary classification, inviting a novel means of interpreting k-class predictions for a 

Figure 4.   Learning rate decay schedule. The initial learning rate is set at 0.1 and follows a step-wise decay to 
enable the model to optimize performance. The learning rate values are represented with a log-scale to express 
the full range from 10−1 to 10−6 across the full span of training epochs.
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problem with > k labels and a variable grouping of hierarchical labels. The generalization of this concept and its 
impact on hierarchical prediction paradigms will be investigated as part of future work.

Ethical approval
This study was reviewed and approved by the Ottawa Health Sciences Network Research Ethics Board (OHSN-
REB #20210079). All methods were performed in accordance with the relevant institutional guidelines and 
regulations and in alignment with the Tri-Council Policy Statement: Ethical Conduct for Research Involving 
Humans (TCPS 2). This study involved images previously collected at the study centre, which were de-identified 
prior to model training and validation. Seeking participant consent was waived by the Ottawa Health Sciences 
Network Research Ethics Board as this retrospective study relied exclusively on secondary use of non-identifiable 
information. The data management and analysis for this study were conducted within the secure institutional 
network environment.

Results
Study sample
The complete image dataset included 969 ultrasound images from unique patients; 646 control images and 323 
CAKUT (abnormal) cases, comprised of 259 UTD and 64 MCDK cases (Table 1). A total of 606 images were 
used for model training through fourfold cross-validation (~ 25% of the training withheld as a validation set per 
fold), and a final 161 images were used for final independent evaluation of the selected model.

CNN model validation and performance
Table 2 summarizes the results from all model hyperparameter tuning experiments (sorted by descending AUC 
of the validation data), each reporting averaged performance metrics following fourfold cross-validation and 5 
independent repetitions. The best performing model overall achieved an AUC of 91.28% ± 0.52%, a mean accu-
racy of 84.03% ± 0.76%, a mean sensitivity of 77.39% ± 1.99%, and a specificity of 87.35% ± 1.28% (Table 2). The 
top-performing model Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves are depicted 
in Fig. 6A,B.

For a fair comparison of model performance between the top-ranking 2-class model and an equivalent 
3-class variant, Table 3 summarizes performance where we note a marked drop in performance in the 3-class 
prediction schema with an AUC of 75.46% ± 1.51%, a mean accuracy of 72.46% ± 1.18%, a mean sensitivity of 

Figure 5.   Conceptual overview of the prediction paradigms considered within this work. The 2-class and 
3-class paradigms represent the standard prediction schemas for classifier modelling. The adapted 2-class 
confusion matrix contains both joined and N/A cells due to the inability to attribute a miss-classification 
between two labels within the same grouped metaclass.

Table 1.   Partitioning of data across training, validation, and holdout test datasets. MCDK Multi-cystic 
dysplastic kidney, UTD Urinary Tract Dilatation.

Overall, n (%) Normal, n (%)

Abnormal

MCDK, n (%) UTD, n (%)

Total 969 (100%) 646 (100%) 64 (100%) 259 (100%)

Training 606 (62.54%) 404 (62.54%) 40 (62.50%) 162 (62.55%)

Validation 202 (20.85%) 135 (20.90%) 13 (20.31%) 54 (20.85%)

Holdout test 161 (16.62%) 107 (16.56%) 11 (17.19%) 43 (16.60%)
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41.48% ± 2.51%, and a mean specificity of 86.05% ± 1.53%. Clearly, the limited availability of the instances for 
the UTD and MCDK classes made it challenging for the trained model to accurately differentiate these classes 
as compared to the binary problem formulation.

In Table 4, we report performance of the top-ranking model on an independently heldout test dataset (n = 161 
test images). The model achieved a mean AUC of 90.71% ± 0.54%, a mean accuracy of 81.70% ± 0.88%, a mean 
sensitivity of 81.20% ± 2.40%, and a mean specificity of 82.06% ± 1.74%, each metric aligning well with the perfor-
mance from the validation dataset, suggesting that this model generalizes well to other US imagery. In Fig. 6C,D, 
we visualize the ROC and PR curves when evaluating the final model on the heldout test dataset. The normal-
ized confusion matrix summarizing the model performance on the heldout dataset is visualized in Fig. 7 along 
with an adapted 2-class representation to further interpret the binary model predictions based on the available 
2-class labels. Interestingly, the binary classification model more reliably detects instances of UTD (85% ± 8%) 
than instances of MCDK (67% ± 12%). Supplementary Figs. S3, S4, and S5 illustrate the progression curves for 
the AUC, accuracy, and weighted cross-entropy loss, respectively. These figures highlight the performance of the 
top-ranking model across training epochs for both the validation and training datasets.

Visual explanation of model predictions
We illustrate in Fig. 8 various examples of the activation maps from Grad-CAM and HiResCAM, obtained from 
the trained model when applied to instances from the holdout test set. Notably, across all classes and for both 
XAI methods, the model accurately focuses upon regions of the US image that would be clinically relevant for 
the diagnosis of CAKUT. In particular, we highlight comparisons between a Grad-CAM activation map and a 
HiResCAM activation map for the same image and note that the HiResCAM appears to hone in on more rel-
evant regions of the image. Supplementary Fig. S1 presents additional cases where the model accurately targets 
clinically relevant regions.

Model misclassification
Two specific cases of misclassification by our model are highlighted in Fig. 9. For both cases the CAMs focus 
simultaneously upon an incorrect region (maternal abdominal wall) of the US image as well as external portions 
of the image. Supplementary Fig. S2 presents additional misclassified cases where the CAMs highlight regions 
which are not clinically relevant.

Discussion
In this study, we demonstrate that DL algorithms can effectively make binary decisions, distinguishing between 
normal and abnormal conditions, based on retrospectively collected 2D fetal kidney US images. The top-per-
forming model trained and evaluated within this work achieved an AUC around 90% and an accuracy greater 
than 80% on independently heldout test data, showing promise in its ability to generalize to independent US 
images containing CAKUT. A novel facet of this work is the flexible interpretation of multi-class performance 
from binary-type predictions. We generated a highly accurate 2-class DL model from which we could interpret 
3-class labels (with the UTD and MCDK labels grouped into the ‘abnormal’ metaclass), thereby investigating 
what proportion of the abnormal labels were more reliably predicted, despite our binary problem formulation. 
Interestingly, the adapted 2-class confusion matrix suggested that the proportion of UTD instances can be more 
accurately predicted (85% ± 8%) than instances of MCDK (67% ± 12%). It is important to note that within the 
heldout test set, only 11 instances of MCDK were present as compared to the 43 UTD instance, suggesting that 

Table 2.   DenseNet161 model validation performance from 2-class hyperparameter tuning experiments 
following fourfold cross-validation and 5 independent repetitions.

Validation 
Rank

Hyperparameters Validation Performance ( µ± 95CI)

Input 
Shape

Num. 
Epochs

Batch 
Size AUC​ Accuracy F1 Score

Sensitivity/
Recall Specificity Precision

1 128 × 128 300 32 0.913 ± 0.005 0.840 ± 0.008 0.763 ± 0.02 0.774 ± 0.020 0.874 ± 0.013 0.758 ± 0.023

2 128 × 128 300 64 0.900 ± 0.006 0.813 ± 0.007 0.750 ± 0.016 0.841 ± 0.014 0.800 ± 0.008 0.677 ± 0.015

3 256 × 256 600 64 0.894 ± 0.008 0.811 ± 0.011 0.737 ± 0.020 0.753 ± 0.022 0.854 ± 0.025 0.732 ± 0.036

4 128 × 128 300 64 0.892 ± 0.006 0.807 ± 0.008 0.732 ± 0.016 0.773 ± 0.016 0.831 ± 0.014 0.700 ± 0.025

5 256 × 256 300 32 0.888 ± 0.010 0.810 ± 0.011 0.732 ± 0.028 0.730 ± 0.023 0.868 ± 0.016 0.741 ± 0.033

6 128 × 128 100 64 0.884 ± 0.010 0.794 ± 0.011 0.732 ± 0.020 0.844 ± 0.016 0.769 ± 0.013 0.648 ± 0.021

7 128 × 128 300 128 0.870 ± 0.008 0.802 ± 0.012 0.717 ± 0.019 0.749 ± 0.017 0.827 ± 0.020 0.693 ± 0.032

8 256 × 256 300 64 0.866 ± 0.009 0.802 ± 0.009 0.700 ± 0.027 0.706 ± 0.032 0.849 ± 0.016 0.709 ± 0.030

9 256 × 256 300 64 0.866 ± 0.009 0.802 ± 0.009 0.700 ± 0.027 0.706 ± 0.032 0.849 ± 0.016 0.709 ± 0.030

10 512 × 512 600 64 0.862 ± 0.010 0.779 ± 0.023 0.682 ± 0.032 0.709 ± 0.042 0.813 ± 0.047 0.696 ± 0.057

11 256 × 256 300 128 0.830 ± 0.012 0.775 ± 0.009 0.657 ± 0.028 0.658 ± 0.035 0.834 ± 0.018 0.672 ± 0.027

12 256 × 256 300 128 0.830 ± 0.012 0.775 ± 0.009 0.657 ± 0.028 0.658 ± 0.035 0.834 ± 0.018 0.672 ± 0.027

13 512 × 512 300 64 0.824 ± 0.010 0.734 ± 0.011 0.661 ± 0.020 0.778 ± 0.017 0.712 ± 0.012 0.576 ± 0.020
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Figure 6.   Model performance curves on the validation and holdout test dataset. (A,B) depict individual 
performance curves from five repetitions of four-fold cross-validation on the validation datasets. (C,D) 
summarize the final model performance on the heldout test dataset.

Table 3.   DenseNet161 model comparison between top-ranking 2-class and equivalent 3-class variant.

Model Hyperparameters Validation Performance ( µ± 95CI)

Binary vs. 
Multiclass InputShape Num. Epochs Batch Size AUC​ Accuracy F1 Score Sensitivity/Recall Specificity Precision

2-Class 128 × 128 300 32 0.9128 ± 0.0052 0.8403 ± 0.0076 0.7630 ± 0.017 0.7739 ± 0.0199 0.8735 ± 0.0128 0.7580 ± 0.0231

3-Class 128 × 128 300 32 0.7546 ± 0.0151 0.7246 ± 0.0118 0.3820 ± 0.0436 0.4148 ± 0.0250 0.8605 ± 0.0153 0.3694 ± 0.0469
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visually, with a greater number of available instances for training, the UTD images are more distinguishable 
from normal US images.

Significant advancements have been made in obstetric ultrasonography over the past four decades, enabling 
physicians to safely and effectively assess fetal conditions and accurately diagnose structural anomalies. However, 
despite improvements in US technology, ultrasonograms still heavily rely on the skills of the performer, which 
can contribute to under- or over-diagnosis, lead to medical malpractice concerns, and hinder accessibility in 
disadvantaged areas. It has been recognized that DL algorithms have the potential to serve as practical aids for 
performers of fetal ultrasonography, facilitating accurate image acquisition and diagnosis16. In a recent example, 
Xie et al. have reported the feasibility of utilizing AI models to diagnose fetal brain abnormalities17 and our prior 
research work has evidenced the use of DL models for the diagnosis of cystic hygroma from fetal US imagery12. 
While the detection of fetal congenital abnormalities represents a critical objective in fetal ultrasonography, 
there is a paucity of reports demonstrating the application of AI for CAKUT diagnosis and, of those reported 
examples, only limited transfer learning-based experiments exist18–20. To the best of our knowledge, this study 
represents the first large-scale initiative to investigate US images of CAKUT using a DL algorithm trained from 
scratch and leveraging XAI techniques to interpret model predictions.

There are several limitations and strengths to this study. First, this study only leverages data collected from 
a single center and thus, the sample size for developing and validating DL models is relatively small. As part of 
our mitigation strategy, we implemented the use of k-fold cross validation with numerous repetitions, and final 
model evaluation on a fully heldout test dataset. This approach is widely recognized as effective in mitigating 
the challenges associated with small datasets21. A strength of this work is our investigation of the hierarchical 
grouping of CAKUT through a complimentary binary (‘normal’ vs. ‘abnormal’) and multi-class (‘normal’ vs. 
‘MCDK’ vs. ‘UTD’) experimental design, enabling a fair comparison between prediction paradigms with vary-
ing number of classes. This introduces a novel concept on how variable grouping of instances within classes or 
meta-classes can mitigate a lack of data within any one class, and explores the impact on model performance; 
consequently, this concept could be extended to other data representation hierarchies (including unsupervised 
learning where arbitrary class labels may be discarded in favor of embedding similarity).

Another limitation of this study is the lack of standardized data acquisition process for fetal ultrasound 
images, which raises concerns about data quality and consistency between normal and abnormal images. Within 
a retrospective study, we are limited by the quality and consistency of the data available to train a DL model and 
understandably, the DL model performance is dependent on both the quality and quantity of the imagery avail-
able to train and evaluate it. While the versatile comprehension of AI through emergent model explainability 

Table 4.   Holdout test performance for the final model (top-ranking 2-class) ( µ± 95CI).

AUC​ Accuracy F1 Score Sensitivity/recall Specificity Precision

0.9071 ± 0.0054 0.8170 ± 0.0088 0.7488  ± 0.0187 0.8120 ± 0.0240 0.8206 ± 0.0174 0.7007  ±  0.0231

Figure 7.   Comparison of confusion matrices from the 2-class paradigm, 3-class paradigm, and adapted 2-class 
paradigm. The left panel summarizes the performance of the final DenseNet169 model trained on binary labels 
and evaluated on the heldout test set (normalized µ± σ ). The middle panel summarizes the performance of an 
equivalent DenseNet169 model trained on multi-class labels and evaluated on the heldout test set (normalized 
µ± σ ). The right panel is an adapted confusion matrix representing the same performance of the binary 
classifier in predicting the outcome of the available three-class labels for comparison.
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methods (e.g., GradCAM & HiResCAM) can potentially aid in the analysis of these diverse data, the absence of a 
standardized method of data acquisition introduces risks. Furthermore, clinicians may not have a comprehensive 
understanding of the impact of data quality and consistency on model training, which increases the likelihood 
of introducing bias or class leakage into the dataset. This potential data leakage compromises the reliability and 
generalizability of the results obtained from the study. Therefore, it is essential to acknowledge the limitations 
stemming from the method of data acquisition and consider possible implications on the accuracy and robust-
ness of the models.

The utilization of DL in ultrasonography has the potential to mitigate risks associated with the inherent 
nature of this imaging technique. Ultrasonography is heavily reliant on the operator, resulting in images that 
lack reproducibility and introduce subjectivity during acquisition and interpretation22. This dependence on the 
operator can lead to inconsistencies in image quality and diagnostic outcomes, posing challenges for physicians 
and limiting the broader utilization of ultrasound in medically underserved regions22.

Although DL-based models have demonstrated remarkable success across various domains in recent years, 
it is important to recognize that these models are not infallible, and they may occasionally produce errone-
ous predictions despite achieving high performance metrics. Several factors could contribute to the observed 
erroneous predictions. One possible explanation lies in the limitations of the training data itself. Despite efforts 
to curate high-quality and representative datasets, the presence of biased or noisy data can adversely affect the 
model’s ability to generalize accurately. Input noise is a challenge in ultrasound imaging that affects the image 
features such as contrast and resolution. This is an area of active research, and many discussions exist on how 
to reduce noise while preserving the image quality and information23–26. Additionally, DL models are highly 
complex and often consist of numerous interconnected layers, making it challenging to interpret their decision-
making process and pinpoint the source of errors. To better interpret the predictions of such a model, it is worth 
considering more intuitive model visualization techniques such as the recently proposed CAManim method27. 
Furthermore, DL models rely heavily on the optimization of loss functions during training, which may lead to 
overfitting or the exploitation of statistical patterns that do not truly generalize to real-world scenarios (e.g., the 
regular occurrence of blackout regions from US scans). This can result in models that perform well at the task 
they were trained on, but fail when applied to unseen or ambiguous inputs, leading to unexpected and erroneous 
outputs. Our observations highlight the need for further research and development to enhance the reliability 
and robustness of DL models, particularly in critical domains where erroneous predictions can have severe 
consequences. With sufficient safeguards and human-in-the-loop review, we may improve our understanding of 

Figure 8.   Sample visual explanations for successful model predictions. Panels (A–C) depict GradCAM 
activation maps whereas panels (D–F) depict HiResCAM activation maps. Panels in column (C,F) depict 
activation maps for the same patient ID to enable comparison of the activations maps of the two visual 
explanation methods for the same image. Pr(class:Normal) and Pr(class:Abnormal) are the probabilities for the 
Normal and Abnormal class respectively. The color bar units, ranging from 0.0 to 1.0, are unitless and denote the 
relative contribution of each pixel towards the model’s decision, where blue signifies low or negative importance 
and red signifies high importance.
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the underlying causes of these errors and strive towards increasingly trustworthy and accurate DL-based models 
that can be effectively deployed in real-world applications.

Future directions in evaluating the use of DL models in fetal US diagnostics should include prospective 
studies conducted with well-defined data collection protocols, established in consultation with a panel of both 
AI and subject-matter experts, who collectively possess a deep understanding of the clinical challenges as well 
as the impact of data quality and consistency on model training and evaluation. Data collection protocols can 
help mitigate the risks of data leakage, bias, and class leakage, and can ensure that the collected images are rep-
resentative, consistent, and of high quality, leading to a more reliable and generalizable dataset. Such a protocol 
may also ensure that multi-institutional data collection remain compatible. The inclusion of AI experts in the 
development of the protocol will also enhance the understanding of the specific requirements and challenges 
associated with training machine learning models for fetal ultrasound diagnosis. Consequently, a prospective 
study with a robust data collection protocol will contribute to the advancement of accurate and trustworthy 
AI-based diagnostic tools in this domain.

Conclusion
This study demonstrates the potential of DL algorithms in clinical diagnostics, specifically in the early detection 
of fetal kidney anomalies, using limited ultrasound imagery. This outcome encourages further development of 
DL algorithms capable of prospectively evaluating fetal US images in a multi-classification prediction schema. 
The potential establishment of such a DL system holds promise for the integration of AI-assisted prenatal US 
diagnostic systems in clinical settings, offering benefits to both patients and clinicians. By leveraging this technol-
ogy, prenatal US examinations may be enhanced, leading to improved accuracy and efficiency in the diagnosis 
of fetal conditions, and ultimately, to improved patient care. The integration of XAI techniques strengthens our 
understanding of the model’s decision-making process, enabling identification of areas for improvement, and 
fostering trust in deep learning predictions within clinical settings.

Figure 9.   Sample of erroneous predictions and their visual explanation activation maps. Panels (A,C) depict 
a misclassified Normal kidney, panels (B,D) depict a misclassified UTD instance. Pr(class:Normal) and 
Pr(class:Abnormal) are the probabilities for the Normal and Abnormal class respectively. The color bar units, 
ranging from 0.0 to 1.0, are unitless and denote the relative contribution of each pixel towards the model’s 
decision, where blue signifies low or negative importance and red signifies high importance.
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Data availability
The original image files are not publicly available due to their containing information that could compromise 
the privacy of research participants. The datasets generated and analyzed for this study are available from the 
corresponding author (MCW), upon reasonable request.
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